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Filesystem Performance 

q Users want faster I/O 

q Less performance variability would be nice, too 

q Mostly write performance (not a lot of reads happening) 

q I/O patterns are fairly ‘bursty’ – lots of time between writes 



GPU Usage < 100 % 

q Measuring delivered compute-hours, GPU usage was 
around 50% in 2014 

q Why aren’t all apps using the GPU? 
u Some good reasons, some not-so-good reasons 

q “Why” isn’t particularly important.  What’s important is 
that there’s some unused hardware on the nodes.  Maybe 
we can do something interesting/useful with it. 

q Let’s use the GPU memory to cache filesystem writes 
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1. Send Write Request 
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MPI Process I/O Daemon 
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2. Allocate GPU Memory, convert pointer to handle 
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3. Send Reply with Handle 
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4. Write to GPU Memory 
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5. Send Write Ready 
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6. Read from GPU Memory to Daemon Memory 
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7. Write to Page Cache/PFS 



Basic Performance Statistics 

q Writing to the filesystem 
u 8 ranks/node, each rank writes to separate file 
u Nothing fancy – just calling write() 
u 550 MB/sec/rank to cache - 100 MB/sec/rank to the filesystem 
u Max write size that fit in cache: 256MB / rank 

q Writing to the GPU memory 
u NVidia’s bandwidth util says compute nodes can write about 

5.5GB/s into GPU memory 
u Our observed aggregate BW was somewhat less, but still much 

better than writing to the filesystem 
u 550 – 650 MB/sec/rank up to 512MB size 



Basic Performance Statistics - Filesystem 



Basic Performance Statistics – GPU Mem 



Is it worth the effort? 

q Much faster than writing straight to the filesystem 

q It appears to be a little faster than writing to the Lustre 
client-side cache 
u Lustre client-side cache needs system memory, which might not 

be available 

q Performance variability should be decreased 
u This is conjecture – trying to get variability numbers is tricky, 

and it’s questionable whether numbers obtained from a synthetic 
benchmark would be useable anyway. 

q Similar improvements with 16 ranks/node 
u Cores are oversubscribed, though 



Caveats, Potential Pitfalls 

q Data hasn’t made it to permanent storage 
u Don’t immediate delete your last checkpoint file 

q Write only 
u Reads will return what’s in the file, not what’s in GPU memory 
u No way to verify if a particular write has made it out to the 

filesystem 

q Applications running 16 ranks/node would have to 
oversubscribe cores to run the daemon 
u For some applications, this might still be a net improvement 



Next Steps 

q Looking at ways to make this available in a production 
environment 

q We want something that will require minimal modifications 
to existing code. 

q Looking writing a library that will replace existing POSIX 
calls (open(), write(), etc…) with out own versions 
u Similar to how the MercuryPosix project works 

q Also considering modifying existing I/O libraries such as 
NetCDF. 
u Maintaining the modified libraries might be too much work, 

though 



Conclusions 

q Don’t use this technique – port your code 
u Far better to use the GPU hardware for what it was designed: 

calculations 

q If and ONLY IF you can’t port you your code, then this 
technique offers some benefits 

q Don’t immediately delete your checkpoint file 



Questions? 
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