Utilizing Unused Resources To Improve Checkpoint Performance

Ross Miller
Oak Ridge Leadership Computing Facility
Oak Ridge National Laboratory
Oak Ridge, Tennessee
Email: rgmiller@ornl.gov

Abstract—Titan, the Cray XK7 at Oak Ridge National
Laboratory, has 18,688 compute nodes. Each node consists of
a 16-core AMD CPU, a NVIDIA GPU, and 32GB DRAM. In
addition, there is another 6GB of GDDR DRAM on each GPU
card. Not all the applications that run on Titan make use of all a
node’s resources. For applications that are not otherwise using
the GPU, this paper discusses a technique for using the GPU’s
RAM as a large write-back cache to improve the application’s
perceived file write performance.

I. INTRODUCTION

Most HPC applications’ I/O exhibit a very ‘bursty’ pat-
tern. That is, there will be long periods with no file output
while the application is in a compute phase, followed by
a period of intense output and no computation when the
application writes its checkpoint or output files. At ORNL,
the filesystem is a center-wide resource shared with multiple
systems including a Cray XK7, a Cray XC30, analysis clus-
ters, and WAN-connected data mover nodes. Each of these
competing systems place a varying load on the filesystem
and thus the performance that individual users see can vary
dramatically within a job and between jobs.

Having a sufficiently large, node-local, write-back cache
could improve an application’s performance in two ways.
First, if the cache is large enough to hold an entire write
and the individual writes are far enough apart, then the
application never has to wait on the filesystem. It can write
to the cache and then resume its computations while the
cache drains to the filesystem. Secondly, write performance
should be more predictable. From the application’s point of
view, write speed would only limited by how fast data can
be copied into the cache, and since the cache is local to the
node, it is not effected by outside influences.

Titan, the Cray XK7 at Oak Ridge National Laboratory,
has 18,688 compute nodes. Each node consists of a 16-core
AMD Interlagos CPU, an NVIDIA GPU and 32GB DRAM.
In addition, there is another 6GB of GDDR DRAM on each
GPU card. Not surprisingly, some applications do not use
all the resources on a compute node.

To start with, during 2014, approximately 50% of the
compute time on Titan was used on applications that did not
use the GPU at all.[7] There may be good reasons for this.
Utilizing the GPU requires changes to the application and it
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is possible the developers have not had the time or funding to
do that. It is also possible that the type of computations the
application performs simply do not lend themselves to GPU-
based acceleration (i.e. not enough exposed parallelism).
Regardless of why, it is clear that not all applications are
benefiting from the GPU.

Secondly, the Interlagos has eight Bulldozer units, each of
which has two full integer units and a shared floating-point
unit. Some users with floating-point intensive applications
run jobs using only eight processes per node (one process
per Bulldozer) to avoid oversubscribing the floating-point
units. This actually leaves eight integer cores available so
long as they primarily execute integer instructions.

The unused GPU memory and integer cores can be used
to implement a write-back cache without taking resources
away from the main application. This paper demonstrates
a technique for providing such a cache to applications.
Runs were made on Titan using a synthetic benchmark to
demonstrate performance both without such a cache and with
a cache that utilizes DRAM on the GPU card. The results
show definite performance benefits.

II. DESIGN AND IMPLEMENTATION
A. Overview

To test this idea, the authors created a synthetic bench-
mark application that consists of two executables: the main
application which uses MPI and simulates the I/O patterns
of a typical HPC application and a daemon process that is
started on each compute node. The daemon has two tasks:
manage the GPU memory and copy data from GPU memory
out to a file. Note that the daemon does not copy the data into
the GPU memory; that is handled by the individual ranks of
the main application. There needs to be exactly one daemon
process on each compute node regardless of how many MPI
ranks are running on each node.!

With the daemon process running on each node, the
application begins its main execution. In this case, since
it is just a synthetic I/O benchmark, it performs no actual
computation; it simply writes a specified amount of data and

IDue to the limitations of aprun, starting this daemon is somewhat
involved. See section II-C.
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Figure 2. Draining data from GPU memory

then sleeps for a specified amount of time. For these tests,
the sleep time was deliberately calculated to allow enough
time for the data in GPU memory to drain.

B. Communication Between the Application and Daemon

The main application and daemon coordinate with each
other using short messages provided by the Common Com-
munication Interface (CCI).[4] Bulk data is copied to and
from GPU memory using cudaMemcpy ().

Writing data from the application is a seven step process.
When it is time to write, the application sends a short
message to the daemon using CCI. This message is a request
to write data, and contains the amount of data and the

starting offset into the output file.? (Figure la)

When the daemon receives this message, it will attempt to
allocate memory on the GPU. Assuming the allocation suc-
ceeds, the daemon will use cudaIpcGetMemhandle ()
to create a memory handle for the allocation. (Figure 1b)

The daemon will then reply to the application with the
size of memory that was actually allocated and the memory
handle that the application can use to access the GPU
memory. Note that the size value may be less than what
the application asked for. (Figure 1c)

Upon receiving the reply, the application opens the mem-
ory handle and converts it back to a standard pointer. The
application then uses cudaMemcpy () to copy the specified
amount of data up to the GPU memory. (Figure 1d)

When the copy has completed, the application closes the
memory handle and sends a message back to the daemon
saying that this particular write has completed. (Figure le)
If the application has more data to write, it can repeat the
previous steps, or else it can continue with its calculations.

Note that at this point the data has not made it out to the
filesystem yet; it is just sitting in GPU memory.

The daemon maintains a pair of lists. One list is the blocks
of GPU memory that have been assigned to the ranks of
the main application, and which the ranks are presumably
copying data into. The second list is for all the blocks of
memory for which the ‘write complete’ message (step e)
has been received. When the daemon thread that handles
CCI messages receives a ‘write done’ message for a block,
it moves that block from the first list to the second list. It
then notifies the background write thread(s) that the block
is now ready to be written to the filesystem.

The daemon maintains one or more background threads
that are responsible for copying data out of GPU memory
into normal system memory and then writing that data to the
filesystem. These threads allow the writes to the filesystem
to happen asynchronously while the main thread handles all
the CCI messages. Since it is impossible to write directly
from GPU memory to the filesystem, each thread will copy
a block of data from GPU memory into a buffer in main
memory. (Figure 2f) It will then write the data to the output
file at the location specified in the original request message.
(Figure 2g) Once data has been written to the filesystem, the
write thread frees the GPU memory so that it can be used
in another request.

Note that each write thread in the daemon has its own
buffer in system memory. Each of these buffers is delib-
erately kept fairly small, 16MB in this test, in order to
conserve resources. Testing done on Titan shows that 16MB
block sizes are large enough for cudaMemcpy () to give
good performance.[1] Larger buffers would simply use up

2For this benchmark, the daemon names output files based on the MPI
rank of the requestor. For production code, something more flexible will
obviously be needed.



Titan host to device bandwidth

7000
—Pageable
6000 .
~#-Pinned
5000
4000

3000

2000

Bandwidth(MegaBytes/second)

1000

0

S S SN S R A R A A S S R AL Y R AN
N @ A0 0 Y QT PP % O P A7 & NTAM S A 2D 0 AV 2 NV
RN i R A S R AR R R T R
A EE TS T OSSP g

N W O LA P A N

’»"3%,;‘),‘370;5

Transfer size(Bytes)

Figure 3. Bandwidth between system memory and GPU memory as a
function of write size[1]

memory without improving performance noticeably. (See
Figure 3.%)

Also note that the daemon limits the amount of memory
allocated to any single request to 16MB. This was done
to provide some limited load-balancing. If an application
wants to write 512MB, it will therefore have to make 32
separate requests. If other ranks on the node are trying to
write at the same time, their requests will all be interleaved
and hopefully no rank will be starved out.

C. Cray-Specific Details

There are a few peculiarities of the Cray environment that
need to be taken in to account in order for this software to
work properly. The first peculiarity has to do with limiting
access to the GPU and associated hardware. The CUDA
runtime can be configured to limit access to the GPU to a
single thread, to multiple threads from a single process, or
to multiple threads from multiple processes. On Titan, if no
special options are given to qsub, the CUDA runtime will
be configured for a single thread. Since software described
in this paper requires access to the GPU from multiple pro-
cesses, users must switch to the appropriate compute mode.
This is done by passing the flag “-1 feature=gpudefault” to
gsub.*

The second peculiarity has to do with actually starting the
daemon process. Normally, executables are started on the
compute nodes by aprun, Cray’s replacement for mpirun.

3Figure 3 differentiates between ‘pinned’ memory and ‘pageable’
memory. Pageable memory is allocated using regular malloc () or
new calls. Pinned memory is allocated using cudaMallocHost () or
cudaHostAlloc ().[2] This work uses pinned memory exclusively.

41t may seem strange to have to explicitly switch to a mode called
‘gpudefault’. The naming scheme comes from the CUDA documentation.
On a standard CUDA install, the GPU would in fact default to allowing
access from multiple processes. Titan is configured differently, however.
Thus the need to explicitly tell qsub to switch the GPUs to the ‘default’
mode.

By default, aprun is designed to start a single executable in
single-program-multiple-data (SPMD) mode, not to start two
different executables. Aprun does support multiple-program-
multiple-data (MPMD) mode, but it will not start two differ-
ent executables on the same node (i.e. each program executes
on non-overlapping subsets of nodes). The solution is to have
one rank on each node call fork () and then execve ().
Since MPI purposely hides the compute topology from the
application, deciding exactly which ranks call fork() takes a
little more work. Specifically, all ranks will attempt to open
a file using the O_CREAT and O_EXCL flags. The name of
the file is taken from the compute node’s host name. This
combination of flags and filename ensures that exactly one
rank on each node successfully opens the file. The ranks that
succeed will then start the daemon processes.

ITI. ANALYSIS
A. Experiment Setup

In order to evaluate this software, the authors ran two
series of tests: one that ran the application with 8 ranks per
node and another that ran with 16 ranks per node. Each series
included tests of the daemon using 1, 2, and 4 background
write threads. Both series also tested the write performance
just using standard write () calls in order to get some
baseline data for comparison.

For the first test series, the application was configured for
8 ranks per node. As mentioned in the introduction, ‘real’
applications will often run on Titan using only 8 ranks per
node because the AMD processor in the compute nodes only
has 8 floating point units. From the authors’ perspective,
this has the advantage of leaving 8 integer-only cores to
run the daemon in multi-threaded mode. For this test series,
aprun was configured to pin the application ranks to the
even numbered cores and the daemon was configured to
pin its threads to odd numbered cores. Furthermore, the
daemon thread that processed the CCI messages was run in
a mode where it continuously polled for new messages. This
provided the lowest possible latency for message handling,
but at the cost of effectively consuming one core.

For the second test series, the application was configured
for 16 ranks per node. The daemon was again run with 1,
2, and 4 write threads. For this series, the daemon thread
that handled the CCI messages was run in a mode where it
would block waiting on a message. This added some latency
to the message processing, but left that core free to perform
useful work when there were no messages to process. Also
for this series, no core pinning was used on the daemon.’

For both test series, the daemon was configured to write
each rank’s data to a separate file and the test measured the

5In practical terms, a user would probably not want to use multiple write
threads on the daemon if his/her application was running 16 ranks/node
since it would oversubscribe the cores. The authors tested the daemon with
2 and 4 threads partially out of curiosity and also to keep the two test series
as similar to each other as possible.
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Figure 4. Average per-rank write bandwidth using standard write ()
calls. 8 ranks per node. No GPU memory cache.

application’s perceived write performance as the write size
increased. Note the word ‘perceived’. What was actually
measured was how long it took for each rank of the
application to copy its data into GPU memory. The GPU
cards in each of Titan’s compute nodes have 6GB of RAM,
though in practice only a little over 5GB is actually available
to the user. This means that for the first test series, with 8
ranks per node, write sizes of up to 512 MB were small
enough for all ranks’ writes to fit into GPU memory. For
the second test series, using 16 ranks per node, write sizes
up to 256MB would fit. For both test series, once the write
size exceeded the available GPU memory, the ranks would
have to wait until the daemon was able to drain data out of
GPU memory and into the filesystem page cache or over the
network.

B. Results

Figure 4 shows the results of a baseline test. The colored
bars show the average throughput for 128 nodes and the
error bars display the minimum and maximum values. In
this test, the application wrote to the filesystem with standard
write () calls and the GPU memory was not used at all.®
The results provide some baseline numbers that can be used
for comparison with the tests using GPU memory.

Note the sharp drop in performance between 256MB and
512MB. On Titan, the Lustre client is configured to allow
a maximum of 64MB per OST and to default to using 4
OSTs per file. Given the number of OSTs available, it is
statistically likely that no two output files in this test used
the same OSTSs. In short, write sizes of 256MB or less were
cached in system memory using the existing Lustre client
cache and the performance of the 512MB, 1GB and 2GB
sizes is dominated by the performance of the filesystem. In

6The daemon process was not even started for this test.
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Figure 5. Average per-rank write bandwidth. 8 ranks per node.

order for this work to be useful, it must obviously improve
on that.

Figure 5 shows the remaining results of the first test
series. As stated earlier, this series was run with 8 ranks
per node and with 1, 2, and 4 write threads in the daemon.
Each column is the mean of 64 nodes’ perceived per-
process throughput. The graph shows a number of interesting
features. The first and most obvious, is that multiple write
threads decrease performance. Exactly why this is so is
unclear, but it appears that having multiple threads read from
GPU memory interfered with the individual ranks’ ability to
copy data into GPU memory.

Concentrating on the single thread performance, it is clear
that the application benefits from using GPU memory out
to the 512MB write size. This makes sense since eight
ranks each writing 512MB is a total of 4GB and that
will fit into the available GPU memory. Even at 1GB, the
application sees somewhat improved performance because
there is enough GPU memory to hold significant fraction
of the data to be written. It is not until the 2GB write size
that the write performance is dominated by the filesystem’s
throughput.

Also obvious from the graph is the fact that small write
sizes are not particularly efficient. For write sizes less than
4MB, copying data to GPU memory is slower than writing
to the Lustre cache. This is not surprising given the results
shown in Figure 3.

Figures 6 and 7 show the results for the second series of
tests. As noted above, this series used 16 ranks per node,
plus the daemon’s threads. This meant, of course, that the
cores were oversubscribed. Notice that Figure 6 has the same
basic shape as Figure 4. The only significant difference is
that the reported speeds shown in Figure 6 are approximately
half those shown in Figure 4. This is expected, since there
are twice as many ranks writing. Again, the baseline test
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Figure 7. Average per-rank write bandwidth. 16 ranks per node.

uses 128 nodes while each of the daemon with 1, 2, and 4
write threads present the mean of 64 nodes each.

Figure 7 shows that again, the per-rank bandwidth is about
half that shown in Figure 5 because there are twice as many
ranks. It is also clear that the application ranks see good
write performance up to the 256MB write size, which is the
largest size that will entirely fit into GPU memory. It is also
clear that, as in the first test series, writes must be at least
4MB in order to get reasonable performance copying the
data into GPU memory.

Looking at figure 7, note the drop in performance between
16MB and 32MB and the slight downward trend from 32MB
to 256MB. This pattern also appears in Figure 5, but is much
more obvious in Figure 7. The authors hypothesize that this
is related to the response time of the daemon. As mentioned
earlier, the daemon allocates GPU memory in blocks of

up to 16MB. Thus, if one of the ranks wants to write
more than 16GB, it will need to go through more than one
request/response message cycle. However, the daemon only
has a single thread to handle these messages. When multiple
ranks are sending message, they will necessarily have to wait
while the daemon services any previous messages and this
slows their overall performance. This is more noticeable in
Figure 7 because there are more ranks making requests. In
short, it appears that improving the response time of the
message handling thread would be beneficial.

IV. CONCLUSION

For the first test series (8 ranks/node), the results show
a clear performance improvement compared to writing di-
rectly to the filesystem. More data can be cached in GPU
memory than in the Lustre client-side cache and the average
write speed is, surprisingly, slightly higher. It is, however,
necessary to use relatively large writes. Comparing Figure 4
and Figure 5, it can be seen that write sizes must be at least
4MB before transfers to GPU memory outperform writes to
the Lustre cache.

Note that these tests were run with file striping left at its
default value of 4. In theory, writes to the filesystem could
be improved by increasing the number stripes for each file,
but that requires more system memory, which necessarily
leaves less for the application.

The results for the second test series (16 ranks/node) are
less clear. As with the first test series, write sizes need to
be at least 4MB Looking closely at Figure 6 and Figure 7,
it appears that write sizes that can fit into GPU memory
perform slightly better than just writing to disk. However,
write sizes that exceed the capacity of the GPUs memory are
actually a little slower than writing straight to the filesystem.

There are several other complications to consider, though.
First, Since the test application did no actual computation,
there were plenty of cores available for the daemon to
execute on. In a real HPC application, this would not be
the case and the application’s performance would almost
certainly be negatively affected by the context switches. On
the other hand, an application that is running 16 ranks/node
is unlikely to leave much system memory free for use by the
Lustre client-side cache. So, the improvement from caching
writes in GPU memory might offset the disruption caused
by oversubscribing the cores. Whether or not this technique
provides a net performance improvement in such a config-
uration will probably depend on the particular application.

An interesting compromise might be to have the appli-
cation run 15 ranks/node instead of 16. That will leave
1 core available for the daemon. Both threads could be
pinned to that core, with the message processing thread
given higher priority. It would also be possible to use the
core specialization option to aprun to schedule OS tasks on
that core. Compared to an application running lots of MPI
collectives, the daemon is not particularly sensitive to short



interrupts like that. This configuration has not been tested
and the authors are unaware of any application that routinely
runs with 15 ranks/node.

In general, the results show that using the GPU memory
to cache filesystem writes provides approximately the same
performance as the Lustre client-side cache. The difference
is that the Lustre cache uses system memory which may
not actually be available. Even if it is, the user must ensure
that writes are spread across a sufficient number of OSTs
to make use of it. Neither of these conditions apply when
using GPU memory as a cache.

V. FUTURE WORK

The authors work in a group that is not dedicated to
pure research; part of the group’s mandate is to deploy
useful software in the production environment. As such,
the most important piece of future work is to convert this
demonstration code into a package that can actually be used
by other applications running on Titan. In the introduction,
the authors noted that one of the reasons some applications
have not been converted to use the GPU for calculations is
that the scientific applications’ developers have not had time
and/or funding. With that in mind, it is impractical to expect
those same developers to make major changes in order to
use this code.

The authors are considering a number of methods of pack-
aging this code to make it easy for application developers
to integrate into their own applications. One possibility is
to intercept certain POSIX function calls, such as open ()
and write (), among others. While somewhat tricky to
implement, this technique has been used with good success
by the Mercury Posix project.[6] A second possibility is
to modify one or more I/O libraries that are popular with
applications, such as the NetCDF library, to make use of
this code. This has the advantage of requiring zero code
changes by the application developers. Properly maintaining
the modified I/O libraries could be a real problem, though. A
final possibility is to integrate this code into the Functional
Partitioning project that the authors and their colleagues are
working on.[5] Obviously, the authors could choose more
than one of these alternatives.

Besides deploying this code in a production environment,
there are a few features the authors would like to add.
The simplest is to add a user-controlled option to limit the
amount of GPU memory the daemon will try to allocate. As
currently written, the daemon will allocate all the memory
it can. That could cause problems if the application wants
to use the GPU for calculations. By allowing the user to
set a hard limit on the amount of memory the daemon will
use, it becomes possible for this software to coexist with
applications that use the GPU for calculations.

Another feature the authors would like to add is the ability
to use regular system RAM in addition to the GPU RAM.
It is well known that some applications do not use all the

RAM on the compute node. It is debatable whether letting
the daemon use the memory is better than simply letting the
operating system use it as Lustre client cache or OS page
cache. However, as was discussed in Section III and Section
IV, the Lustre client-side cache has fairly low limits on the
amount of dirty pages it will allow. (The Linux kernel page
cache has similar low limits on dirty pages.) Some very basic
initial testing implies that allowing the daemon to allocate
memory may be more useful than letting the OS use the
same memory for page cache, but further testing is required
to be certain.

Lastly, the next big supercomputer at ORNL has already
been announced. While some details have yet to be finalized,
one thing that has been decided is that each node will have
approximately 800GB of nonvolatile memory (NVM).[3]
Exactly how applications will use this NVM memory is
the subject of much research and debate. With only minor
changes, this software could write to the NVM instead of
(or in addition to) the GPU memory. Assuming the ease-
of-use goals mentioned above are met, the authors feel this
would allow application developers to quickly modify their
applications to use the NVM as a large burst-buffer, even
as those developers look for other, more effective ways to
make use of the hardware.
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