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Abstract— Trinity, a Cray XC40, with over 19,000 nodes 

utilizing Intel Haswell and Intel Knights Landing (KNL) 

processors is the first of NNSA’s new Advanced Technology 

Systems (ATS-1) procured by ACES, the partnership between 

Los Alamos National Laboratories (LANL) and  Sandia 

National Laboratories (SNL).   Phase-1 of Trinity with only the 

Haswell nodes is anticipated to be installed in mid-2015 and 

Phase-2 with KNL nodes in the spring of 2016.  Effective 

vectorization of our applications, to take full advantage of the 

AVX2 vector units on each core of Haswell and the two 512-bit 

vector SIMD units on each core of KNL, is an important 

performance goal on Trinity.  We carry out a systematic study 

of vectorization using Cray, Intel and GNU, compilers.  The 

study includes micro-benchmark mini-applications and a set of 

important kernel operations from Sandia’s SIERRA 

Mechanics applications suite.  Cray compilers on Haswell give 

the lowest value for the total (sum) time of the 151 loops in the 

TSVC vectorization benchmarks, achieving on the average 

close to 3X gain in performance. For the LCALS benchmark 

Intel compiler out performs Cray and GNU in similar 

measures.  For the SNL SIERRA Mechanics complex compute 

kernels like eigenvalue and material model computations, we 

present approaches to achieve significant (up to 50%) 

performance improvement.  This study highlights the benefits 

and limitations of different compilers and the alternate 

approaches we may need to take full advantage of the 

promised performance with newer SIMD vector units on Intel 

processors.   

Keywords; KNC, KNL, Haswell, Vectorization, performance 

optimization 

I. INTRODUCTION 

An important element in extracting optimal performance 
out of the current generation of CPU architectures and 
systems requires us to take advantage of the wide SIMD 
registers.  Approaches to achieving effective vectorization 
can vary in effort and complexity starting from simple use of 
compiler switches, calls to optimized library functions, 
writing assembly code or calling intrinsic functions that 
mimic assembly instructions. For HPC systems the effort in 
tuning for the CPU typically benefits performance on hybrid 
systems with accelerators like the Xeon Phi or NVIDIA GP-
GPUs.  For complex multiphysics codes suites like the SNL 
SIERRA Mechanics package, efficient vectorization of the 
compute intensive kernels can be quite involved.  A good 
understanding of the kernels and data structures goes a long 
way when faced with this task for applications with 
thousands of source code files and functions.  Getting 
compilers to recognize opportunities for vectorization with 
and without some assistance from the code developer (in the 

form of directives) is a high priority for our applications.  
From this perspective a comparative evaluation of the three 
compilers that are likely to be used by ACES code 
developers, namely: Intel, GNU and Cray, is of benefit to our 
user base.  Towards this objective we evaluate the three 
compilers using the TSVC benchmark [1] and the Livermore 
Kernels benchmark LCALS [2] on Intel processors: Ivy 
Bridge, Haswell and Knights Corner (KNC).  The 
performance gain seen with these processor architectures, 
with different SIMD units (AVX, AVX2 and MIC-AVX512 
respectively) are investigated.   

 
If the compiler provides good auto-vectorization for 

important kernels it allows effective optimization of a wide 
range of codes without requiring a large effort or in depth 
understanding of the microarchitecture.  Compiler unrolling 
and peeling of compute intensive loops combined with the 
generation of packed SIMD instructions is our preference.  
We attempt to identify situations where a programmer may 
be able to help the compiler vectorize more loops through 
simple modifications to the program and by explicit help 
through compiler directives.  

 
This study also investigates a set of compute intensive 

loops from Sandia’s SIERRA Mechanics application suite 
[3].   An approach developed by the SIERRA Solid 
Mechanics code team is the creation of an abstraction layer 
called SimdLib which, by directly using SIMD intrinsics, 
assures good performance for the loops on all compilers 
independent of their ability to auto-vectorize.  However, we 
also show that when auto-vectorization is aided with 
judicious insertion of pragmas it often leads to best possible 
performance because the compiler is able to take full 
advantage of loop optimizations and hardware features. 

II. TSVC AND LCALS BENCHAMRK 

The TSVC (Test Suite for Vectorizing Compilers) 

benchmark was originally developed by Callahan, Dongarra 

and Levine [4]. The version used for this study is an 

extended version developed by Maleki, Gao, Garzaran, 

Wong and Padua [5].  The extended version took the 

original version, converted it from Fortran to C and aligned 

all arrays to 16 byte boundaries. In addition, 23 new loops 

were added and 7 loops removed that the authors 

determined were obsolete. The extended version has 151 

loops. We chose this benchmark as it provides a somewhat 

pathological collection of relatively simple loops that could 

be found in many scientific C codes and forms a good basis 

for compiler expectations as we explore more difficult code 
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segments found in real applications.  We modified the array 

alignment parameter to 64 bytes in order to accommodate 

512-bit SIMD units used in the Intel Knights Corner. This 

same alignment was used for Ivy Bridge and Haswell (256-

bit SIMD units) for consistency. 

 

The LCALS (Livermore Compiler Analysis Loop Suite) 

benchmark suite was developed by Rich Hornung at 

Lawrence Livermore National Laboratory.  This suite was 

chosen as one of our benchmarks because it represents loops 

and “kernels” taken, or derived from, real codes. LCALS 

consists of three variants for testing different programming 

and execution constructs, and hence different aspects of a 

compiler’s performance. The first variant employs 

traditional C/C++ for-loop syntax and is referred to as 

“Raw” variants. Other variants explore more complex C++ 

methods such as functors and lambda functions; these were 

not explored because the Cray C compiler does not support 

lambda functions at the time this work was performed. The 

suite also contains loop variants implemented with 

OpenMP; these were not explored, as we were only 

interested in the vectorization aspects of the compiler and 

not the interaction of OpenMP and vectors. For the “Raw” 

variants, the suite is broken into three subsets. The subset 

“A” represents loops representative of those found in 

application codes. Subset “B” is a collection of basic loops 

that help to illustrate compiler optimization issues. Subset 

“C” is extracted from “Livermore Loops coded in C” 

developed by Steve Langer, which was derived from the 

original Fortran “Livermore Loops” by Frank McMahon. 

Modifications to the original source code included: Setting 

num_suite_passes to 3; setting run_loop_length to false for 

LONG and MEDIUM test cases; commenting out all 

references for lambda function and OpenMP variants; and 

setting the cache size parameter to 30 MB.  For the Intel 

Knights Corner tests the value of LCALS_DATA_ALIGN 

was set to 64 bytes to support the 512-bit SIMD unit.  The 

default value of 32 bytes was used for Ivy Bridge and 

Haswell studies. For this initial study, we only performed 

the SHORT loop length case because we feel this is the 

most challenging case for the compiler.  

 

It is a difficult and tedious task to examine the compiler 

generated vectorization reports for all 151 loops found in the 

TSVC suite to determine which loops vectorized and which 

did not. So we used the method of the Maleki et. al. [5] 

study and did runtime comparisons between timings of code 

generated with and without vectorization. The baseline 

timings are made with optimization turned on, but 

vectorization turned off.  Note that since optimization is 

allowed the baseline timings may employ automatic 

compiler techniques such as inlining and loop unrolling. A 

second set of timings with the same optimization flags plus 

the appropriate vectorization flag set is collected and the 

ratio of without vectorization and with vectorization is 

calculated and compared to a threshold. If the ratio is greater 

than 1.15 we say that the loop vectorized. If the ratio is less 

than 0.85 we say the loop vectorized, but it is labeled as a 

slowdown.  

 

The benchmarks are serial implementations and hence 

were run on a single core of the target processors and are 

not memory bandwidth limited. The footprint of both 

benchmarks is very small and the variable arrays of each 

test loop should fit in at least the last-level cache of the 

processors evaluated. The footprint of TSVC is ~2.5 MB 

and LCALS is ~150 MB. Given these constraints, the results 

should be truly representative of the potential performance 

improvement of vectorization without the limitation of 

being memory bandwidth bound.  

 

For this study, we looked at three generations of Intel 

processors, the Ivy Bridge processor which has a 256-bit 

AVX SIMD unit, the Haswell processor with a 256-bit 

AVX2 SIMD unit, and the Intel Knights Corner which has 

an early implementation of the MIC-AVX512F (AVX3.1) 

SIMD unit. For the Ivy Bridge and Haswell targets, three 

compiler suites were evaluated, GNU, Intel, and Cray. The 

details of each processor architecture and platform are listed 

in Table 1. The compiler suites used are: Intel 15.0.2, GNU 

gcc 4.9.2 and Cray compilers under Cray Programming 

environment 5.2.40.  

 

Table 1. Platforms and processors used  

 
Processor Platform Name Specification/CPU 
Ivy Bridge Edison, Morgan04 Intel(R) Xeon(R) CPU 

E5-2695 v2 @ 
2.40GHz 

Haswell Mutrino, Shephard Intel(R) Xeon(R) CPU 
E5-2698 v3 @ 
2.30GHz 

KNC Corner, Morgan04 Intel(R) Xeon(R) Phi 
CPU @ 1.238 GHz 

 

Table 2 summarizes the results of our study with the 

TSVC benchmark that contains 151 total loops.  

“Vectorized” are those loops that showed a speedup (>1.15), 

or slow down (< 0.85), between without and with vector 

optimization enabled. The “average speedup” includes only 

those loops that “vectorized”, while “total time” is for all 

loops. TSVC uses single-precision floats, so the expected 

speedup is 16 for KNC and 8 for Ivy Bridge and Haswell. 

The Intel and Cray compilers did the best job, seeing a 

speedup on 66% of all loops versus the GNU compiler’s 

41%. The KNC results show speeding up 74% of all loops, 

while slowing down 5%. The Cray compiler sees a slightly 

higher number of loops that slowed down on the Haswell 

processor, 6%. The “total time” metric is the aggregate time 

spent in all 151 loops. For the Haswell, the Cray compiler 

provided a 1.07 speedup over the Intel compiler, and a 1.28 

speedup over GNU. For Ivy Bridge, the trend is  
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Table 2. Results of the TSVC benchmarks, 151 total loops 

 

 KNC Ivy Bridge w/AVX Haswell w/AVX2 

 Intel GNU Intel Cray GNU Intel Cray 

vectorized 111 61 99 101 63 91 102 

speedup 103 58 96 96 59 88 93 

slowdown 8 3 3 5 4 3 9 

average 

speedup 

8.04 2.87 2.47 2.80 2.82 2.60 2.88 

total time 

(min) 

177.82 21.41 17.15 16.53 17.29 14.45 13.56 

 

 

 
 

Figure 1. Measured speed up for the 151 loops of the TSVC benchmark 

 

approximately the same. The total time of the KNC 

processor is significantly higher. This is due to the relatively 

low performance of a KNC core, which is further penalized 

by running only a single thread as the KNC requires at least 

2 to 3 threads to achieve full instruction issue. A future 

effort may look at threaded versions of the benchmark in 

order to fully take advantage of current and next-generation 

architectures that depend on multiple threads to exploit 

maximum performance.  

 

Figure1 is a plot of the speedup with vectorization of the 

151 loops in the TSVC benchmark.  This plot shows the 

speedup (> 1.15) and slowdown (< 0.85) for all loops that 

“vectorized”. For the Intel KNC, the expected max speedup 

is 16. There are two loops not shown that showed a greater 

speedup, loops S314 (17.45), S3111 (20.30), S3113 (30.8). 

It can be seen that for the Ivy Bridge and Haswell results 

there are cases where the speedup is greater than the 

expected value of 8, but there is little correlation with the 

KNC results. 

 

Table 3 summaries the results of the 30 loops of the 

LCALS benchmark. LCALS uses double-precision floats, 

so the expected speedup is 8 for KNC and 4 for Ivy Bridge 

and Haswell. For LCALS, the Intel compiler provided the 

best performance, vectorizing 53% of the loops for Ivy 

Bridge and 57% for Haswell. The GNU compiler provided 

the next best result with 30%, while the Cray compiler 



4 

 

achieved 20%.  The Cray compiler showed a good speedup 

on the loops it did vectorize on Haswell, 2.98X, 

significantly higher than the Intel and GNU. Although the 

Intel compiler vectorized significantly more loops, its 

average speedup also includes 3 slowdowns. 

  

Table 3. Results of the LCALS benchmark, 30 loops 

 

 KNC Ivy Bridge w/AVX Haswell w/AVX2 
 Intel GNU Intel Cray GNU Intel Cray 

vectorized 17 9 16 6 9 17 6 

speedup 17 8 16 6 8 14 6 

slowdown 0 1 0 0 1 3 0 

average 
speedup 

3.80 1.77 2.12 2.07 2.00 2.36 2.98 

total time 
(min) 

5.57 0.83 0.59 0.87 0.65 0.42 0.65 

 

 

 
 

Figure 2. Measured speedup of the 30 loops of the LCALS benchmark 

 

The slowdowns were not seen on the Ivy Bridge and Intel 

showed the best average speed up The Intel result showed 

the best total time, a speedup of 1.55 over Cray and GNU. 

For Ivy Bridge, the overall speedup using Intel was 1.47 and 

1.41 respectively. As was seen with TSVC, the KNC 

processor showed very good average speedup, but the 

aggregate run time is much higher than the traditional Xeon 

processors. Future work may look at the loops that did not 

show a speedup and investigate code modifications 

(including directives) and more aggressive compiler 

techniques to see if improvements can be made to this 

baseline measure.  

 

III. SIERRA APPLICATION KERNELS 

Under the NNSA’s Advanced Simulation and Computing 

(ASC) program, the SIERRA Mechanics finite-element 

codes have been developed and used as the principal tool in 

support of the U.S. stockpile stewardship program. This 

suite of codes includes coupled simulation capabilities for 
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thermal, fluid, aerodynamics, solid mechanics and structural 

dynamics. These large-scale codes incorporate physics and 

engineering models and specialized codes to predict, with 

reduced uncertainty, the behavior of weapons and their 

components in a variety of environments. In addition to 

supporting the stockpile, a number of other national security 

missions use these simulation tools for innovative product 

engineering.   

 

In this section we investigate the performance tradeoffs of 

different vectorization implementations for important real 

SIERRA mechanics kernels, in contrast to the synthetic 

kernels with TSVC and LCALS presented in the previous 

section.    In particular, we consider three time critical 

kernels from Sandia’s SIERRA/Solid Mechanics finite 

element code [6].  SIERRA/Solid Mechanics is a general 

purpose massively parallel nonlinear solid mechanics finite 

element code for explicit transient dynamics, implicit 

transient dynamics and quasi-statics analysis of structures.   

It is built with extensive material, element, contact, and 

solver libraries and used at SNL for analyzing structural 

response of weapon components to normal, abnormal, and 

hostile environments.   The kernels we investigate here 

constitute a significant portion of the computational expense 

for explicit-dynamics simulations of nonlinear material 

behavior (in the absence of contact).   Each of these routines 

is computed once per element every time step, where the 

typical numbers of elements per MPI rank is in the 

thousands to hundreds of thousands.  Identical computation 

for each element enables vectorization, provided the data 

structures are organized appropriately.     

A. Eigenvector kernel:  

   This kernel computes for each element the eigenvectors 

and eigenvalues for a symmetric 3x3 matrix.  The 

symmetric 3x3 is stored as a 6 long array, taking advantage 

of the matrix symmetry to reduce the memory footprint.  

The eigenvectors/eigenvalues are computed using an 

analytic formula which requires evaluation of conditionals 

and trigonometric functions. In order to allow for 

vectorization, these trigonometric functions are calculated to 

very near machine precision using a Padé approximation.  

The details of this approximation is beyond the scope of this 

paper, but it is relavant to point out that it only requires 

double precision multiplies, adds and divides.  Conditionals 

are implemented via ternary operators. 

B. Elasticity Kernel: 

This kernel computes for each element a mechanical stress 

(symmetric 3x3 matrix) given a stretching tensor 

(symmetric 3x3 matrix) and a rotation tensor (non-

symmetric 3x3 matrix).  A Neo-Hookean elasticity model is 

used [7], where the material properties which characterize 

this model are the bulk modulus (which relates pressure 

with volume change) and the shear modulus (which relates 

shear stress with shear strain).  This calculation is relatively 

straightforward in that it does not require any conditionals 

and the most complicated math operation is a cube-root. 

C. Plasticity Kernel: 

This kernel computes for each element a mechanical stress 

(symmetric 3x3 matrix) given a strain rate tensor 

(symmetric 3x3 matrix), the old stress tensor (symmetric 

3x3 matrix), and an array of length 11 which stores the 

internal state history of the material.  The model used is a 

standard J2 plasticity model with linear hardening [7]. The 

properties for this model are the bulk modulus, shear 

modulus, yield stress and hardening modulus.  This model is 

the most complicated for vectorization as it has structs with 

stride 11 (i.e. 11 doubles), has many inputs, has conditionals 

and even has a while loop at the inner most level to assess 

convergence of the material model’s plastic strain updates. 

D. Data Layouts 

We have measured the performance of each of the above 

three kernels using three different data structures:  array-of-

structs layout, struct-of-array layout, and SimdLib which 

uses a hybrid layout and directly uses vector intrinsics 

instead of relying on auto-vectorization.  Figures 3a, 3b, and 

3c are schematics for the three data structures, namely: the 

array-of-structs (AOS), struct-of-array (SOA) and SimdLib 

with intrinscics (SLI).  For simplicity we show the case 

where the struct is a 3-vector.  Blocks of the same color 

correspond to entries in the same 3-vector. 

 

 
3a. 

 
3b. 

 
                              3c. 

Figures 3a, 3b, 3c illustrate AOS, SOA and SLI data 

layouts 

 

The layout, used for the SimdLib implementation of the 

kernels, is an array of structs-of-arrays, where the innermost 

array length is determined at compile time to be the SIMD 

vector-length.  The Figure 3c depicts the layout for the case 

when the vector-length is 2 (i.e. SSE instructions).  Note 

that, while we show the case of a vector-length of 2, this is 

only for purpose of the schematic.  All the results presented 

below use AVX, AVX2, or MIC-AVX512 instructions with 

vector-lengths of 4, 4 and 8, respectively (for double 

precision floating point numbers).  The layout changes 

described here are uniformly applied to all the data 

structures used as inputs and outputs to the kernels.  The 

advantage of both the struct-of-array layout and hybrid 

layout over the more typical array-of-structs layout is that 
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data can be loaded directly into SIMD registers without the 

need for shuffle instructions to get the data into the correct 

layout required for vectorization across elements. 

E. SimdLib 

Here we provide a brief summary of the key motivations 

for and features of SimdLib.  As previously mentioned, an 

alternative vectorization strategy to compiler auto-

vectorization is the explicit use of SIMD vector intrinsics, 

which directly call corresponding assembly instructions.  

Direct use of intrinsics is typically ill-advised as they can be 

platform and compiler dependent.    However, an approach 

developed by the SIERRA Solid Mechanics team 

overcomes this limitation by providing a simple platform 

portable abstraction layout using C++ templates and structs 

(similar to the Boost.SIMD library [8]).  The key 

components of this library are a “Doubles” struct, a “Bools” 

struct, and an integer valued vector-length.  At compile 

time, when the available SIMD instructions are detected, the 

vector-length is set to 1, 2, 4 or 8 depending on whether: no 

double precision SIMD instructions are available, SSE2 

instructions are available, AVX instructions are available, or 

AVX512 instructions are available.  The “Doubles” and 

“Bools” structs are then sized to the vector-length and most 

common mathematical operations (such as +,-

,*,/,sqrt,<,<=,!=,&&,||,etc.) are overloaded to use the 

appropriate SIMD intrinsics on the data members of the 

“Doubles” and “Bools” structs.   

In order to use SimdLib, it is necessary to get the data into 

the correct layout (as described in the previous section, with 

either an array of struct of array layout or just a struct of 

array layout) and to template relevant kernels on the 

“double” type.   In addition, all arrays must be appropriately 

aligned to 16, 32, and 64-bit boundaries for SSE2, AVX, 

and AVX512, respectively.  This approach assures good 

performance for application kernels on all compilers 

independent of their ability to auto-vectorize.   

F. Vectorization Speed-up Results 

To evaluate the effectiveness of the different 

vectorization strategies, we collected timing results from 

three Intel architectures: Ivy Bridge, Haswell and Knights 

Corner.  We compute the kernels assuming that the number 

of elements is 200,000, with the arrays sized accordingly 

and with a ‘for’ loop over these 200,000 elements.  An 

additional outer loop of 100 is used to increase the run-time 

and therefore decrease run-to-run timing variations.   

Before going into the results, we mention that a few 

initial steps were required to get auto-vectorization to work 

at all for some of these kernels.  The first change was to 

ensure that all of the kernels could actually inline, a 

prerequisite for auto-vectorization.  In particular this 

required implementing the functions as inline functions in a 

header file.  Second, it was necessary to increase the max 

inline size to 10000 with the icpc flag –inline-max-total-

size=10000, due to the fact that some of these functions are 

around 200 lines long.  With these two changes, the kernels 

inlined easily.  A second difficulty had to do with the Intel 

compiler detecting vector dependencies which were not 

actually there.  This is likely due to the fact that the Intel 

compiler has heuristics to efficiently detect these situations, 

but it may create a lot of false negatives.  We have run these 

kernels through Intel’s Thread Advisor tool, which performs 

a more thorough dependency analysis and determined that 

there are no dependency issues in these kernels.  To 

overcome this limitation, we collect timing results for each 

kernel in two ways: once with no changes to the way the 

loops are called, and once with #pragma ivdep right before 

calling the relevant loop. To ensure correct code, the 

compiler treats an assumed dependence as a proven 

dependence, which prevents vectorization. This option tells 

the compiler to ignore dependency warning and vectorize 

anyways if it is profitable.  The IVDEP directive assists the 

compiler's dependence analysis. It can only be applied to 

iterative DO loops. 

 

Tables 4, 5 and 6 summarize the Ivy Bridge, Haswell 

and KNC results, for the three kernels investigated.  They 

present speedup fractions relative to the baseline array-of-

structs layout and no compiler auto vectorization. In other 

words the speed up ratio is computed in reference to run 

times when compiler vectorization is prevented through the 

use –no-vec flag.   

 

It is an interesting finding from these results that for the 

two of the three kernels (Eigenvector and Elasticity) the 

SOA+IVDEP performance was indeed better than the SLI 

performance.  Although we do not have a full understanding 

of the reasons behind this somewhat surprising outcome, it 

is suspected that “prefetch” instructions introduced by the 

compiler for SOA, must be leading to better streaming of 

data into the SIMD units.  We studied this with CrayPat on 

our Cray XC30 with the Haswell processors.  CrayPat 

measured ratio of the metric: 

MEM_UOPS_RETIRED:ALL_LOADS for the SimdLib 

runs and the SOA+IVDEP runs, yielded a value of 1.4 

which was very close to the observed performance ratio of 

1.38.  CrayPat measurements also showed another metric 

that measures L2 prefetch hits: L2_RQSTS:L2_PF_HIT 

registered 3 times higher value for SOA+IVDEP over 

Simdlib while the misses as measured by the counter: 

L2_RQSTS:L2_PF_MISS were nearly the same.  This 

suggests possible improvement of our SimdLib 

implementation through the addition of appropriate prefetch 

intrinsics. 

 

Data in Tables 4,5 show that for the best performing 

SimdLib, we see an increase in performance of Haswell 

over Ivy Bridge of: 26.5% for the Eigenvector, 30.7% for 

the Elasticity and 21.5% for the Plasticity kernels.  

Interestingly the worst performing case, SOA without 
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IVDEP, shows correspondingly 17.1%, 32.7% and 22.7% 

gains on Haswell over Ivy Bridge. 

 

Table 4.  Ivy Bridge: SIERRA kernels speedup relative to 

AOS layout and no vectorization 

 

Eigenvector Elasticity Plasticity

AOS 1.62 1.01 0.99

AOS, IVDEP 1.67 1.61 0.98

SOA 1.09 0.99 0.70

SOA, IVDEP 2.45 2.19 0.71

SLI 2.27 1.86 1.80  
 

Table 5.  Haswell: SIERRA kernels speedup relative to 

AOS layout and no vectorization 

 

Eigenvector Elasticity Plasticity

AOS 1.80 1.00 0.97

AOS, IVDEP 1.74 1.37 0.97

SOA 0.90 0.99 0.58

SOA, IVDEP 2.53 2.45 0.59

SLI 2.03 1.79 1.54  
 

Table 6.  KNC: SIERRA kernels speedup relative to AOS 

layout and no vectorization 

 

Eigenvector Elasticity Plasticity

AOS 2.28 1.00 1.00

AOS, IVDEP 1.64 0.92 1.00

SOA 0.95 0.84 0.63

SOA, IVDEP 5.14 7.16 0.63

SLI 5.10 2.39 2.63  

IV. TUNING WITH HARDWARE COUNTERS 

Mini Applications as typified by Sandia’s Mantevo 

project [9] are frequently used to investigate performance of 

new computer architectures and processors.  Trinity 

acceptance testing includes (among other performance 

goals) investigation of performance of four mini application 

benchmarks: miniFE, AMG, UMT and SNAP.  The details 

of these codes and benchmarks are available at 

http://www.nersc.gov/users/computational-

systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-

8-trinity-benchmarks/ 

We investigated performance of these four benchmarks with 

Intel compiler on KNC (native mode), measuring run times 

with compiler vectorization ( -O3 compiler switch) and with 

no vectorization ( -O3 –no-vec ).  Results are shown in 

Table 7.   These results suggest that further effort is needed 

to fully exploit the promise of substantial performance gains 

from the vector units in KNC and KNL.  

 

 

Table 7. Mini applications vectorization performance 

 
Application miniFE AMG UMT SNAP 

% speedup 4.68% 6.52% 17.95% 19.52% 

 

MiniFE, as it is representative of the SIERRA mechanics 

applications whose run times are predominantly in sparse 

matrix solver functions, was studied further for possible 

strategies for improving performance.  Figure 4 shows the 

performance of miniFE on a 2 socket Sandy Bridge node 

and on a single KNC with 57 cores.   

 

The baseline performance using only MPI with one task 

per core on the Sandy Bridge front end processor with 16 

MPI tasks and on the KNC in native mode with 57 MPI 

tasks showed the KNC performance to be 23% slower than 

the front-end Sandy Bridge node.  As a first step in-lining 

the Sparse MV kernels and adding OpenMP threading 

improved the performance by 23%.  Additional gains in 

performance were achieved by disabling transparent huge 

pages and using selectively large page allocations for vector 

data structures to lower TLB miss rates.  These tuning 

measures improved the KNC performance by 33% and 

exceeded the front end Sandy Bridge node performance by 

20%.   

 

 
 

Figure 4. MiniFE performance optimization on KNC 

 

Micro-architectural performance tuning using the 

hardware events available through the built-in Performance 

Monitoring Unit (PMU) on KNC can be accessed through 

Intel’s Vtune.  We have also installed a version of the TAU 

performance tool and used it to measure hardware counter 

metric ratios on KNC like Vectorization Intensity defined 

as: 

 

Vectorization Intensity=VPU_ELEMENTS_ACTIVE /     

VPU_INSTRUCTIONS_EXECUTED 

 

A matrix multiply benchmark using MKL’s DGEMM on 

the KNC showed that the percentage of peak double 

http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
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precision floating point operations achieved is about 30%, 

which is considerably less than published best performance 

of close to 90% [10].  A few measurements of Vectorization 

Intensity metric ratio on the MIC, gave a vectorization 

intensity value of 7.84.  This metric has an upper bound of 8 

and so values close to 8 suggest efficient use of MIC’s 

SIMD units.  However since the 

VPU_ELEMENTS_ACTIVE counter measures vector 

instructions like vector load/stores from memory, and 

instructions to manipulate vector mask registers, in addition 

to the double precision floating point instructions of interest 

to us, caution is needed in use of this metric for performance 

tuning.  The fact that our measurement of this metric 

achieves close to the peak showing high vectorization 

intensity is misleading if our goal is to attain high floating 

point operations throughput.    However it is anticipated that 

on the Intel Knights Landing processor the PMU will 

provide a FLOPS counter enabling easier identification of 

effective use of the vector units for floating point 

operations. 

V. CONCLUSIONS 

The TSVC and LCAL benchmarks show that significant 

improvements (up to 3X) in performance can be achieved if 

the compute intensive kernels of our applications are 

vectorized.  Our study also points out that for some of the 

complex kernels as typified by the J2 plasticity kernel in 

SIERRA, direct use of SIMD intrinsics (in our case using 

the SimdLib abstraction layer) is necessary to achieve the 

desired performance.  An important objective of the design 

of the SimdLIB is easy portability to processors with 

different lengths of the vector registers.  However, an 

interesting observation from our study of the Elasticity and 

Eigenvalue kernels is that compiler auto-vectorization can 

indeed give the best performance when kernels have 

appropriate data structure layout and the compiler is aided 

by pragma directives.   The importance of hardware 

performance counter measures to identify all aspects of 

effective use of the SIMD units is pointed out.   
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