
Preparation of Codes for Trinity

Courtenay T. Vaughan, Mahesh Rajan, Dennis C. Dinge,

Clark R. Dohrmann, Micheal W. Glass, Kenneth J. Franko,

Kendall H. Pierson, and Michael R. Tupek

Sandia National Laboratories

CUG Conference

April 26-30, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

a wholly owned subsidiary of Lockheed Martin Corporation, for the

U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Trinity

• Cray XC40

• Total of about 19000 nodes

– About half are Intel Haswell with 2 processors per

node and 16 cores per processor running at 2.3

GHz and 128 GB memory per node

– About half are 60+ core Intel Knights Landing

processors

• About 42 PetaFlops peak

Intel and Cray Center of Excellence

• Focus on SIERRA applications

– SIERRA/Solid Mechanics (SM)

– SIERRA/Aerodynamics

– SIERRA/Structural Dynamics (SD)

• SIERRA is a large C++ framework

– provides framework for several codes

– Includes several Third Party Libraries

– Contains common C++ classes and methods

– Common infrastructure for parallel codes

SIERRA/SM (Solid Mechanics)

 - 2 -

! "#$%&'#()*+), "(-)
The geometry for this problem corresponds to that of the underlying parametric geometry for a

hex element; that is x,y,z ! [-1,1]. The cube is uniformly discretized with five different meshes

having 2, 4, 8, 16, and 32 elements in each coordinate direction. Various combinations of

boundary conditions can be applied for a manufactured solution, but the case presented here (u)

applies displacement boundary conditions to all surfaces of the cube. Specifically the

displacement field that provides the input for the manufactured solution (case poly-2a1u) is

given by:

u1 = aX2

2, u2 = 0, u3 = 0 (1)

where “a” has units of 1/length. Figure 1 depicts the displacement boundary conditions on the

cube with the shading illustrating the x-component of the displacement field.

! %-". '%/)! *0"/)
The material model used for this problem is the neo-Hookean model implemented in Lame [2].

This is a hyperelastic model and as such stresses are obtained from an underlying stored strain

energy function or elastic potential. For this problem the elastic coefficients are selected to

correspond to the St. Venant-Kirchoff model where the 2nd Piola-Kirchoff stresses are given by

! ! ! ! " ! ! ! ! ! ! (3)!

Note that this model has the same form as linear elasticity, but the strain measure (E) used in this

relation is the Lagrangian or Green strain tensor. In the “templated” data file the Lame constants

were expressed in terms of Young’s modulus and Poisson’s ratio. The selected properties were

given as follows.

Figure 1. x-displacement field prescribed on boundary.

 A general purpose massively parallel nonlinear solid mechanics

finite element code for explicit transient dynamics, implicit

transient dynamics and quasi-statics analysis.

 Built upon extensive material, element, contact and solver

libraries for analyzing challenging nonlinear mechanics

problems for normal, abnormal, and hostile environments.

 Similar to LSDyna or Abaqus commercial software systems.

4

SIERRA/SM Bottlenecks

5

Explicit

dynamics with

contact

Application: Implicit with FETI

pre-conditioner

Explicit dynamics

w/o contact

Parallel proximity search

and enforcing contact

constraints

Hot spot: Serial sparse direct

solve: matrix

factorization and

forward/backward

solves

Assembling nonlinear

element residuals and

computing material

response

Contact detection example:

Potential contact detected

I-Beam Problem (Quasi-Static)
-provided by Joe Bishop

Mesh:
• 3 Different mesh refinements:

8,576, 68,608, and 548,864
elements

• Mean Quadrature and SD hex
elements

Unique Features:
• Crystal Plasticity material model
• Problem does not converge when

mesh is refined

6

Preconditioning with linear solver

• The preconditioning step dominates the cost (>90%).

• Occurs one per time step

• Accomplished with a Jacobian matrix which requires

an iterative linear solver algorithm to provide M-1

• Iterative linear solve done with the FETI (Finite

Element Tearing & Interconnecting) domain

decomposition algorithm

• FETI requires a local solve, coarse solve, and a

preconditioner solve (similar to most domain

decomposition algorithms)

• Extensively uses sparse direct solvers

7

QS Model Strong Scaling on Chama
and MPI overhead with scale

(nodes= 619,581, elements=548,864)

10

100

1000

10000

16 32 64 128 256 512

W
al

l T
im

e
:

Se
cs

of MPI Tasks

Adagio Strong Scaling on Chama; i_Beam_r2 Model

i_Beam_r2 wall time

i_Beam_r2 Ideal

0.00% 5.00% 10.00% 15.00% 20.00% 25.00%

16

32

64

128

256

512

Run Time Percentage in MPI

o

f
M

P
I

Ta
sk

s

I_Beam_r2 MPI Time Percentage

@--- Aggregate Time (top twenty, descending, milliseconds) ----------------

Call Site Time App% MPI% COV

Allreduce 133 4.05e+06 3.90 17.46 0.09

Allreduce 168 4.01e+06 3.87 17.31 0.08

Barrier 53 3.4e+06 3.28 14.65 0.22

Allreduce 189 1.8e+06 1.74 7.78 0.00

Bcast 10 1.27e+06 1.22 5.48 0.01

Allreduce 167 1.19e+06 1.15 5.13 0.05

Bcast 98 5.68e+05 0.55 2.45 0.04

mpiP Top 5 MPI functions and call sites; 512 MPI tasks

8

Early KNC results
• Adagio compiles and runs on our test-bed KNC

• Scaling has proven difficult (with MPI and OpenMP)

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64

Time (s)

MPI ranks

Phi Scaling

Ideal scaling

Adagio Performance Summary

• Explicit dynamics dominated by MPI globals at
scale

– Try asynchronous collectives?

– May benefit from optimization for small messages

• Quasi-statics

– Need to investigate improvements after use of
threading and vectorization with Pardiso / MKL

– Leverage math library threading/vectorization

10

Summary of Sierra/Aero

• Unstructured meshes

• One and two equation turbulence models

• LES and Hybrid RANS

• Uses either FETI or Trilinos for sparse matrix operations and

solvers.

• Assembly is substantial portion of the computational cost.

turbulent flow past a cavity

High-Order Unstructured Collocation

Standard Element Flux-based Formulation Unstructured Element

• Still under development

• Provably Entropy(Nonlinear) Stable

• Discontinouos formulation

• High computational intensity

• Accurate on unstructured topologies

• Trilinos Solvers for implicit solves

Trilinos Solver

• Uses Tpetra, Ifpack2 and Belos libraries

• For matrix assembly, preconditioning and
solvers respectively.

• Symmetric Gauss-Seidel for preconditioner

• GMRES for solver

Aero Profile w/comments
|| 28.4% | 35715.2 | 545.8 | 1.5% |tftk::linsys::TpetraBaseBlockLinearSystem::sumInto

This function fills the actual linear system with values from the application code.

|| 19.9% | 25054.0 | 391.0 | 1.5% |Tpetra::Experimental::BlockCrsMatrix<double, int, long,
KokkosClassic::SerialNode>::localGaussSeidel

This is the main work routine of the preconditioner (local on each process) that computes a
smoothed solution for symmetric gauss-seidel. It is called twice for each linear iteration.

|| 14.5% | 18261.9 | 4939.1 | 21.5% |sierra::conchas::ElementFlux::operator()

This is the main computation of the residual and sensitivities for the linear system.

|| 13.7% | 17243.7 | 232.3 | 1.3% |Tpetra::Experimental::BlockCrsMatrix<double, int, long,
KokkosClassic::SerialNode>::localApplyBlockNoTrans

This is a sparse matrix-vector multiply.

|| 2.9% | 3631.9 | 32.1 | 0.9% |tftk::linsys::TpetraBaseBlockLinearSystem::zeroSystem

This zeros the linear system.

|| 2.7% | 3427.8 | 39.2 | 1.1% |sierra::conchas::TpetraLinearSystem::scaleBlockMatrix

This modifies the linear system.

|| 1.6% | 2050.4 | 624.6 | 23.5% |sierra::conchas::FluxPenalty::operator()

This is the coupling terms for computing the residual and sensitivities for the linear system.

Domain Areas

15

 General Structural Dynamics, Finite Elements

 Vibrations, normal modes, implicitly integrated transient
dynamics, frequency response analysis

 Shells, Solids, Beams, Point Masses

 Complicated Large Structures

 Typically many constraint equations

 Acoustics and Structural Acoustics

 Even larger systems

 More constraints

 Infinite Elements (nonsymmetric)

 Optimization, UQ and Inverse Methods

 Adjoint methods

 Material and Parameter inversion

 Verification and Validation

12/10/14

Sierra/SD

Sierra/SD Algorithms

 Domain Decomposition Linear Solvers
 Sparse linear solver dependence

 Threaded sparse solvers could play important future role

 Alternative algorithms for new architectures

 Flexibility in choice of subdomains, over-decomposition, …

 Eigen Solvers
 Arpack current workhorse

 Sparsekit sparse matrix utility package dependence

 Trilinos/Anasazi

 Could move in this direction going forward

 Linear solver dependence

 Orthogonalization
 Important to both linear and eigen solvers

16

Linear Solver Role

Name Analysis
Type

Solve time/
Total time

Solve phase/
Solve time

mc2912 modal 0.96 0.90

nfn9 modal 0.98 0.97

endevco transient 0.85 0.98

largerv static 0.71 0.52

Selected Sierra-SD performance test results (chama)

A lot of time in solve phase (initialization time often much smaller),

final two columns can be even closer to 1 in practice

• Transient analysis (one solve for each time step)

• Modal analysis (multiple solves for each eigenmode)

• Each “solve” may take 10s to 100s of iterations

Domain Decomposition 101

• Partition into smaller subdomains

• Solve local (subdomain) problems

• Solve global (coarse) problem

• Combine local & global solutions

• Multilevel extensions

• Inexact solves

• Rich theory

B. Smith, P. Bjorstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic
Partial Differential Equations, Cambridge University Press, 1996.

A. Toselli and O. Widlund, Domain Decomposition Methods: Algorithms and Theory, Springer, 2005.

Sierra/SD TPLs

 Sparse Direct Solvers
 SPRSBLKLLT (supernodal, left-looking, Ng & Peyton)

 SuperLU (for complex frequency domain analysis)

 Pardiso (option for Intel platforms, future importance?)

 NoPivot (in-house code, left-looking, threads)

 Movement to Trilinos/Amesos2

 Parallel Linear Algebra
 Trilinos/Epetra movement to Trilinos/Tpetra for solver

 Dense Linear Algebra
 BLAS, LAPACK, MKL, ScaLapack

 Graph Partitioning
 (Par)Metis, Chaco, Zoltan/phg

19

Target Problems for CoE Focus

 NFN9 subsystem model
 Currently runs on 120 processors

 Refine mesh for scaling studies

 OUO model

 Sparse Linear Solvers
 Focus mainly on solve phase

 Will provide representative linear systems

 Evaluate performance of threaded and/or GPU accelerated solvers

 Goals:
 Profile performance for improved speed, especially in solve phase

 Identify problem areas

 Suggestions for improvement

 Reduce per-core memory footprint
20

Simplified Code Structure

Salinas

gdsw solver gdsw solver init

solver init solver

preconditioner orthogonalization

Epetra

communication

blkslvn

(dgemm)

Overview

• Total time 1029.5 sec

– User 538.5 sec (52.3%)

• blkslvn 450.8 sec (43.7%)

– MPI 9.6 sec (0.9%)

– MPI_SYNC 481.4 sec (46.8%)

• MPI_Barrier 352.3 sec (34.2%)

• MPI_Allreduce 123.0 sec (11.9%)

• Total FLOPS 343.0e9 - double precision

– 331.5 MFLOPs/rank (3.5% peak)

Preconditioner Solve

• On node backsolve

– Shows 0 time when instrumented

– called in .h file

• Calls blkslvn (FORTRAN)

• blkslvn called average of 6182 times

• calls dgemm

– CrayPat loses connection to dgemm(shows up in

call tree attached to root)

• Time for direct solve not in calling routines

• blkslvn takes 450.8 sec (83.7% of user time)

Communication Matrices

Whole Code GDSW Solver

Summary

• Shown three applications from SIERRA

Framework with performance profiling

• Significant time spent in two areas:

– Solvers

– Matrix Assembly

• Haswell performance should follow current

processors

– How to utilize the extra features of Haswell?

• Some experience with Knights Corner

– How to translate to Knights Landing

