
Implementing a social network analytics pipeline using Spark on Urika XA

Mike Hinchey
Analytics Products Group

Cray Inc.
Pleasanton, CA, US
mhinchey@cray.com

Abstract—We intend to discuss and demonstrate the use
of new generation analytic techniques to find communities of
users that discuss certain topics (consumer electronics, sports)
and identify key users that play a role in or between those
communities (originators, rebroadcasters, connectors).

The analytics execution is performed on a Cray Urika XA
[1], a cluster of 48 nodes with 4T of RAM, 38T of SSD,
and Lustre storage. The software framework used is Apache
Spark [2] and HDFS (Hadoop Distributed File System) with the
Scala programming language. The Apache Spark framework is
similar to Hadoop/MapReduce, written in a functional style, al-
lowing the engine to make efficient use of the full cluster, lazily,
in parallel, with failure recovery, but without the user having
to code for such complexity. The entire pipeline includes ETL
(Extract, Transform, Load), numerous aggregations and joins,
and a graph algorithm. Spark Streaming is used to process
data as a series of micro-batches, to reprocess historical data
or process live streaming data for near real-time results from
complex event processing, to identify patterns and changing
trends.

Keywords-Social network analysis; SNA; Twitter; graph
algorithm; analytics; Apache Spark; Urika XA; HDFS; Lustre;
Scala; D3.js

I. INTRODUCTION

The customer business use case is to discover communi-
ties of users in a social network and identify certain key users
as measured by various roles exhibited by the activity in the
data. That is, given Twitter tweets, which have users refer-
ring to other users, we can infer who are the originators of
popular content, rebroadcasters, and the connectors between
multiple communities. The entire pipeline includes ETL,
numerous aggregations and joins, and a graph algorithm for
community detection. Spark Streaming is used for complex
event processing on real-time data, to identify patterns, such
as long chains of retweeting, and changing trends such as
hashtags becoming popular.

The analytics execution is performed on a Cray Urika XA
which is a cluster of 48 nodes with a total of 4T of RAM,
38T of SSD, and a Lustre disk. The software framework
used is Apache Spark and HDFS with the Scala program-
ming language. Spark has a programming model similar to
Hadoop/MapReduce, but easier to use for more complex
pipelines. The Spark engine uses in-memory computation
with reduced disk usage for much faster execution than
MapReduce. Lustre is used as permanent storage of the

source data files, which are gzipped JSON records. The SSD
is used for HDFS and also temporary cache by the Spark
engine.

The source data is taken from Twitter [3], where the
live API provides a realtime stream of tweets which match
any of a set of keywords for topics of interest. Each tweet
record contains the user making the tweet and any users
mentioned in the text of the tweet. The ETL phase consists
of parsing the JSON record, then re-organizing into struc-
tures analgous to relation tables (tweets, users, relationships,
hashtags). To create the communities, we choose to look
at a network of user pairs that have mentioned each other.
This reduces some of the celebrities who are mentioned a
lot, but mention relatively few. This network is fed into a
Spark-GraphX community detection algorithm. Then, using
both aggregations of the source data and the communities,
the important communities and their characteristics can be
described: topics, size, density, user roles, and relationships
between communities. These results are stored in HDFS in
CSV format, to later be loaded into a visualization tool for
interactive analysis. Web-based D3.js is used, but desktop
alternatives include Cytoscape, Spotfire, Tableau and many
others.

A Spark program is written in a functional style, allowing
the engine to make efficient use of the full cluster, lazily, in
parallel, with failure recovery, but without the user having
to code for such complexity. Rather than writing loops, the
functions of the pipeline are specified in sequence, using
familiar dataset operators like map, filter, distinct, join, and
group-by. A Spark Streaming pipeline is written in the same
style, but will also process periodically.

A. Goals of the Project

The first goal of the project is the business use case, to
demonstrate analytics of socia media data, infer communi-
ties, and identify users that exhibit certain patterns or roles.

The second goal was to bring together various tech-
nologies to demonstrate the architecture of an end-to-end
solution.

In addition, the application is used by Cray R&D for
future product development and QA for testing Urika-XA.



II. ARCHITECTURE

One goal of this project was to demonstrate what a
production architecture might look like beyond just loading
data and finding results. With more common use of Hadoop
and related technologies in recent years, more organizations
are performing big data analytics and discovering the chal-
lenges of maintaining systems with multiple data-processing
workflows.

The Urika-XA system, with its central role for Hadoop
and Spark, minimizes the maintainence and configuration
for a cluster, but requires solution developers to plan for
architectural requirements such as data consistency and
latency. Below, we discuss some of the popular ideas for
the architecture of such systems.

A. Lambda Architecture

The Lambda Architecture described by Nathan Marz
[4], is a system to handle both batch and stream data
processing, in a way that balances latency, throughput and
fault-tolerance.

Data is stored in an append-only, immutable, system of
record. The data is structured as timestamped events, so can
be appended rather than overwriting previous data.

The batch layer processes large quantities, aims for
completeness and accuracy, and may have large latency.
Hadoop/MapReduce is the de facto batch system.

The speed layer processes real-time streams with minimal
latency, but may sacrifice completeness or accuracy. The
results are replaced when the batch layer completes.

The serving layer responds to queries on the pre-processed
data.

B. Kappa Architecture

In 2014, Jay Kreps [5] and Martin Kleppmann [6], after
having built systems according to the Lambda Architecture,
offered criticisms and described some improvements.

With the Lambda Architecture, the batch and speed layers
are written in different frameworks, so many algorithms
must be maintained in duplicate.

Using the timestamped event nature of the Lambda data,
and noting that traditional databases use this same structure
internally for transaction logs, Kappa describes processing
the batch layer with a streaming technology that can handle
both batch and speed. This still requires duplicate processing
of the data, but eliminates multiple framewords and duplicate
code.

Everything is viewed as a stream of data, from the storage,
batch and speed layers, as well as serving and visualization.

C. Apache Spark

Spark is a data processing engine which provides a
functional API to execute algorithms on big data across a
cluster. The core abstraction is the RDD, resilient distributed
dataset, a collection of data items, which may be any Scala

object (or Java or Python). The RDD is analagous to a
relational table, where the objects are rows. A program may
work with multiple RDD’s each with a different type of
object. An RDD may be transformed into multiple different
RDD’s, or multiple combined into one. Transformations are
familiar set concepts: map, filter, distinct, keyBy, groupBy,
reduce, union, join, leftOuterJoin, etc.

The code that invokes those transformation methods does
not directly or immediately cause that work to be executed.
Instead, it’s setting up a graph of jobs to be executed on
remote worker nodes as needed. Only when output, such
as saving results to a file or database, is requested are the
transformations executed. Also, the transformations are only
executed on the data items required by the output.

The RDD abstraction can handles datasets that are small
or very large. The engine will automatically partition the
data, or this can be overridden by the application. The
application can also control if the data should be cached
in memory or on disk, to avoid the cost of re-computing.

Spark Streaming builds on the core RDD API with the
concept of a discretized stream or DStream. This offers a
way to process micro-batches in windows of time. For each
window, operations on the DStream are executed. The API
for a DStream is mostly the same as for an RDD, with
transformations like map, join, etc. Internal to a DStream,
the operations are executed on one or more RDD.

A DStream can also have a sliding window. Say the batch
window is 1 hour and the slide duration is 10 minutes, the
operations will be executed every 10 minutes on the last 1
hour of data.

It is the functional style of programming that make this
API and engine possible. Many of the parameters to the
RDD and DStream methods are functions (called UDF, user-
defined functions, in the context of SQL or other databases
with a remote query capability). These functions must be
pure functions, deterministic and stateless so the output de-
pends only on the input parameters, and free of side-effects,
so not modifying any external state such as member data on
some object. First, this allows the Spark engine to invoke the
function on different machines and JVM’s because only the
function matters, not any context or state. Second, this allows
the functions to be invoked independently of each other, so
a particular data value may flow through the entire pipeline
before another value is even read from disk, or functions may
be invoked multiple times to attempt to recover from errors.
The Spark engine may provide more features because the
application code is constrained to independent functions, and
the application logic is simplified because it is constrained
to well-defined data operations rather than complex state
machines and syncronization points.

Spark is itself implemented in the Scala programming
language, and the API most strongly supports Scala, though
Java and Python are also supported. The Scala language
compiles to Java bytecode to be run on a JVM (Java Virtual



Machine). It is similar to Java in style of syntax, being
object-oriented and statically typed. Scala differs from Java
in also supporting functional programming, immutability,
type inferencing and other features that make code more
concise and high-level. After experimenting with using
Spark with the Java language, our conclusion was the type
inferencing of Scala, and concise syntax for functions make
Scala easier to understand for Spark pipelines.

III. IMPLEMENTATION

We chose to implement the SNA (Social Network Ana-
lytis) pipeline on Urika XA with Apache Spark. The source
data from Twitter is naturally streaming and ongoing. The
results desired are both real-time and some that will require
high-volume processing. Spark and its modules GraphX
and Streaming include the features required for the various
analyses. We chose to follow the principles of the Lamba
and Kappa Architectures, both to achieve a consistent system
and to demonstrate a production architecture.

A. Streaming Data From Twitter

Data was collected for this project by connecting to the
Twitter HTTP/REST API. The download is persistent and
re-establishes in case of error, so runs for months without
intervention. The full Twitter firehose is about 600M tweets
per day. This free account only recieves about 300,000
tweets per hour, so about 1% of the firehose. The tweets
downloaded are based on a list of search keywords related
to various topics: sports, consumer electronics, and life
sciences.

B. Data Storage

The java process that downloads from Twitter recieves the
tweets as JSON records, and simply appends each to a text
file, periodically (1 hour) closes the file, gzips it and moves
it to a permanent location and starts a new file.

This structure allows subsequent processes to reprocess
historical data.

C. Streaming Data Load

As described above, the data is downloaded from Twitter
in a streaming fashion and is naturally stored as timestamped
events appended to the repository, so is consistent with the
Lambda and Kappa Architectures.

The software is written to start processing at a given
starting timestamp and stream forward. When processing
from the stored files, it checks the modification time of the
file (which is trusted to be accurate).

In addition to loading past data from files, the system can
connect to Twitter to download live tweets and process them
in real time.

D. Speed Layer or Fast Lane

Using Spark Streaming, loading the data and performing
aggregations can be done with a very small window, such
as a few seconds. These aggregations include counting the
tweets, unique users and hashtags. We also track most
popular hastags within per user and globally.

Any errors are exported to a file to be inspected.
For the sake of presentations, tweets are censored out

based on matching a list of keywords.
We also include some Complex Event Processing (CEP),

such as spotting trending hashtags or pairs of hashtags.
The small window timeframe and low latency allows the

speed layer to find and produce output for events in near
real-time.

E. Batch Layer or Slow Lane

The batch layer operates with a larger window timeframe
to collect more data, and has higher latency than the speed
layer.

The community detection algorithm that is used, Label
Propagation, is not implemented in a streaming fashion.
Each invocation of the algorithm processes an input dataset
to produce output. The next invocation is not directly related
to the previous.

The larger the input dataset, the higher quality the output.
That is, more input will contain more relationships on which
to build the communities.

In addition, a larger input dataset takes progressively
longer to process, because a greater number of relationships
leads the algorithm to need more iterations to resolve or
stabilize.

The input to the community detection is a network of user
relationships - also called an edge list of users. A tweet has
a creator and may mention zero or more other users. For
the purpose of this analysis, we chose to further restrict the
network to users that have mentioned each other (within the
window), infering they “know” each other. This makes for
a stronger set of communities, and minimizes the effect of
celebrities that are mentioned by thousands.

Once the community detection is complete, the result is
just a collection of edges assigning users to some number of
groups, where the groups are nothing more than an identifier.
Therefore, we follow that with a number of aggregations and
operations to collect more information about the communi-
ties.

First are aggregations such as counting the number of
users in each communities. We also count the number of
mentions relationships between users in the same commu-
nity. The density is the proportion of relationships to the
size of the community.

It is useful to filter out some communities. Those with too
few users (less than 10) have too little value. Those with too
many users (hundreds or thousands, depending on the input
size) are considered to indistinct to be of high value. Those



with too low density will have low value as they are likely
users with low rates of communication to anyone.

Next, communities are characterized by aggregations on
the members, such as finding the most popular hashtags and
topics.

Due to the nature of the algorithm requiring substantial
input, and the latency being higher than the streaming
aggregations in the Fast Lane, the community algorithms
run in a different streaming context, a slow lane.

With the quantity of data being collected (1% of the fire-
hose), the community-related pipeline can handle 1 month
or more of data on a Urika XA in less than one hour. It
would be practical to use a batch window of 1 month with a
sliding duration of 1 day, so that an end user (data analyst)
would recieve new results every day based on the last months
activity. If the full firehose were being processed, one day’s
worth of data would require a substantial amount of compute
and memory.

F. User Roles

Once the communities have been created, we look more
at the relationships between users within each community.
Some users originate content which is retweeted by others.
Other users mostly retweet content written by others. There
is a spectrum between these two behaviors as well as a
measure of breadth of such relationship to other users.

G. Community Relationships

Users are assigned to a single community, but will often
have relationships to users in other communities. Some users
will have strong ties to multiple communities, and when
the measure of those ties is balanced, they are considered
strong “connectors” between communities. Examples have
been seen of sports commentators with ties to communities,
where those have strong interests in various local teams,
based on the popularity of multiple hashtags.

We also look at relationships between communities, by
counting the users that mention or know users in the other.

IV. CONCLUSION

The Spark framework supports writing analytics pipelines
and algorithms of substantial complexity without the limita-
tions of a declarative framework. By organizing the applica-
tion in a functional paradigm, the framework can distribute
the code to a cluster while hiding most of that complexity
from the application programmer. The functional approach
also lets Spark organize the execution of the application
functions for efficiency of memory, and re-execute to recover
from errors. In this way, it achieves some of the goals of a
declarative framework.

ACKNOWLEDGMENT

Ramesh Menon, Cray Inc, ramesh@cray.com
Venkat Krishnamurthy, Cray Inc, venkat@cray.com

REFERENCES

[1] Cray Urika XA: http://www.cray.com/products/analytics/urika-
xa

[2] Apache Spark: http://spark.apache.org/

[3] Twitter Data: https://dev.twitter.com/streaming/public

[4] Lambda Architecture: http://lambda-architecture.net/

[5] Kreps, Jay, “Questioning the Lamba Architecture”, 7/2/2014,
http://radar.oreilly.com/2014/07/questioning-the-lambda-
architecture.html

[6] Kleppmann, Martin, “Turning the database inside out with
Apache Samza”, 9/21/2014, https://youtu.be/fU9hR3kiOK0


