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Trinity 

• Cray XC40 

• Total of about 19000 nodes 

– About half are Intel Haswell with 2 processors per 

node and 16 cores per processor running at 2.3 

GHz and 128 GB memory per node 

– About half are 60+ core Intel Knights Landing 

processors 

• About 42 PetaFlops peak 



Intel and Cray Center of Excellence 

• Focus on SIERRA applications 

– SIERRA/Solid Mechanics (SM) 

– SIERRA/Aerodynamics 

– SIERRA/Structural Dynamics (SD) 

• SIERRA is a large C++ framework 

– provides framework for several codes 

– Includes several Third Party Libraries 

– Contains common C++ classes and methods 

– Common infrastructure for parallel codes 



SIERRA/SM (Solid Mechanics) 
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! "#$%&'#()*+), "(-)
The geometry for this problem corresponds to that of the underlying parametric geometry for a 

hex element; that is x,y,z !  [-1,1]. The cube is uniformly discretized with five different meshes 

having 2, 4, 8, 16, and 32 elements in each coordinate direction. Various combinations of 

boundary conditions can be applied for a manufactured solution, but the case presented here (u) 

applies displacement boundary conditions to all surfaces of the cube. Specifically the 

displacement field that provides the input for the manufactured solution (case poly-2a1u) is 

given by: 

u1 = aX2

2, u2 = 0, u3 = 0  (1) 

where “a” has units of 1/length. Figure 1 depicts the displacement boundary conditions on the 

cube with the shading illustrating the x-component of the displacement field. 

! %-". '%/)! *0"/)
The material model used for this problem is the neo-Hookean model implemented in Lame [2]. 

This is a hyperelastic model and as such stresses are obtained from an underlying stored strain 

energy function or elastic potential. For this problem the elastic coefficients are selected to 

correspond to the St. Venant-Kirchoff model where the 2nd Piola-Kirchoff stresses are given by 

! ! ! ! " ! ! ! ! ! !  (3)!

Note that this model has the same form as linear elasticity, but the strain measure (E) used in this 

relation is the Lagrangian or Green strain tensor. In the “templated” data file the Lame constants 

were expressed in terms of Young’s modulus and Poisson’s ratio. The selected properties were 

given as follows. 

 

 
Figure 1. x-displacement field prescribed on boundary. 

 A general purpose massively parallel nonlinear solid mechanics 

finite element code for explicit transient dynamics, implicit 

transient dynamics and quasi-statics analysis. 

 Built upon extensive material, element, contact and solver 

libraries for analyzing challenging nonlinear mechanics 

problems for normal, abnormal, and hostile environments. 

 Similar to LSDyna or Abaqus commercial software systems. 
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SIERRA/SM Bottlenecks 
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Explicit 

dynamics with 

contact 

Application: Implicit with FETI 

pre-conditioner 

Explicit dynamics 

w/o contact 

Parallel proximity search 

and enforcing contact 

constraints 

Hot spot: Serial sparse direct 

solve: matrix 

factorization and 

forward/backward 

solves 

Assembling nonlinear 

element residuals and 

computing material 

response 

Contact detection example: 

Potential contact detected 



I-Beam Problem (Quasi-Static) 
-provided by Joe Bishop 

Mesh: 
• 3 Different mesh refinements: 

8,576,  68,608, and 548,864 
elements 

• Mean Quadrature and SD hex 
elements 

Unique Features: 
• Crystal Plasticity material model 
• Problem does not converge when 

mesh is refined 
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Preconditioning with linear solver 

• The preconditioning step dominates the cost (>90%). 

• Occurs one per time step 

• Accomplished with a Jacobian matrix which requires 

an iterative linear solver algorithm to provide M-1 

• Iterative linear solve done with the FETI (Finite 

Element Tearing & Interconnecting) domain 

decomposition algorithm  

• FETI requires a local solve, coarse solve, and a 

preconditioner solve (similar to most domain 

decomposition algorithms)  

• Extensively uses sparse direct solvers 
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QS Model Strong Scaling on Chama 
and MPI overhead with scale 

(nodes= 619,581, elements=548,864) 
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--------------------------------------------------------------------------- 

@--- Aggregate Time (top twenty, descending, milliseconds) ---------------- 

--------------------------------------------------------------------------- 

Call                 Site       Time    App%    MPI%     COV 

Allreduce             133   4.05e+06    3.90   17.46    0.09 

Allreduce             168   4.01e+06    3.87   17.31    0.08 

Barrier                53    3.4e+06    3.28   14.65    0.22 

Allreduce             189    1.8e+06    1.74    7.78    0.00 

Bcast                  10   1.27e+06    1.22    5.48    0.01 

Allreduce             167   1.19e+06    1.15    5.13    0.05 

Bcast                  98   5.68e+05    0.55    2.45    0.04 

mpiP Top 5 MPI functions and call sites; 512 MPI tasks 
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Early KNC results 
• Adagio compiles and runs on our test-bed KNC 

• Scaling has proven difficult (with MPI and OpenMP) 
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Adagio Performance Summary 

• Explicit dynamics dominated by MPI globals at 
scale 

– Try asynchronous collectives? 

– May benefit from optimization for small messages 

• Quasi-statics 

– Need to investigate improvements after use of 
threading and vectorization with Pardiso / MKL 

– Leverage math library threading/vectorization 
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Summary of Sierra/Aero 

• Unstructured meshes 

• One and two equation turbulence models 

• LES and Hybrid RANS 

• Uses either FETI or Trilinos for sparse matrix operations and 

solvers. 

• Assembly is substantial portion of the computational cost. 

turbulent flow past a cavity 



High-Order Unstructured Collocation 

Standard Element Flux-based Formulation Unstructured Element 

• Still under development 

• Provably Entropy(Nonlinear) Stable 

• Discontinouos formulation 

• High computational intensity 

• Accurate on unstructured topologies 

• Trilinos Solvers for implicit solves 
 



Trilinos Solver 

• Uses Tpetra, Ifpack2 and Belos libraries 

• For matrix assembly, preconditioning and 
solvers respectively. 

• Symmetric Gauss-Seidel for preconditioner 

• GMRES for solver 



Aero Profile w/comments 
||  28.4% |  35715.2 |  545.8 |   1.5% |tftk::linsys::TpetraBaseBlockLinearSystem::sumInto 

This function fills the actual linear system with values from the application code. 

||  19.9% |  25054.0 |  391.0 |   1.5% |Tpetra::Experimental::BlockCrsMatrix<double, int, long, 
KokkosClassic::SerialNode>::localGaussSeidel 

This is the main work routine of the preconditioner (local on each process) that computes a 
smoothed solution for symmetric gauss-seidel. It is called twice for each linear iteration. 

||  14.5% |  18261.9 | 4939.1 |  21.5% |sierra::conchas::ElementFlux::operator() 

This is the main computation of the residual and sensitivities for the linear system. 

||  13.7% |  17243.7 |  232.3 |   1.3% |Tpetra::Experimental::BlockCrsMatrix<double, int, long, 
KokkosClassic::SerialNode>::localApplyBlockNoTrans 

This is a sparse matrix-vector multiply. 

||   2.9% |   3631.9 |   32.1 |   0.9% |tftk::linsys::TpetraBaseBlockLinearSystem::zeroSystem 

This zeros the linear system. 

||   2.7% |   3427.8 |   39.2 |   1.1% |sierra::conchas::TpetraLinearSystem::scaleBlockMatrix 

This modifies the linear system. 

||   1.6% |   2050.4 |  624.6 |  23.5% |sierra::conchas::FluxPenalty::operator() 

This is the coupling terms for computing the residual and sensitivities for the linear system. 



Domain Areas 
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 General Structural Dynamics, Finite Elements 

 Vibrations, normal modes, implicitly integrated transient 
dynamics, frequency response analysis 

 Shells, Solids, Beams, Point Masses 

 Complicated Large Structures 

 Typically many constraint equations 

 Acoustics and Structural Acoustics 

 Even larger systems 

 More constraints 

 Infinite Elements (nonsymmetric) 

 Optimization, UQ and Inverse Methods 

 Adjoint methods 

 Material and Parameter inversion 

 Verification and Validation 

12/10/14 

Sierra/SD 



Sierra/SD Algorithms 

 Domain Decomposition Linear Solvers 
 Sparse linear solver dependence 

 Threaded sparse solvers could play important future role 

 Alternative algorithms for new architectures 

 Flexibility in choice of subdomains, over-decomposition, … 

  Eigen Solvers 
 Arpack current workhorse 

 Sparsekit sparse matrix utility package dependence 

 Trilinos/Anasazi 

 Could move in this direction going forward 

 Linear solver dependence 

 Orthogonalization 
 Important to both linear and eigen solvers 
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Linear Solver Role 

Name Analysis 
Type 

Solve time/ 
Total time 

Solve phase/ 
Solve time 

mc2912 modal 0.96 0.90 

nfn9 modal 0.98 0.97 

endevco transient 0.85 0.98 

largerv static 0.71 0.52 

Selected Sierra-SD performance test results (chama) 

A lot of time in solve phase (initialization time often much smaller), 

final two columns can be even closer to 1 in practice 

• Transient analysis (one solve for each time step) 

• Modal analysis (multiple solves for each eigenmode) 

• Each “solve” may take 10s to 100s of iterations 



Domain Decomposition 101 

• Partition into smaller subdomains 

• Solve local (subdomain) problems  

• Solve global (coarse) problem 

• Combine local & global solutions 

• Multilevel extensions 

• Inexact solves 

• Rich theory 

B. Smith, P. Bjorstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic 
Partial Differential Equations, Cambridge University Press, 1996. 

A. Toselli and O. Widlund, Domain Decomposition Methods: Algorithms and Theory, Springer, 2005. 



Sierra/SD TPLs 

 Sparse Direct Solvers 
 SPRSBLKLLT (supernodal, left-looking, Ng & Peyton) 

 SuperLU (for complex frequency domain analysis) 

 Pardiso (option for Intel platforms, future importance?) 

 NoPivot (in-house code, left-looking, threads) 

 Movement to Trilinos/Amesos2 

  Parallel Linear Algebra 
 Trilinos/Epetra movement to Trilinos/Tpetra for solver 

 Dense Linear Algebra 
 BLAS, LAPACK, MKL, ScaLapack 

 Graph Partitioning 
 (Par)Metis, Chaco, Zoltan/phg 
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Target Problems for CoE Focus 

 NFN9 subsystem model 
 Currently runs on 120 processors 

 Refine mesh for scaling studies 

 OUO model 

 Sparse Linear Solvers 
 Focus mainly on solve phase 

 Will provide representative linear systems 

 Evaluate performance of threaded and/or GPU accelerated solvers 

 Goals: 
 Profile performance for improved speed, especially in solve phase 

 Identify problem areas 

 Suggestions for improvement 

 Reduce per-core memory footprint 
20 



Simplified Code Structure 

Salinas 

gdsw solver gdsw solver init 

solver init solver 

preconditioner orthogonalization 

Epetra 

communication 

blkslvn 

(dgemm) 



Overview 

• Total time 1029.5 sec 

– User                     538.5 sec (52.3%) 

• blkslvn               450.8 sec  (43.7%) 

– MPI                           9.6 sec ( 0.9%) 

– MPI_SYNC           481.4 sec (46.8%) 

• MPI_Barrier       352.3 sec  (34.2%) 

• MPI_Allreduce  123.0 sec  (11.9%) 

• Total FLOPS 343.0e9 - double precision 

– 331.5 MFLOPs/rank (3.5% peak) 



Preconditioner Solve 

• On node backsolve 

– Shows 0 time when instrumented 

– called in .h file 

• Calls blkslvn (FORTRAN) 

• blkslvn called average of 6182 times 

• calls dgemm 

– CrayPat loses connection to dgemm(shows up in 

call tree attached to root) 

• Time for direct solve not in calling routines 

• blkslvn takes 450.8 sec (83.7% of user time) 



Communication Matrices 

Whole Code GDSW Solver 



Summary 

• Shown three applications from SIERRA 

Framework with performance profiling 

• Significant time spent in two areas: 

– Solvers 

– Matrix Assembly 

• Haswell performance should follow current 

processors 

– How to utilize the extra features of Haswell? 

• Some experience with Knights Corner 

– How to translate to Knights Landing 

 


