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Abstract—Sandia and Los Alamos National Laboratories are 

acquiring Trinity, a Cray XC40, with half of the nodes having 

Haswell processors and the other half having Knight's Landing 

processors. As part of our Center of Excellence with Cray, we 

are working on porting three codes, a Solid Mechanics code, a 

Structural Dynamics code, and an Aerodynamics code, to 

effectively use this machine. In this paper, we will detail the 

work that we have done in porting the codes in preparation of 

getting the machine. We have started by profiling the codes 

using tools including CrayPat, which showed that a large 

portion of the time is being spent in the solvers. We will 

describe the work we are doing on the solvers such as ongoing 

work on Haswell processors and Knight's Corner machines. 
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I.  INTRODUCTION 

Los Alamos National Laboratories (LANL) and Sandia 
National Laboratories (SNL) have formed a partnership, the 
New Mexico Alliance for Computing at Extreme Scales 
(ACES), to acquire and deploy a production capability 
system for the Department of Energy NNSA ASC program 
to support the national Stockpile stewardships Program. 
Trinity, a Cray XC40, with approximately 9500 nodes with 
the Intel Haswell processors and approximately 9500 nodes 
with the Intel Knights Landing processors is first of the 
NNSA’s new Advanced Technology Systems, ATS-1, 
anticipated to be installed in 2016. As part of the Trinity 
Center of Excellence with Cray and Intel, SNL code 
developers and support staff are working on porting three 
SIERRA mechanics codes to Trinity. These complex multi-
physics applications are: SIERRA/Solid Mechanics (SM), 
SIERRA/Structural Dynamics (SD) and 
SIERRA/Aerodynamics. In this paper, we will detail the 
preliminary work that we have undertaken in preparation for 
efficient use of these production applications on Trinity. 
Trinity’s architecture challenges these codes to achieve high 
node level and thread level parallelism, high vectorization 
efficiency and efficient use of the 576 Burst Buffer I/O nodes 
with NVRAM. We will present profiles of the codes with 
tools including CrayPat, vTune, TAU, and HPCtoolkit on 
our current large Cray XE6 called Cielo, on our large Sandy 
Bridge/Infiniband cluster called Chama, and on our Knights 
Corner test beds called Compton and Morgan. All the three 
SIERRA applications (for SIERRA/SM the implicit case) for 
the target simulations of interest show a large fraction of the 
simulation time in matrix equation solves, albeit with 

different characteristics. These performance profiles and 
scaling studies will focus on leveraging Trillinos and 
MKL/Pardiso sparse solver kernels. In SIERRA/SM the 
preconditioning step dominates consuming more than 90% 
of the solve time, as it is computed at each time step. The 
iterative linear solve done with the FETI (Finite Element 
Tearing and Interconnecting) algorithm requires a local 
solve, a coarse solve and a preconditioner solve. In contrast, 
computations for SIERRA/SD are dominated by 
forward/backward triangular solves associated with already 
factored matrices for local and global (coarse) problems. 
That is, much more time is spent applying the preconditioner 
than in its initialization. We also will present our efforts with 
vectorization of key compute kernels using tools like Intel’s 
Vector Advisor. For code kernels for which the current 
generation of compilers are unable to auto-vectorize, we will 
discuss data structure layout modifications and the direct use 
of Intel vector intrinsics to systematically improve vector 
performance. 

II. TRINITY ARCHITECTURE 

The new machine, Trinity, will be a Cray XC40.  The 
first half of the machine will have approximately 9500 nodes 
with Intel Haswell processors and is scheduled to be 
delivered later this fiscal year.  Each Haswell node will have 
two 16 core processors running at 2.3 GHz with 128 GB of 
memory per node.  The second half of the machine will have 
approximately 9500 nodes with Intel Knights Landing 
processors, each with 60+ cores, and will be delivered later 
in fiscal year 2016.  The peak speed for the machine will be 
about 42 Petaflops.  The nodes will be connected with Cray’s 
Aries interconnect, which is a Dragonfly interconnect with 
four nodes connected to each Aries node. 

III. SIERRA MECHANICS  

Sierra is an engineering mechanics simulation code suite 
supporting the Nation’s Nuclear Weapons mission as well as 
other customers.  It has explicit ties to Sandia National Labs’ 
workflow, including geometry and meshing, design and 
optimization, and visualization.  Distinguishing strengths 
include “application aware” development, scalability, SQA 
and V&V, multiple scales, and multi-physics coupling [1].  
The Sierra code suite is a large C++ framework, which the 
applications are built upon.  It includes several Third Party 
Libraries as well as common C++ classes and methods for 
the codes.  It also includes the common infrastructure for 
running the codes on parallel machines. 



A. SIEERA/SM 

SIERRA/SM is a general purpose massively parallel 
nonlinear solid mechanics finite element code for explicit 
transient dynamics, implicit transient dynamics and quasi-
statics analysis of structures [2].   It is built upon extensive 
material, element, contact and solver libraries for analyzing 
challenging nonlinear mechanics problems for normal, 
abnormal, and hostile environments.  It is similar to 
commercial codes LSDyna and Abaqus.  Two models were 
studied with a view to understanding performance factors 
that would ensure that analyst applications targeted for 
Trinity perform well.  The first model studied was a weapon 
component impact analysis that stressed the contact 
mechanics computations and structural material models.  The 
second model was a quasistatic I-Beam model that uses an 
implicit solver.  With the explicit dynamic computations 
with contact, SIERRA/SM spends a large fraction of the 
compute time on proximity search and enforcing contact 
constraints.  With the implicit I-Beam model the focus is on 
the performance of the FETI [3] pre-conditioner and sparse 
direct solve at each time step which invoke matrix 
factorization function calls and forward/backward solves 
with a few right-hand-sides.   
 

In this paper the focus for SIERRA/SM is only on the 
implicit model as it shares with the other two SIERRA 
applications described in this paper, the need for efficient 
sparse matrix solution capability.  The Quasi static solution 
algorithm consists of four steps: 

 
1. Initialize Time Step, t = 0, dt = dt0 
2. Compute Residual Force: 

R(x,t) = Fexternal(x,t) - Finternal(x,t) + Fcontact(x,t) 
3. Iterate until: R(x,t) = 0  
4. If Converged, t = t + dt 

 
The non-linear conjugate gradient algorithm psudo code is as 
follows: 
 

1. k= 0 
2. Loop, until converged 

R(x,t) = Fexternal(x,t) - Finternal(x,t) + Fcontact(x,t) 
G = M

-1
 R(x,t)               // preconditioning 

S = G + beta * S
k-1            

// axby 
alpha = LineSearch(S) // extra residual call 
x = x + alpha * S          // axby 
Compute ||R||, check convergence 
Beta = compute_beta() // dot products, all reduce 
 

The preconditioning step dominates the solve time and 
occurs once per time step.  The precondioning is 
accomplished with a Jacobian matrix which requires an 
iterative linear solver algorithm to provide M

-1
.  The iterative 

linear solve is done with the FETI (Finite Element Tearing & 
Interconnecting solver) domain decomposition algorithm.  
FETI requires a local solve, coarse solve, and a 
preconditioner solve (similar to most domain decomposition 
algorithms) and extensively uses sparse direct solvers.   

 
The quasi static I-Beam model studied is shown in Figure 1. 
 
 

 
 

Figure 1.  SIERRA/SM quasi-static analysis I-Beam 

Model with 548,864 hex elements 
 

The model has about one half million elements and 
meshed so to investigate performance on our moderate size 
clusters, and not necessarily representative of the mesh sizes 
targeted for Trinity.  When we investigate performance of 
this or similar models on Trinity, it is anticipated that the 
mesh sizes would be considerably larger.  However 
investigations of weak scaling with different mesh 
refinements of this I-Beam model confirms that what we 
learn from analysis of this one half million element model 
will be applicable to larger models. 
 

Figure 2 shows the strong scaling characteristics 
measured on our Sandy-Bridge, FDR inifiniband cluster 
called Chama. 
 
 
 

 
Figure 2.  SIERRA/SM I-Beam model strong scaling on 

Chama 
 

The performance of this model was analyzed on Chama 
using vTune, mpiP and HPCTololkit.  The percentage of run 
time in MPI is an important component to understand 
scaling.  Figure 3 shows the increase in MPI time with scale 
for the strong scaling runs shown in Figure 2.  
 
 
 
 



 
 

 
Figure 3.  SIERRA/SM fraction of time in MPI with 

scale on Chama 
 

Allinea MAP and HPCToolkit and vTune were used to 
identify the hot spots.  As anticipated 36% of run time out of 
which 52% of the time was in MPI calls in the FETI solver.  
I(~/FETI-DP/src/FETI_DP_FiniteElementData.C   (line 919) 
feti::FetiDriver ( FetiDriver.C line 228) ).  This function 
called FetiAlgorithm.C (FetiAlgorithm line 275, 
DirichletPreconditioner line 243, OrthoSet::orthoganlize line 
263 & and line 245). 

 
The vTune profile showed that the most compute 

intensive finctions called by the FETI solver were “blkl2” 
and “blkslv”.  These functions invoke basic BLAS 
operations.  As of writing this paper we have not investigated 
opportunities for threading and vectorization of these 
compute kernels.   

 

B. SIERRA/Aero 

SIERRA/Aerodynamics is a node-centered, edge-based 
finite volume code that approximates the compressible 
Navier-Stokes equations on unstructured meshes. It can be 
run in two or three dimensions. It is applicable to high 
Reynolds number laminar and turbulent flows. Currently, 
two classes of turbulence models are provided: Reynolds 
Averaged Navier-Stokes (RANS) and hybrid methods such 
as Detached Eddy Simulation (DES). The gas may be 
modeled either as ideal, or as a non-equilibrium, chemically 
reacting mixture of ideal gases [4].  
 

Our test case was the isentropic vortex problem. This 
problem has an exact solution for the compressible Navier-
Stokes equations sans the viscous terms (the Euler 
equations). This test problem involves the convection of an 
isentropic vortex in inviscid flow. It is used to test the ability 
of the code to accurately model vortical flows. 
 

We used CrayPat under perftools version 6.0.1 to 
examine the performance of SIERRA/Aero on the isentropic 
vortex problem.  For this test we used a cluster called Muzia. 
Muzia is a smaller version of our current large Cray XE6 

system Cielo. The results of this profile are given in Table 1 
and Figure .  
 

Aero Profile (Major Functions) 
Samp 

% 

Samp Imb. 

Samp 

Imb. 

Samp% 

Function 

100 125816.8 - - Total 

88.7 111577.4 - - User 

28.4 35715.2 545.8 1.5 sumInto
1 

19.9 25054.0 391.0 1.5 localGaussSeidel
2



 

14.5 18261.9 4939.1 21.5 ElementFlux::operator()
3

 

13.7 17243.7 232.3 1.3 localApplyBlockNoTrans
4 

1. tftk::linsys::TpetraBaseBlockLinearSystem::sumInto 

2. Tpetra::Experimental::BlockCrsMatrix<double, int, long, 

KokkosClassic::SerialNode>::localGaussSeidel 

3. sierra::conchas::ElementFlux::operator() 

4. 
Tpetra::Experimental::BlockCrsMatrix<double, int, 

long,KokkosClassic::SerialNode>::localApplyBlockNoTrans 

Table 1.  Aero Profile 

 
The most time consuming function in Table 1, 

tftk::linsys::TpetraBaseBlockLinearSystem::sumInto, fills 
the actual linear system with values from the application 
code. The next highest time consuming function, 
Tpetra::Experimental::BlockCrsMatrix<double, int, long, 
KokkosClassic::SerialNode>::localGaussSeidel, is the main 
work routine of the pre-conditioner (local on each process) 
that computes a smoothed solution for symmetric Gauss-
Seidel. It is called twice for each linear iteration of the code.  
The third most time consuming function is 
sierra::conchas::ElementFlux::operator() which does the 
main computation of the residual and sensitivities for the 
linear system. And 
Tpetra::Experimental::BlockCrsMatrix<double, int, 
long,KokkosClassic::SerialNode>::localApplyBlockNoTrans 
is a sparse matrix-vector multiply. All other functions were 
found to use less than 3% of user compute time. 

 



 
Figure 4. Pie Chart of Most Compute Intensive Aero 

Functions 
 

Figure 5 shows the strong scaling characteristics 
measured on Chama. 
 

 
Figure 5.  SIERRA/AERO IsentropicEulerVortex model 

strong scaling on Chama 

 
The percentage of run time in MPI is an important 

component to understand scaling of SIERRA/AERO and is 
shown in Figure 6. 
 

 
Figure 6.  SIERRA/AERO fraction of time in MPI with 

scale on Chama 

 

C. SIERRA/SD 

 
SIERRA/SD is a general purpose parallel structural 

dynamic finite element analysis code and is used for large 
scale structural analysis including problems in modal, 
vibration, static and shock analysis [5].  The problem that has 
been chosen for the Center of Excellence work is a modal 
analysis of a mesh of a complex part with 1044913 nodes 
and is called “nfn9”.  For this type of analysis, there are 
multiple solves for each eigenmode.  The result is that the 
majority of the time (98% or better) is spent in the solve 
portion of the code and the initialization of the solver is a 
very small portion of that time.  Even though SIERRA/SD 
has several solver options for several varieties of problems, 
this behavior is typical of problems run with the code. 

 
This test problem that we ran for SIERRA/SD uses the 

GDSW (Generalized Dryja, Smith, Widlund) domain 
decomposition solver [6].  The GDSW solver relies on 
domain decomposition, where the domain is divided into a 
number of subdomains (generally, one per processor).  Two 
local solves are done for each of these subdomains, and a 
global (coarse) solve is also done on a reduced system.  
These solutions are then combined to produce the 
preconditioned residual for the Krylov method.  In contrast 
to the other codes that we are studying in this paper, 
SIERRA/SD avoids the repeated matrix assembly operations, 
which is why the solution portion of the code dominates the 
runtime.  We ran SIERRA/SD on 120 cores of a Cray XE6 
using CrayPat and Figure 7 shows a simplified call tree 
resulting from the run.  There is communication in places 
other than the “Epetra communication” location in the call 
tree.  As mentioned above, there are multiple backsolves for 
the solution of each linear system and these backsolves call a 
routine called “blkslvn” which in turn calls the BLAS routine 
“dgemm”.  For this test, this part of the code takes about 
84% of the computation time and dominates the run.  This is 
typical for problems that use this solver.  Most of the calls to 
“blkslvn” only have one right hand side and could be 
replaced by a call to “blkslv”, which calls dgemv, which can 
be more efficient on some machines. 

 
Figure 7.  Simplified call tree for SIERRA/SD 



We also found that the time MPI takes is a little less than 
1% of the total runtime.  However, the MPI_SYNC time is 
about 47% of the runtime.  Most of this time is waiting for 
MPI_Barrier (34%) and MPI_Allreduce (12%).  This 
indicates load imbalance in the calculation.  Part of this is 
due to the fact that the global solve on a reduced system is 
being done by only one processor.  The communication 
matrix is shown in Figure 8.  It shows all of the other cores 
communicating with rank 105 to do the global portion of the 
solve.  It also shows the usual nearest neighbor 
communication that results from domain decomposition of 
the mesh. 

 

 
 

Figure 8.  Communication matrix for GDSW solver 
 

Figure 9 shows the strong scaling characteristics 
measured on Chama.  Due to the nature of the problem and 
solver, the strong scaling curve is a straight line, but deviates 
from the ideal.  As more processors are used, the size of the 
domains becomes smaller and more time is spent in 
communication. 
 

 
Figure 9.  SIERRA/SD nfn9 model strong scaling on 

Chama 

 

The percentage of run time in MPI is an important 
component to understand scaling of SIERRA/SD and is 
shown in Figure 10.  The time spent in MPI in this chart 
includes the MPI_SYNC time discussed before and the total 
percentage of time in MPI agrees with the results from the 
runs on the Cray XE6. 
 

 
Figure 10.  SIERRA/SD fraction of time in MPI with 

scale on Chama 

IV. SUMMARY AND FUTURE WORK 

 
In anticipation of acquiring Trinity, we have looked at 

three codes in the SIERRA Framework to characterize their 
performance and strategize what work needs to be done such 
that those codes will run well on both halves of the machine.  
We have looked at the codes and profiled them with various 
tools such as CrayPat.  In doing so, we encountered some 
problems with compiling with CrayPat due to mismatch of 
modules since SIERRA has a set of modules that it uses and 
those clashed with some of the modules that CrayPat needed.  
We also saw some problems with some versions of CrayPat 
giving us answers that were not right. 

 
In moving forward, there are several things that we are 

going to work on to get good performance on Trinity.  As we 
have seen, there are two places in the codes that take up a 
large portion of the time.  Those are the solvers for all of the 
codes and matrix assembly for SIERRA/SM and 
SIERRA/Aero.  We have been experimenting with  Pardiso, 
the Intel math library that provides threading to help with the 
solvers.  We have also been looking at various methods of 
threading and vectorization of the codes. 

 
On Trinity, effective vectorization taking full advantage 

of the AVX2 vector units on each core of Haswell and the 
two 512-bit vector SIMD units on each core of KNL that 
support AVX-512F (AVX3.1) instructions, is an important 
goal for the SIERRA code development team.  In [7] the 
gain in performance possible through auto-vectorization is 
presented studying TSVC and LCALS benchmarks for Intel, 
Cray and GNU compilers.  They also show that for a few 
SIERRA/SM compute kernels a range of approaches from  
changes in data structures to use of pragmas to the 



development of specially coded SimdLIB can yield up to 
50% performance gain. 

ACKNOWLEDGMENT 

This work was supported in part by the U.S. Department 
of Energy.  Sandia National Laboratories is a multi-program 
laboratory managed and operated by Sandia Corporation, a 
wholly owned subsidiary of Lockheed Martin Company, for 
the United States Department of Energy’s National Nuclear 
Security Administration under contract DE-AC04-
94AL85000. 

REFERENCES 

 
[1] Ryan P. Shaw, Anthony M. Agelastos, and Joel D. Miller, “Guide to 

Using Sierra,” SAND2015-1642, Sandia National Laboratories, 
Albuquerque, NM, 2015. 

[2] Sierra/SM Team, “Sierra/SM Theory Manual,” SAND2013-4615, 
Sandia National Laboratories, Albuquerque, NM, 2013. 

[3] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen, 
“FETI-DP: A Dual-Primal Unified FETI Method – Part I: A Faster 
Alternative to the Two-Level FETI Mathod,” International Journal for 
Numerical Methods in Engineering, 2001, Vol 50, pp. 1523 – 1544. 

[4] SIERRA/Aero Theory Manual – Version 4.34 (Internal Sandia 
Document)  

[5] Garth M. Reese, Timothy F. Walsh, and Manoj K. Bhardwaj, “Salinas 
– Theory Manual Version 4.22,” SAND2011-8272, Sandia National 
Laboratories, Albuquerque, NM, 2011. 

[6] Clark R. Dohrmann and Olof B. Widlund, “Hybrid domain 
decomposition algorithms for compressible and almost 
incompressible elasticity,”  International Journal for Numerical 
Methods in Engineering, 2010, Vol 82. pp. 157-183. 

[7] Rajan, M., Doerfler, D.W., Tupek, M.R., and Hammond, S.D.,” An 
investigation of compiler vectorization on current and next-generation 
Intel processors using benchmarks and Sandia’s Sierra Applications,” 
to be presented at CUG 2015, Chicago, Il, 2015. 


