
An Investigation of Compiler Vectorization
on Current and Next-generation Intel

Processors using Benchmarks and Sandia’s
SIERRA Applications

 Mahesh Rajan1, Doug Doerfler2, Mike Tupek1, Si Hammond1
1Sandia National Laboratories, 2Lawrence Berkeley National Laboratory

Cray User Group Meeting, April 26-30, 2015, Chicago, IL

This work was supported in part by the U.S. Department of Energy. Sandia is a
multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States National Nuclear Security Administration and the Department of

Energy under contract DE-AC04-94AL85000.

Motivation

• Acquisition of Trinity (NNSA’s ATS-1) by ACES (SNL & LANL
Partnership)
– >9500 nodes with Intel Haswell; SIMD unit:AVX2
– > 9500 nodes of Intel Knights Landing (KNL); SIMD unit AVX-

512F(AVX3.1)
– Study vectorization to realize performance potential on Trinity

• Evaluate Cray, Intel and GNU compilers (auto-vectorization)
– Study TSVC benchmark
– Study LCALS benchmark

• Investigate approaches with real SNL SIERRA Mechanics
kernels
– Impact of data layout
– Compiler auto-vectorization limitations and effective usage
– Design and performance of a specially developed SIMD library

4/30/2015 Sandia Unclassified Unlimited Release 2

ACES (Sandia, LANL Partnership) new
Advanced Technology System: Trinity

4/30/2015 Sandia Unclassified Unlimited Release 3

Processor Performance Trends
(from Eric Welch & James Evans; Multiple Processor Systems, 2013)

4/30/2015
Sandia Unclassified Unlimited Release

4

SIMD

SIMD
and
MIMD

Vectorization Kernels from
SIERRA/SM (Solid Mechanics)

4/30/2015 Sandia Unclassified Unlimited Release 5

 - 2 -

! "#$%&'#()*+), "(-)
The geometry for this problem corresponds to that of the underlying parametric geometry for a

hex element; that is x,y,z ! [-1,1]. The cube is uniformly discretized with five different meshes

having 2, 4, 8, 16, and 32 elements in each coordinate direction. Various combinations of

boundary conditions can be applied for a manufactured solution, but the case presented here (u)

applies displacement boundary conditions to all surfaces of the cube. Specifically the

displacement field that provides the input for the manufactured solution (case poly-2a1u) is

given by:

u1 = aX2

2, u2 = 0, u3 = 0 (1)

where “a” has units of 1/length. Figure 1 depicts the displacement boundary conditions on the

cube with the shading illustrating the x-component of the displacement field.

! %-". '%/)! *0"/)
The material model used for this problem is the neo-Hookean model implemented in Lame [2].

This is a hyperelastic model and as such stresses are obtained from an underlying stored strain

energy function or elastic potential. For this problem the elastic coefficients are selected to

correspond to the St. Venant-Kirchoff model where the 2nd Piola-Kirchoff stresses are given by

! ! ! ! " ! ! ! ! ! ! (3)!

Note that this model has the same form as linear elasticity, but the strain measure (E) used in this

relation is the Lagrangian or Green strain tensor. In the “templated” data file the Lame constants

were expressed in terms of Young’s modulus and Poisson’s ratio. The selected properties were

given as follows.

Figure 1. x-displacement field prescribed on boundary.

 A general purpose massively parallel nonlinear solid mechanics

finite element code for explicit transient dynamics, implicit

transient dynamics and quasi-statics analysis

 Built upon extensive material, element, contact and solver

libraries for analyzing challenging nonlinear mechanics

problems for normal, abnormal, and hostile environments

 Similar to LSDyna or Abaqus commercial software systems

SIERRA Mechanics; need and
approaches

• Compiler Auto-Vectorization
– For simple loops, compilers auto-vectorizes;

• Example:
– for (int i=0; i < N; ++i) {

 a[i] = b[i] + c[i] * d[i];
 }

• For “Complicated” loops compilers typically will not
auto-vectorize

• SIERRA Solid Mechanics kernels have loops that are > 200
lines
– Tensor33 multiply (symmetric x asymmetric)
– Eigenvectors
– Constitutive law evaluations

• Use SIMD vector intrinsics (low level functions):
– Developed SIERRA SimdLib with Intrinsics (SLI) for easy port

to different architectures

 4/30/2015 Sandia Unclassified Unlimited Release 6

AVX Intrinsics

Compute {1,2,3,4} + 2.1:

double x[4] = {1,2,3,4};

_ _m256d a = _m256_loadu_pd(x);

_ _m256d b = _m256_set1_pd(2.1);

_ _m256d c = _m256_add_pd(a,b);

double result[4];

_m256_store_pd(result,c);

4/30/2015 Sandia Unclassified Unlimited Release 7

x y z w

_ _m256d (4 doubles)

1 2 3 4

+

=

3.1 4.1 5.1 6.1

2.1 2.1 2.1 2.1

Platforms, Processors and compilers
used in this study

4/30/2015 Sandia Unclassified Unlimited Release 8

Processor Platform Name Specification/CPU

Ivy Bridge Edison, Morgan04 Intel(R) Xeon(R) CPU
E5-2695 v2 @
2.40GHz

Haswell Mutrino, Shephard Intel(R) Xeon(R) CPU
E5-2698 v3 @
2.30GHz

KNC Corner, Morgan04 Intel(R) Xeon(R) Phi
CPU @ 1.238 GHz

Compiler Versions used:
Intel 15.0.2
GNU gcc 4.9.2
Cray compilers under Cray Programming environment 5.2.40

TSVC (Test Suite for Vectorizing Compilers) Benchmark

• Originally developed by Callahan, et. al. (1988)
in Fortran

• Extended, and converted to C by Maleki, et. al.

• A total of 151 loops (Single Precision Floats)

• It provides a large collection of basic loops
that could be found in scientific HPC codes

• Forms a good basis for investigating compiler
auto-vectorization capabilities

4/30/2015 Sandia Unclassified Unlimited Release 9

Our Method for Determining
“vectorization”

• Taken from Maleki paper
• Baseline measurement: use no vectorization flag (e.g. –no-vec) but

include optimization (-O3)
• Measurement with vectorization: Include vectorization flag (e.g. –

mavx) and optimization (-03)
• Speedup = (time w/o vectorization) / (time w/vectorization)

– Greater than 1.5 is a “vectorized”
– Less than 0.85 is “vectorized” but a slowdown
– KNC max speedup=16; Ivy Bridge max=8; Haswell max=16 (w/fma)

• Benchmarks were modified to ensure array alignment on the
appropriate SIMD width for the architecture
– 32 bytes (256 bits) for Ivy Bridge and Haswell
– 64 bytes (512 bits) for KNC

4/30/2015 Sandia Unclassified Unlimited Release 10

TSVC Results
KNC Ivy Bridge w/AVX Haswell w/AVX2

 Intel GNU Intel Cray GNU Intel Cray

vectorized 111 61 99 101 63 91 102

speedup 103 58 96 96 59 88 93

slowdown 8 3 3 5 4 3 9

average
speedup 8.04 2.87 2.47 2.80 2.82 2.60 2.88

total time 177.82 21.41 17.15 16.53 17.29 14.45 13.56

4/30/2015 Sandia Unclassified Unlimited Release 11

Intel & Cray on Ivy Bridge & Haswell showed a speed up for 66% of the loops; GNU 41%
From total time metric for Haswell: Cray faster by 1.07X of Intel and 1.28X of GNU
KNC total times are poor because of clock speed and not using minimum of 2 threads

TSVC Results

0	

4	

8	

12	

16	

S0
00

	

S1
13

	

S1
16

	

S1
22

	

S1
27

	

S1
51

	

S1
71

	

S1
76

	

S1
22

1	

S2
33

	

S2
43

	

S1
25

1	

S2
54

	

S2
61

	

S2
75

	

S2
79

	

S2
81

	

S2
10

1	

S3
12

	

S3
17

	

S3
11

1	

S3
23

	

S3
43

	

S4
21

	

S4
31

	

S4
52

	

S4
91

	

S4
11

6	

va
s	

vp
vt
s	

vb
o
r	

Sp
ee
du

p	

Benchmark	

KNC/Intel	

IVB	GNU	

IVB	Intel	

IVB	Cray	

HSW	GNU	

HSW	Intel	

HSW	Cray	

Speedup values > 16 not displayed

4/30/2015 Sandia Unclassified Unlimited Release 12

TSVC: Haswell Only

0	

5	

10	

15	

20	

25	

S0
0
0
	

S1
1
3
	

S1
1
6
	

S1
2
2
	

S1
2
7
	

S1
5
1
	

S1
7
1
	

S1
7
6
	

S1
2
2
1
	

S2
3
3
	

S2
4
3
	

S1
2
5
1
	

S2
5
4
	

S2
6
1
	

S2
7
5
	

S2
7
9
	

S2
8
1
	

S2
1
0
1
	

S3
1
2
	

S3
1
7
	

S3
1
1
1
	

S3
2
3
	

S3
4
3
	

S4
2
1
	

S4
3
1
	

S4
5
2
	

S4
9
1
	

S4
1
1
6
	

va
s	

vp
vt
s	

vb
o
r	

V
e
ct
o
ri
za

o
n
	S
p
e
e
d
u
p
	

Benchmark	

HSW	GNU	

HSW	Intel	

HSW	Cray	

4/30/2015 Sandia Unclassified Unlimited Release 13

LCALS (Livermore Compiler Analysis Suite) Benchmark

• Developed by Rich Hornung (LLNL)

• Represents 30 loops and kernels taken and/or derived
from real codes

• Double Precision Floats

• Three variants
– “Raw”: C/C++ for-loop syntax -> used for this study

• Subset A: loops used in application codes

• Subset B: used to illustrate compiler optimization issues

• Subset C: extracted from Livermore Loops in C by Steve Langer

– Other variants include OpenMP, functors and C++11
lambda functions -> NOT utilized for this study

4/30/2015 Sandia Unclassified Unlimited Release 14

LCALS Results
KNC Ivy Bridge w/AVX Haswell w/AVX2

 Intel GNU Intel Cray GNU Intel Cray

vectorized 17 9 16 6 9 17 6

speedup 17 8 16 6 8 14 6

slowdown 0 1 0 0 1 3 0

average
speedup

3.80 1.77 2.12 2.07 2.00 2.36 2.98

total time 5.57 0.83 0.59 0.87 0.65 0.42 0.65

4/30/2015 Sandia Unclassified Unlimited Release 15

Intel compiler vectorizes 53% on Ivy Bridge, 57% on Haswell; GNU 30%; Cray 20%;
Cray compiler showed good speed up on Haswell of the vectorized loops, 2.98X;

LCALS Results

0	

1	

2	

3	

4	

5	

6	

7	

8	
P
R
ES
SU

R
E_
C
A
LC
	

EN
ER

G
Y_
C
A
LC
	

V
O
L3
D
_C

A
LC
	

D
EL
_D

O
T_
V
EC

_2
D
	

C
O
U
P
LE
	

FI
R
	

IN
IT
3
	

M
U
LA
D
D
SU

B
	

IF
_Q

U
A
D
	

TR
A
P
_I
N
T	

H
YD

R
O
_1
D
	

IC
C
G
	

IN
N
ER

_
P
R
O
D
	

B
A
N
D
_
LI
N
_E
Q
	

TR
ID
IA
G
_E
LI
M
	

EO
S	

A
D
I	

IN
T_
P
R
ED

IC
T	

D
IF
F_
P
R
ED

IC
T	

FI
R
ST
_S
U
M
	

FI
R
ST
_
D
IF
F	

P
IC
_2
D
	

P
IC
_1
D
	

H
YD

R
O
_2
D
	

G
EN

_
LI
N
_
R
EC

U
R
	

D
IS
C
_O

R
D
	

M
A
T_
X
_M

A
T	

P
LA
N
C
K
IA
N
	

IM
P
_H

YD
R
O
_2
D
	

FI
N
D
_F
IR
ST
_M

IN
	

sp
ee
d
u
p
	 KNC	Intel	

IVB	GNU	

IVB	Intel	

IVB	Cray	

HSW	GNU	

HSW	Intel	

HSW	Cray	

4/30/2015 Sandia Unclassified Unlimited Release 16

SIERRA Kernels Chosen for this study

4/30/2015 Sandia Unclassified Unlimited Release 17

 Eigenvector kernel:

 Computes eigenvectors and eigenvalues of a symmetric 3x3 matrix

 Computation based on analytic formula

 Kernel code uses conditionals and trigonometric function evaluations

 Elasticity Kernel:

 Computes mechanical stress from stretching tensor and rotation tensor ; all 3x3
matrices; rotation tensor non-symmetric

 Uses material properties Bulk Modulus and Shear Modulus

 Kernel code relatively straight forward; no conditionals; most complicated math is a
cube-root

 Plasticity Kernel:

 Computes stress tensor from strain-rate tensor and old-stress tensor (all symmetric 3x3
matrices); uses also an array of length 11 that stores the internal state history of the
material

 Uses material properties Bulk Modulus ,Shear Modulus, Yield Stress, and Hardening
Modulus

 Kernel code is complex as it has structs with stride 11 (i.e. 11 doubles), has many inputs,
has conditionals and even has a while loop at the inner most level to assess
convergence of the material model’s plastic strain updates

Data structure layout investigated
AOS, SOA and SLI

4/30/2015
Sandia Unclassified Unlimited Release

18

Array of Structures (AOS)

Structure of Arrays (SOA)

SimdLib with Intrinsics (SLI) ; schematic SIMD Length=2

Sandia SIERRA/SM team’s SIMDLIB

• Motivated by compiler limitations on complex loops
• Uses SIMD vector intrinsics
• Clever design using C++templates and structs to make it

independent of platform and compilers (Portability a key
design goal)

• Key components: “Doubles” struct, a “Bools” struct, and an
integer valued vector-length

• At compile time for the target SIMD unit “Doubles” and
“Bools” structs are then sized to the vector-length

• The most common mathematical operations (such as +,-
,*,/,sqrt,<,<=,!=,&&,||,etc.) are overloaded to use the
appropriate SIMD intrinsics on the data members of the
“Doubles” and “Bools” structs

4/30/2015 Sandia Unclassified Unlimited Release 19

Ivy Bridge: SIERRA kernels speedup relative
to AOS layout and no vectorization

4/30/2015
Sandia Unclassified Unlimited Release

20

 Eigenvector Elasticity Plasticity

AOS 1.62 1.01 0.99

AOS, IVDEP 1.67 1.61 0.98

SOA 1.09 0.99 0.70

SOA, IVDEP 2.45 2.19 0.71

SLI 2.27 1.86 1.80

Auto Vectorization requires implementing the kernel function as inline
function in a header file and increase max inline size with flag:
 -inline-max-total-size=10000

Haswell: SIERRA kernels speedup relative
to AOS layout and no vectorization

4/30/2015
Sandia Unclassified Unlimited Release

21

 Eigenvector Elasticity Plasticity

AOS 1.80 1.00 0.97

AOS, IVDEP 1.74 1.37 0.97

SOA 0.90 0.99 0.58

SOA, IVDEP 2.53 2.45 0.59

SLI 2.03 1.79 1.54

• Are prefetch instructions for compiled code the reason for SOA+IVDEP performance being
better than the SLI performance?

Used CrayPat: ratio of the metric: MEM_UOPS_RETIRED:ALL_LOADS SimdLib/ SOA+IVDEP = 1.4;
Value close to run time ratio of SimdLib/ SOA+IVDEP = 1.38;
Also CrayPat metric that measures L2 prefetch hits: L2_RQSTS:L2_PF_HIT registered 3 times higher value for
SOA+IVDEP over Simdlib.
CrayPat metric that measures L2_RQSTS:L2_PF_MISS were nearly the same.

KNC: SIERRA kernels speedup relative to
AOS layout and no vectorization

4/30/2015
Sandia Unclassified Unlimited Release

22

 Eigenvector Elasticity Plasticity

AOS 2.28 1.00 1.00

AOS, IVDEP 1.64 0.92 1.00

SOA 0.95 0.84 0.63

SOA, IVDEP 5.14 7.16 0.63

SLI 5.10 2.39 2.63

MiniApps on KNC

4/30/2015
Sandia Unclassified Unlimited Release

23

Application miniFE AMG UMT SNAP

% speedup with
Vectorization

4.68% 6.52% 17.95% 19.52%

MiniFE Tuning:
 KNC performance, 23% slower than the

front-end Sandy Bridge node
 Additional gains in performance were

achieved by disabling transparent huge
pages and using selectively large page
allocations for vector data structures to
lower TLB miss rates. These tuning
measures improved the KNC performance
by 33%

 Finally KNC exceeded FE Sandy Bridge by
20% (see figure)

Use of hardware counters on KNC;
vectorization effectiveness

4/30/2015
Sandia Unclassified Unlimited Release

24

Investigated with a simple DGEMM matrix multiply benchmark:

Vectorization intensity defined as:
 Vectorization Intensity = VPU_ELEMENTS_ACTIVE / VPU_INSTRUCTIONS_EXECUTED

 vectorization intensity measured for DGEMM = 7.84

Metric upper bound of 8. Values close 8 suggest efficient use of MIC’s SIMD units.

However since the VPU_ELEMENTS_ACTIVE counter measures in addition to the double
precision floating point instructions, vector load/stores from memory and instructions to
manipulate vector mask registers this metric is misleading.

The fact that our measurements of this metric achieves close to the peak showing high
vectorization intensity is misleading if our goal is to achieve high floating point operations
throughput. The percentage of peak double precision floating point operations achieved
with MKL DGEMM in this test is about 30%; Need DP_OPS counter!!

Conclusions
• The TSVC and LCAL benchmarks show a performance gain of 3X

if the compute intensive kernels are vectorized

• Our need for SIERRA/SM SimdLib as typified by the plasticity
kernel; compiler is unable to vectorize some complex loops
even with pragmas.

• SimdLib designed for easy portability to processors with different
lengths of the vector registers

• Compiler can indeed give the best performance when kernels
have appropriate data structure and compiler vectorization is
aided by pragma

• The importance of hardware performance counter measures to
identify all aspects of effective use of the SIMD units is pointed
out

4/30/2015 Sandia Unclassified Unlimited Release 25

