
Preparation of Codes for Trinity

Courtenay T. Vaughan, Mahesh Rajan, Dennis C. Dinge, Clark R. Dohrmann, Micheal W. Glass,

Kenneth J. Franko, Kendall H. Pierson, and Michael R. Tupek

Sandia National Laboratories

Albuquerque, NM 87185

ctvaugh, mrajan, dcdinge, crdohrm, mwglass, kjfrank, khpiers, mrtupek @sandia.gov

Abstract—Sandia and Los Alamos National Laboratories are

acquiring Trinity, a Cray XC40, with half of the nodes having

Haswell processors and the other half having Knight's Landing

processors. As part of our Center of Excellence with Cray, we

are working on porting three codes, a Solid Mechanics code, a

Structural Dynamics code, and an Aerodynamics code, to

effectively use this machine. In this paper, we will detail the

work that we have done in porting the codes in preparation of

getting the machine. We have started by profiling the codes

using tools including CrayPat, which showed that a large

portion of the time is being spent in the solvers. We will

describe the work we are doing on the solvers such as ongoing

work on Haswell processors and Knight's Corner machines.

Keywords; mechanics, sparse solver, Trinity, Haswell

performance analysis and tuning

I. INTRODUCTION

Los Alamos National Laboratories (LANL) and Sandia
National Laboratories (SNL) have formed a partnership, the
New Mexico Alliance for Computing at Extreme Scales
(ACES), to acquire and deploy a production capability
system for the Department of Energy NNSA ASC program
to support the national Stockpile stewardships Program.
Trinity, a Cray XC40, with approximately 9500 nodes with
the Intel Haswell processors and approximately 9500 nodes
with the Intel Knights Landing processors is first of the
NNSA’s new Advanced Technology Systems, ATS-1,
anticipated to be installed in 2016. As part of the Trinity
Center of Excellence with Cray and Intel, SNL code
developers and support staff are working on porting three
SIERRA mechanics codes to Trinity. These complex multi-
physics applications are: SIERRA/Solid Mechanics (SM),
SIERRA/Structural Dynamics (SD) and
SIERRA/Aerodynamics. In this paper, we will detail the
preliminary work that we have undertaken in preparation for
efficient use of these production applications on Trinity.
Trinity’s architecture challenges these codes to achieve high
node level and thread level parallelism, high vectorization
efficiency and efficient use of the 576 Burst Buffer I/O nodes
with NVRAM. We will present profiles of the codes with
tools including CrayPat, vTune, TAU, and HPCtoolkit on
our current large Cray XE6 called Cielo, on our large Sandy
Bridge/Infiniband cluster called Chama, and on our Knights
Corner test beds called Compton and Morgan. All the three
SIERRA applications (for SIERRA/SM the implicit case) for
the target simulations of interest show a large fraction of the
simulation time in matrix equation solves, albeit with

different characteristics. These performance profiles and
scaling studies will focus on leveraging Trillinos and
MKL/Pardiso sparse solver kernels. In SIERRA/SM the
preconditioning step dominates consuming more than 90%
of the solve time, as it is computed at each time step. The
iterative linear solve done with the FETI (Finite Element
Tearing and Interconnecting) algorithm requires a local
solve, a coarse solve and a preconditioner solve. In contrast,
computations for SIERRA/SD are dominated by
forward/backward triangular solves associated with already
factored matrices for local and global (coarse) problems.
That is, much more time is spent applying the preconditioner
than in its initialization. We also will present our efforts with
vectorization of key compute kernels using tools like Intel’s
Vector Advisor. For code kernels for which the current
generation of compilers are unable to auto-vectorize, we will
discuss data structure layout modifications and the direct use
of Intel vector intrinsics to systematically improve vector
performance.

II. TRINITY ARCHITECTURE

The new machine, Trinity, will be a Cray XC40. The
first half of the machine will have approximately 9500 nodes
with Intel Haswell processors and is scheduled to be
delivered later this fiscal year. Each Haswell node will have
two 16 core processors running at 2.3 GHz with 128 GB of
memory per node. The second half of the machine will have
approximately 9500 nodes with Intel Knights Landing
processors, each with 60+ cores, and will be delivered later
in fiscal year 2016. The peak speed for the machine will be
about 42 Petaflops. The nodes will be connected with Cray’s
Aries interconnect, which is a Dragonfly interconnect with
four nodes connected to each Aries node.

III. SIERRA MECHANICS

Sierra is an engineering mechanics simulation code suite
supporting the Nation’s Nuclear Weapons mission as well as
other customers. It has explicit ties to Sandia National Labs’
workflow, including geometry and meshing, design and
optimization, and visualization. Distinguishing strengths
include “application aware” development, scalability, SQA
and V&V, multiple scales, and multi-physics coupling [1].
The Sierra code suite is a large C++ framework, which the
applications are built upon. It includes several Third Party
Libraries as well as common C++ classes and methods for
the codes. It also includes the common infrastructure for
running the codes on parallel machines.

A. SIEERA/SM

SIERRA/SM is a general purpose massively parallel
nonlinear solid mechanics finite element code for explicit
transient dynamics, implicit transient dynamics and quasi-
statics analysis of structures [2]. It is built upon extensive
material, element, contact and solver libraries for analyzing
challenging nonlinear mechanics problems for normal,
abnormal, and hostile environments. It is similar to
commercial codes LSDyna and Abaqus. Two models were
studied with a view to understanding performance factors
that would ensure that analyst applications targeted for
Trinity perform well. The first model studied was a weapon
component impact analysis that stressed the contact
mechanics computations and structural material models. The
second model was a quasistatic I-Beam model that uses an
implicit solver. With the explicit dynamic computations
with contact, SIERRA/SM spends a large fraction of the
compute time on proximity search and enforcing contact
constraints. With the implicit I-Beam model the focus is on
the performance of the FETI [3] pre-conditioner and sparse
direct solve at each time step which invoke matrix
factorization function calls and forward/backward solves
with a few right-hand-sides.

In this paper the focus for SIERRA/SM is only on the
implicit model as it shares with the other two SIERRA
applications described in this paper, the need for efficient
sparse matrix solution capability. The Quasi static solution
algorithm consists of four steps:

1. Initialize Time Step, t = 0, dt = dt0
2. Compute Residual Force:

R(x,t) = Fexternal(x,t) - Finternal(x,t) + Fcontact(x,t)
3. Iterate until: R(x,t) = 0
4. If Converged, t = t + dt

The non-linear conjugate gradient algorithm psudo code is as
follows:

1. k= 0
2. Loop, until converged

R(x,t) = Fexternal(x,t) - Finternal(x,t) + Fcontact(x,t)
G = M

-1
 R(x,t) // preconditioning

S = G + beta * S
k-1

// axby
alpha = LineSearch(S) // extra residual call
x = x + alpha * S // axby
Compute ||R||, check convergence
Beta = compute_beta() // dot products, all reduce

The preconditioning step dominates the solve time and
occurs once per time step. The precondioning is
accomplished with a Jacobian matrix which requires an
iterative linear solver algorithm to provide M

-1
. The iterative

linear solve is done with the FETI (Finite Element Tearing &
Interconnecting solver) domain decomposition algorithm.
FETI requires a local solve, coarse solve, and a
preconditioner solve (similar to most domain decomposition
algorithms) and extensively uses sparse direct solvers.

The quasi static I-Beam model studied is shown in Figure 1.

Figure 1. SIERRA/SM quasi-static analysis I-Beam

Model with 548,864 hex elements

The model has about one half million elements and
meshed so to investigate performance on our moderate size
clusters, and not necessarily representative of the mesh sizes
targeted for Trinity. When we investigate performance of
this or similar models on Trinity, it is anticipated that the
mesh sizes would be considerably larger. However
investigations of weak scaling with different mesh
refinements of this I-Beam model confirms that what we
learn from analysis of this one half million element model
will be applicable to larger models.

Figure 2 shows the strong scaling characteristics
measured on our Sandy-Bridge, FDR inifiniband cluster
called Chama.

Figure 2. SIERRA/SM I-Beam model strong scaling on

Chama

The performance of this model was analyzed on Chama
using vTune, mpiP and HPCTololkit. The percentage of run
time in MPI is an important component to understand
scaling. Figure 3 shows the increase in MPI time with scale
for the strong scaling runs shown in Figure 2.

Figure 3. SIERRA/SM fraction of time in MPI with

scale on Chama

Allinea MAP and HPCToolkit and vTune were used to
identify the hot spots. As anticipated 36% of run time out of
which 52% of the time was in MPI calls in the FETI solver.
I(~/FETI-DP/src/FETI_DP_FiniteElementData.C (line 919)
feti::FetiDriver (FetiDriver.C line 228)). This function
called FetiAlgorithm.C (FetiAlgorithm line 275,
DirichletPreconditioner line 243, OrthoSet::orthoganlize line
263 & and line 245).

The vTune profile showed that the most compute

intensive finctions called by the FETI solver were “blkl2”
and “blkslv”. These functions invoke basic BLAS
operations. As of writing this paper we have not investigated
opportunities for threading and vectorization of these
compute kernels.

B. SIERRA/Aero

SIERRA/Aerodynamics is a node-centered, edge-based
finite volume code that approximates the compressible
Navier-Stokes equations on unstructured meshes. It can be
run in two or three dimensions. It is applicable to high
Reynolds number laminar and turbulent flows. Currently,
two classes of turbulence models are provided: Reynolds
Averaged Navier-Stokes (RANS) and hybrid methods such
as Detached Eddy Simulation (DES). The gas may be
modeled either as ideal, or as a non-equilibrium, chemically
reacting mixture of ideal gases [4].

Our test case was the isentropic vortex problem. This
problem has an exact solution for the compressible Navier-
Stokes equations sans the viscous terms (the Euler
equations). This test problem involves the convection of an
isentropic vortex in inviscid flow. It is used to test the ability
of the code to accurately model vortical flows.

We used CrayPat under perftools version 6.0.1 to
examine the performance of SIERRA/Aero on the isentropic
vortex problem. For this test we used a cluster called Muzia.
Muzia is a smaller version of our current large Cray XE6

system Cielo. The results of this profile are given in Table 1
and Figure .

Aero Profile (Major Functions)
Samp

%

Samp Imb.

Samp

Imb.

Samp%

Function

100 125816.8 - - Total

88.7 111577.4 - - User

28.4 35715.2 545.8 1.5 sumInto
1

19.9 25054.0 391.0 1.5 localGaussSeidel
2

14.5 18261.9 4939.1 21.5 ElementFlux::operator()
3

13.7 17243.7 232.3 1.3 localApplyBlockNoTrans
4

1. tftk::linsys::TpetraBaseBlockLinearSystem::sumInto

2. Tpetra::Experimental::BlockCrsMatrix<double, int, long,

KokkosClassic::SerialNode>::localGaussSeidel

3. sierra::conchas::ElementFlux::operator()

4.
Tpetra::Experimental::BlockCrsMatrix<double, int,

long,KokkosClassic::SerialNode>::localApplyBlockNoTrans

Table 1. Aero Profile

The most time consuming function in Table 1,

tftk::linsys::TpetraBaseBlockLinearSystem::sumInto, fills
the actual linear system with values from the application
code. The next highest time consuming function,
Tpetra::Experimental::BlockCrsMatrix<double, int, long,
KokkosClassic::SerialNode>::localGaussSeidel, is the main
work routine of the pre-conditioner (local on each process)
that computes a smoothed solution for symmetric Gauss-
Seidel. It is called twice for each linear iteration of the code.
The third most time consuming function is
sierra::conchas::ElementFlux::operator() which does the
main computation of the residual and sensitivities for the
linear system. And
Tpetra::Experimental::BlockCrsMatrix<double, int,
long,KokkosClassic::SerialNode>::localApplyBlockNoTrans
is a sparse matrix-vector multiply. All other functions were
found to use less than 3% of user compute time.

Figure 4. Pie Chart of Most Compute Intensive Aero

Functions

Figure 5 shows the strong scaling characteristics
measured on Chama.

Figure 5. SIERRA/AERO IsentropicEulerVortex model

strong scaling on Chama

The percentage of run time in MPI is an important

component to understand scaling of SIERRA/AERO and is
shown in Figure 6.

Figure 6. SIERRA/AERO fraction of time in MPI with

scale on Chama

C. SIERRA/SD

SIERRA/SD is a general purpose parallel structural

dynamic finite element analysis code and is used for large
scale structural analysis including problems in modal,
vibration, static and shock analysis [5]. The problem that has
been chosen for the Center of Excellence work is a modal
analysis of a mesh of a complex part with 1044913 nodes
and is called “nfn9”. For this type of analysis, there are
multiple solves for each eigenmode. The result is that the
majority of the time (98% or better) is spent in the solve
portion of the code and the initialization of the solver is a
very small portion of that time. Even though SIERRA/SD
has several solver options for several varieties of problems,
this behavior is typical of problems run with the code.

This test problem that we ran for SIERRA/SD uses the

GDSW (Generalized Dryja, Smith, Widlund) domain
decomposition solver [6]. The GDSW solver relies on
domain decomposition, where the domain is divided into a
number of subdomains (generally, one per processor). Two
local solves are done for each of these subdomains, and a
global (coarse) solve is also done on a reduced system.
These solutions are then combined to produce the
preconditioned residual for the Krylov method. In contrast
to the other codes that we are studying in this paper,
SIERRA/SD avoids the repeated matrix assembly operations,
which is why the solution portion of the code dominates the
runtime. We ran SIERRA/SD on 120 cores of a Cray XE6
using CrayPat and Figure 7 shows a simplified call tree
resulting from the run. There is communication in places
other than the “Epetra communication” location in the call
tree. As mentioned above, there are multiple backsolves for
the solution of each linear system and these backsolves call a
routine called “blkslvn” which in turn calls the BLAS routine
“dgemm”. For this test, this part of the code takes about
84% of the computation time and dominates the run. This is
typical for problems that use this solver. Most of the calls to
“blkslvn” only have one right hand side and could be
replaced by a call to “blkslv”, which calls dgemv, which can
be more efficient on some machines.

Figure 7. Simplified call tree for SIERRA/SD

We also found that the time MPI takes is a little less than
1% of the total runtime. However, the MPI_SYNC time is
about 47% of the runtime. Most of this time is waiting for
MPI_Barrier (34%) and MPI_Allreduce (12%). This
indicates load imbalance in the calculation. Part of this is
due to the fact that the global solve on a reduced system is
being done by only one processor. The communication
matrix is shown in Figure 8. It shows all of the other cores
communicating with rank 105 to do the global portion of the
solve. It also shows the usual nearest neighbor
communication that results from domain decomposition of
the mesh.

Figure 8. Communication matrix for GDSW solver

Figure 9 shows the strong scaling characteristics
measured on Chama. Due to the nature of the problem and
solver, the strong scaling curve is a straight line, but deviates
from the ideal. As more processors are used, the size of the
domains becomes smaller and more time is spent in
communication.

Figure 9. SIERRA/SD nfn9 model strong scaling on

Chama

The percentage of run time in MPI is an important
component to understand scaling of SIERRA/SD and is
shown in Figure 10. The time spent in MPI in this chart
includes the MPI_SYNC time discussed before and the total
percentage of time in MPI agrees with the results from the
runs on the Cray XE6.

Figure 10. SIERRA/SD fraction of time in MPI with

scale on Chama

IV. SUMMARY AND FUTURE WORK

In anticipation of acquiring Trinity, we have looked at

three codes in the SIERRA Framework to characterize their
performance and strategize what work needs to be done such
that those codes will run well on both halves of the machine.
We have looked at the codes and profiled them with various
tools such as CrayPat. In doing so, we encountered some
problems with compiling with CrayPat due to mismatch of
modules since SIERRA has a set of modules that it uses and
those clashed with some of the modules that CrayPat needed.
We also saw some problems with some versions of CrayPat
giving us answers that were not right.

In moving forward, there are several things that we are

going to work on to get good performance on Trinity. As we
have seen, there are two places in the codes that take up a
large portion of the time. Those are the solvers for all of the
codes and matrix assembly for SIERRA/SM and
SIERRA/Aero. We have been experimenting with Pardiso,
the Intel math library that provides threading to help with the
solvers. We have also been looking at various methods of
threading and vectorization of the codes.

On Trinity, effective vectorization taking full advantage

of the AVX2 vector units on each core of Haswell and the
two 512-bit vector SIMD units on each core of KNL that
support AVX-512F (AVX3.1) instructions, is an important
goal for the SIERRA code development team. In [7] the
gain in performance possible through auto-vectorization is
presented studying TSVC and LCALS benchmarks for Intel,
Cray and GNU compilers. They also show that for a few
SIERRA/SM compute kernels a range of approaches from
changes in data structures to use of pragmas to the

development of specially coded SimdLIB can yield up to
50% performance gain.

ACKNOWLEDGMENT

This work was supported in part by the U.S. Department
of Energy. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Company, for
the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-
94AL85000.

REFERENCES

[1] Ryan P. Shaw, Anthony M. Agelastos, and Joel D. Miller, “Guide to

Using Sierra,” SAND2015-1642, Sandia National Laboratories,
Albuquerque, NM, 2015.

[2] Sierra/SM Team, “Sierra/SM Theory Manual,” SAND2013-4615,
Sandia National Laboratories, Albuquerque, NM, 2013.

[3] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen,
“FETI-DP: A Dual-Primal Unified FETI Method – Part I: A Faster
Alternative to the Two-Level FETI Mathod,” International Journal for
Numerical Methods in Engineering, 2001, Vol 50, pp. 1523 – 1544.

[4] SIERRA/Aero Theory Manual – Version 4.34 (Internal Sandia
Document)

[5] Garth M. Reese, Timothy F. Walsh, and Manoj K. Bhardwaj, “Salinas
– Theory Manual Version 4.22,” SAND2011-8272, Sandia National
Laboratories, Albuquerque, NM, 2011.

[6] Clark R. Dohrmann and Olof B. Widlund, “Hybrid domain
decomposition algorithms for compressible and almost
incompressible elasticity,” International Journal for Numerical
Methods in Engineering, 2010, Vol 82. pp. 157-183.

[7] Rajan, M., Doerfler, D.W., Tupek, M.R., and Hammond, S.D.,” An
investigation of compiler vectorization on current and next-generation
Intel processors using benchmarks and Sandia’s Sierra Applications,”
to be presented at CUG 2015, Chicago, Il, 2015.

