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Abstract—The unprecedented computational power of cur-
rent supercomputers now makes possible the exploration of
complex problems in many scientific fields, from genomic
analysis to computational fluid dynamics. Modern machines
are powerful because they are massive: they assemble millions
of cores and a huge quantity of disks, cards, routers, and other
components. But it is precisely the size of these machines that
glooms the future of supercomputing. A system that comprises
many components has a high chance to fail, and fail often. In
order to make the next generation of supercomputers usable, it
is imperative to use some type of fault tolerance platform to run
applications on large machines. Most fault tolerance strategies
can be optimized for the peculiarities of each system and boost
efficacy by keeping the system productive. In this paper, we
aim to understand how failure characterization can improve
resilience in several layers of the software stack: applications,
runtime systems, and job schedulers. We examine the Titan
supercomputer, one of the fastest systems in the world. We
analyze a full year of Titan in production and distill the
failure patterns of the machine. By looking into Titan’s log
files and using the criteria of experts, we provide a detailed
description of the types of failures. In addition, we inspect
the job submission files and describe how the system is used.
Using those two sources, we cross correlate failures in the
machine to executing jobs and provide a picture of how failures
affect the user experience. We believe such characterization is
fundamental in developing appropriate fault tolerance solutions
for Cray systems similar to Titan.
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I. INTRODUCTION

The type of scientific and engineering simulations possible
today is the result of a relentless increase in the computa-
tional power of supercomputers. The last decade brought
major breakthroughs in the history of high performance
computing; we now live in the era of petascale hybrid
supercomputers. This type of system is characterized by

a large amount of components all assembled together in a
single complex system. Understanding the interaction of all
the components in the system is fundamental to both today’s
complex systems as well as the design of the next generation
of exascale machines. In particular, having a profile of
failures and a set of principles to build resilient systems are
key insights to bringing about a useful exascale system [1].
The first step towards that goal must be studying current
leadership-class systems and describing the patterns of both
their usage and their failures. Otherwise, fault-tolerance
will remain one of the major challenges of extreme-scale
computing [2], [3], [4]

In this paper, we investigate the interplay of workload
and failures in the Titan supercomputer during 2014. We
look at the job scheduler log and describe the workload of
the machine during that year. For the same period of time,
we look into the failure database constructed by the system
administrators. We build a profile of the failures and separate
them into the two overarching categories of software and
hardware. We then investigate two workload topics: how
does job submission frequency correlate with failure rate,
and, more importantly, how do failures impact the workload
of the supercomputer.
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This paper makes the following contributions:
• A characterization of the workload on Titan, a

leadership-class supercomputer, for an entire year. We
present several descriptors that can be used to model a
workload for extreme-scale machines (§ III).

• A profile of failures in Titan during the same period.
We highlight the most relevant patterns and show
the mean-time-between-failures follows an exponential
distribution (§ IV).

• A quantitative analysis of the impact of failures on the
workload of Titan (§ V).

• A series of recommendations for understanding the
interplay between failures and the workload on large
supercomputers (§ VI).

II. BACKGROUND

A. System Description

Titan is a Cray XK7 supercomputer located at the Oak
Ridge Leadership Computing Facility (OLCF). It has a
performance of 17.59 petaFLOPS according to the Top500
list [5]. Titan was one of the earliest major supercomputing
systems to use a hybrid architecture of CPUs and GPUs.
Each node has an AMD 16-core Opteron CPU and an
NVIDIA Tesla K20 GPU. There are 18,688 nodes in total
for a combined 299,008 Opteron cores. Each node has a
total of 32 GB of main memory. Titan features a 3D-torus
Gemini interconnect.

Titan uses the MOAB job scheduling and management
system. Therefore, every single event related to the workload
is recorded by the system. There is a MOAB log file for
every day of activity on Titan. The format of a MOAB log
file [6] contains a thorough description of each job event.
Every time a job is submitted, cancelled, ended, or modified
in any way, MOAB records the relevant information. For
instance, there is a timestamp associated with every entry.
Also recorded are the number of requested nodes, the
amount of requested wallclock time, the submit time, and
the start and finish time.

Titan is a leadership-class supercomputer, which means
the type of applications that run on the system must scale
as much as the code permits it, while using the hybrid
nature of the architecture. Therefore, there are scheduling
policies in place that encourage large job submissions and
at the same time enforce a fair share access to the system.
This is accomplished by establishing a batch queue with
several queue classes or bins; each queue bin has its own
size properties and wall clock constraints. Table I presents a
list of the features in each bin. In particular, bin 5 represents
small jobs that are meant for testing and debugging code.

In addition to the scheduling system, there is a monitoring
system that keeps track of all Titan failure incidents. All
failure incidents are captured in a failure database [7].
This database is automatically constructed by a program

Queue Min Nodes Max Nodes Wallclock Limit (hours)
Bin 5 1 125 2
Bin 4 126 312 6
Bin 3 313 3749 12
Bin 2 3750 11,249 24
Bin 1 11,250 18,688 24

Table I: Quality of Service Bins on Titan

designed by the system administrators. The program uses
SEC (Simple Event Correlator) to enforce correlation rules
that insert records in the database after examining multiple
anomalous outputs in the system. Each entry in the fail-
ure database represents an event that can be tracked to a
particular component in the machine and that is associated
to a job identifier. These events may be related if the root
cause of a failure has repercussions on other parts of the
system. For example, a hardware malfunction may trigger
an event on a monitor program as well as a failure in a
user code running on that hardware. The severity of the
different events in the failure database varies from warnings
to catastrophic incidents. The job scheduler in Titan runs
jobs with the assumption that any failure will be fatal for
the job. Hence, a failure on the hardware assigned to a job
will immediately finish the job execution, regardless of the
state of the rest of components assigned to the job.

B. Related Work

Joubert and Su [8] presented a study on the application
workload of Titan’s predecessor at Oak Ridge National Lab-
oratory, namely the Jaguar supercomputer. They analyzed
MOAB and ALPS job logs and identified usage patterns of
the machine according to different science domains. They
listed the most heavily used applications along with their
execution characteristics. Although their study focused on
the distribution of the workload according to the specific
domain of the application, they presented the correlation
between general features of the jobs submitted. In particular,
they found there is no strong correlation between job size
and job execution time. Also, they reported a fraction of less
than 15% of the total utilization of the system was due to
jobs that executed longer than 12 hours. In this paper, we do
not provide a breakdown of the workload according to the
science domain of the jobs. Instead, we focus on providing
a deeper characterization of the workload itself, the failures
during the same period of time and the interaction between
the two.

Schroeder and Gibson [9] studied 20 different systems
at LANL. They have discovered that failure rates depend
mostly on system size rather than hardware work. According
to their analysis, there is a strong correlation between the
number of failures and system workload. They further found
that the time between failures of LANL machines is not
modeled very well by an exponential distribution which is
different from our findings.



Zheng et al. [10] did a co-analysis of RAS logs and job
logs on the BlueGene/P system. They found that jobs that
request large node-counts can significantly affect the failure
rate. On the other hand, job duration produces a minimal
impact upon failure rate.

Heien et al. [11] analyzed 5 years of system log from a
production cluster. They found that Weibull and log-normal
distributions fit the failure intereval times very well and 91%
of the failures only affect one node at a time.

III. WORKLOAD CHARACTERIZATION

We built an analysis framework to understand the work-
load on the Titan supercomputer. The framework consists of
multiple scripts that traverse the MOAB logs and distill the
fundamental features of jobs that were executed during the
2014 calendar year. The scripts work in two stages. In the
first stage, the scripts read every record in each of the MOAB
log files and create a record per job. The collection of all job
records forms a job database. In the second stage, the scripts
sweep the job database and generate different statistics about
the workload. In the database, each job’s main features
are recorded including job identification, submission date,
number of requested nodes, amount of requested time, wait
time, and execution time.

The analysis framework recorded a total of 375, 387 job
submissions on Titan during 2014. Out of those job submis-
sions, a total of 324, 585 (86.5%) reached the head of the
queue and were scheduled for execution. The remaining job
submissions were presumably cancelled either by the user
or the system. However, some of the jobs that did run were
not included in our job database because the MOAB logs
were missing both the dispatch and the start time. We call
those incomplete jobs and they add up to 4657. Therefore,
after removing incomplete jobs and other inconsistent cases,
the job database contains a total of 319, 885 jobs. Those
jobs combine for a total of 141, 500, 811 node service units
during 2014. In this paper, we define a node service unit
as the use of a node on Titan for one hour. Our definition
does not correspond with the actual charging factor on Titan
(where one hour of allocation on one node represents 30
service units), but simplifies the presentation of the results.

The analysis of submitted jobs presents several salient
features with respect to the usage of the system. Figure 1
shows the distributions according to different time scales.
The hour distribution (Figure 1a) shows how the system
is utilized more heavily during the workday hours, from
9:00am to 6:00pm, with a peak at 2:00pm. According to
Figure 1b, weekdays are approximately twice as busy for
Titan compared to the weekend. The day with the highest
number of job submissions is Monday. The usage of the
system was more uniform when the month of the year is
considered (Figure 1c), with a notable exception in February
when the system saw relatively few job submissions. The
reason behind the small amount of submissions during

Queue Jobs Percentage(%) Node SUs Percentage(%)
Bin 5 249,836 78.10 3,636,570 2.57
Bin 4 40,569 12.68 10,570,110 7.47
Bin 3 23,833 7.45 38,290,120 27.06
Bin 2 4861 1.52 65,911,080 46.58
Bin 1 769 0.24 23,092,930 16.32

Table II: Queue Statistics on Titan

February relates to annual allocations: February is the month
that Titan’s yearly allocation cycle turns over.

The analysis of the set of complete jobs displays the
fundamental features of the workload. Figure 2 offers a wide
spectrum of descriptors aimed at characterizing the way in
which Titan was used in 2014. The first feature we address is
the distribution of jobs according to their size in number of
requested nodes. Figure 2a presents the cumulative fraction
of number of jobs when the number of requested nodes
varies from 1 to 18, 688 (the total number of nodes in Titan).
The distribution shows how prevalent small jobs (using less
than 126 nodes) are in the overall workload. However, small
jobs account for an insignificant fraction of the total usage of
Titan. Figure 2b offers the cumulative share of node service
units executed by the jobs as the number of requested nodes
changes. More specifically, small jobs represent 78.10% of
all the complete jobs, but they only represent 2.57% of the
total number of node service units used on Titan. A detailed
description of the use of the different buckets for the quality
of service in the batch queue is shown in Table II. The
category with the highest utilization of Titan are the jobs
requesting between 3750 and 11, 249 nodes. Since the small
jobs do not represent a significant fraction of the utilization
of Titan, we excluded them in the rest of the workload
analysis.

The features of all non-small jobs are depicted in Fig-
ures 2c through 2g. The number of jobs according to
the number of requested nodes in Figure 2c shows the
skewed distribution discussed above. There are a few popular
quantities in the plot. The requested wall clock time in
Figure 2d shows less diversity as users tend to request time
in coarser units. Figure 2e shows that 87% of the jobs wait
no more than 24 hours in the queue. There are a group of
no more than 10 jobs that waited weeks in the queue before
execution-start. The execution time distribution in Figure 2f
shows two groups, one that takes up to 720 minutes (upper
bound on Titan if the number of requested nodes do not
exceed 3750), and the other that may run up to 1440 minutes
(hard limit on Titan for any job). The last distribution in
Figure 2g presents the number of node service units used.
The highest number of node SUs consumed by any job was
approximately 392, 000.

Figures 2h through 2l offer a view on the combination
of different dimensions. In general, it is not clear from the
data that any two variables are correlated. Figure 2h presents
the amount of requested wall clock time versus number of
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Figure 1: Distribution of Job Submissions during 2014
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Figure 3: Failure Propagation

requested nodes. There is no clear trend in the data and jobs
appear spread out across the space. The wait time associated
to the number of requested nodes is shown in Figure 2i,
again without indicating that more nodes would be harder
(or easier) to obtain. In fact, the data reflects the actual
complexity of scheduling policies in current supercomputers
where the priority of a job depends on multiple variables;
as such, it is hard to predict the wait time based on the
sole number of requested nodes. Figure 2j also yields the
same scattered data pattern, as do Figures 2k and 2l. To
verify the visual signals in the figures, we computed the
correlation coefficient between the variables. The results
demonstrated how loosely connected the factors are. For
example, the correlation coefficient of number of requested
nodes versus requested wallclock time is 0.12, while the
correlation coefficient of number of requested nodes versus
wait time is 0.09.

IV. FAILURE CHARACTERIZATION

A failure record in the Titan database includes the identi-
fication of the job affected by the failure, the time when the
failure is reported, the category of the failure (hardware or
software), the cause of the failure (system or user code), the

failure type and the nodes affected by the failure. There are
more than 160, 000 entries in the original failure database
of Titan. The massive amount of failure records is due to
the redundant information in the database. For example, if a
node fails when a job is running, then the node is marked for
repair and it is not assigned to any other job. However, before
proper repair action is taken, the system keeps reporting the
failure of that node.

We first filter out the redundant information in the failure
database. If there are many entries regarding the same type
of failure related to a node during the execution of a certain
job, we only keep one such entry. Sometimes a failure may
affect more than one node. For example, a GPU graphics
engine fault may bring down other components running the
same job or a voltage fault may bring down all the 4 nodes
on the same blade. As a result, in our analysis if multiple
nodes encounter the same kind of failure in a 60 second
duration, we count them as one failure.

Next, we find the root cause of each failure and only keep
that entry. For example, a hardware GPU DPR (dynamic
page retirement) failure may be followed by a software GPU
Xid error on the same node. After confirming with Titan
administrators, we mark such cases as a single failure and
attribute it to the root cause. Thus we only keep the entry of
hardware failure in this case. Figure 3 shows the instances
of failure propagation we have observed. The number on
an edge indicates the amount of instances that show a
connection between the two failures. The number under a
failure node indicates the number of instances where that
failure is the root cause. For example, 50 of the GPU Xid
failures, 15 of the GPU DPR (dynamic page retirement)
failures and 2 of the GPU Bus (GPU off the bus) failures
are caused by GPU DBE (double bit error) failures. In 50
cases, GPU DBE failure is the root cause. This is because
when GPU DBE leads to the failures of GPU DPR and GPU
Bus, GPU Xid failures also come along. Voltage Fault may
also have different subsequences, such as Module Failed,
SXM Power Off and HT Lockup. Please note that HT Lockup
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Figure 2: Workload Characteristics on Titan during 2014
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Figure 4: Distribution of Failures during 2014
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Figure 5: Failure Pattern on Titan during 2014

and Kernel panic failures are almost always caused by other
failures, thus we exclude them in our later discussion.

Finally, in our study we do not consider failures of cer-
tain types. According to Titan administrators, heartbeat
fault failures are mostly false positive alarms since a
network congestion may cause nodes not to respond to the
heartbeat within the time limit. Hence all the heartbeat
fault failures are filtered out. We also filter out all the user
code related failures such as out of memory failures.
There are 3884 user failures in total. Among them, 2615
are out of memory failures and 1269 are GPU memory
page fault failures that are caused by the user code.

Table III shows the break down for hardware failures
after our filtering process. There are 317 hardware failures
in total. GPU DBE is a GPU double bit error. GPU DPR
refers to GPU dynamic page retirement (the NVIDIA driver
will retire a page after it has experienced a single double
bit error or two single bit errors). GPU Bus indicates that
the GPU has fallen off the bus. SXM related failures happen
when there are GPU problems. Voltage fault and Module
failed are blade level failures. When such failures happen,
it usually brings down all 4 nodes on the same blade at a
time. As shown in Table III, this type of breakdown results

Failure Category Failure Type Count Percentage

GPU

GPU DBE 51 16.1%
GPU DPR 66 20.8%
GPU Bus 11 3.5%
SXM power off 14 4.4%
SXM warm temp 2 0.6%

Processor Machine check exception 31 9.8%
Bank 0,2,6

Memory Machine check exception 120 37.9%
Bank 4, MCE

Blade Voltage fault 12 3.8%
Module failed 10 3.1%

Table III: Hardware-rooted Failures

in 45.4% GPU related hardware failures, 9.8% processor
related failures, 37.9% memory related failures and 6.9%
blade-level related failures.

Failure Category Failure Type Count Percentage
GPU GPU Xid 267 98.9%
Lustre (reported client-side only) LBUG 3 1.1%

Table IV: Software-rooted Failures

Table IV shows the break down for software failures. Note
that in the failure logs we obtain, only a portion of Lustre



software failures are reported (i.e., only client side Lustre
failures are included). Thus there was likely more Lustre
software failures on the server side which were not included
in the data we analyzed and are therefore not in the scope
of this paper. As can be seen from Table IV, GPU related
software failures constitute 98.9% of all the software failures
reported and there are only 3 Lustre client side software
failures out of 270 software failures. We must emphasize that
not all file-system software errors are reported to the failure
database. Therefore, this proportion may not represent the
actual distribution of software failures on Titan. It does,
however, show that GPU-related errors are significant in
the system. According to [12], GPU Xid indicates a general
GPU error; it can be indicative of a hardware problem, an
NVIDIA software problem or a user application problem. In
our filtering process, when there is a GPU Xid failure along
with a hardware failure reported on the same node around the
same time, we only keep the entry of the hardware failure.
So the causes of the GPU Xid failures shown in Table IV
should be either software or user problems if our process
has successfully captured all relevant hardware problems and
recorded them accordingly.

Figure 4a shows the number of failures by the hour of
the day. As shown in Figure 4a, there is no clear correlation
between hardware failures and time of day. However, there
are more software failures in the daytime compared to at
night; this suggests that user behavior plays an important
role in software failures. In fact, the pattern in Figure 4a
matches the distribution in Figure 1a.

Figure 4b shows the number of failures by day of the
week. As shown in Figure 4b, the peak failure rate during the
weekdays is twice as high as the failure rate on weekends.
Again, the workload is heavier during weekdays as shown
in Figure 1b.

Figure 4c shows the number of failures in each month of
the year 2014. According to Figure 4c, there is no correlation
between the number of hardware failures and the month of
a year. However, a peak in software failures was recorded in
March. A possible explanation is that there was an increase
of GPU workload in March.

Figure 5a shows the number of nodes affected by one
failure. According to Figure 5a, more than 93.7% of all
hardware failures only affect one node. Out of 317 hardware
failures in 2014, 9 failures affected 4 nodes. All of these 9
failure instances are blade-level failures (blade-level failures
usually bring down all 4 nodes on the same blade). As for
the 270 software failures, 163 failures (60.4%) are single
node failures. 29.6% of software failures affect more than 4
nodes.

Figure 5b shows the number of hardware failures in each
cabinet. Unlike the previous analysis, if there are multiple
nodes affected by the same failure, we count the occurrence
on each node as one failure to study the spatial correlation.
As can be seen in Figure 5a, cabinet 3, 14 and 15 had the

most hardware failures. After a detailed look into the failure
logs, we found that module failed type failures brought
down the entire cabinet at different times for cabinets 3, 14
and 15 . On closer examination, the Titan maintenance log
points out that there was an LNET fallout due to a 2-cabinet
warm swap and other reasons immediately after cabinet 14
and 15 went down.

We have tried to find the best distribution to describe mean
time between hardware failures (MTBF) in Figure 5c. Both
exponential distribution and Weibull distribution with shape
parameter 0.82 fit the MTBF of Titan very well. The R-
squared value for the goodness of exponential distribution is
0.91 while that value for Weibull distribution is 0.93. Using
those distributions as a model for Titan’s failures, the MTBF
of the system is 28.63 and 27.63 hours, respectively, for the
exponential and Weibull distribution.

V. IMPACT OF FAILURES ON WORKLOAD

To understand the effect of failures on the workload of
Titan, we cross-correlated the failure information with the
MOAB logs and produced a profile of the impact of failure
on the different dimensions of the workload. Our method-
ology first separates the failures according to their cause,
user or system. This division corresponds to the markedly
different profiles of both types. A separation between the
two causes allows us to better understand the impact of
each cause. In either case, the filtered failures correspond
to unique-job incidents. We use the job identifier to look for
the features corresponding to the failed job.

The filtered database of user failures contains 3859 en-
tries. There are only 10 failures for which the job informa-
tion was not possible to find with our program. The other
99.74% of the failures correspond to jobs with full records
in the MOAB logs. The results show that an overwhelming
majority of the jobs that failed in the user category are small
and short submissions. In fact, 71.4% of the failed jobs
are small jobs (requesting at most 125 nodes). In addition,
85.5% of the failed user category jobs requested less than
2 hours of wall clock time. These two statistics lead us to
conclude that user category failures occur mostly during test
submissions. The total impact of user failures on the number
of node services units is 2187.

There are 564 failures in the filtered database for the
system type. Except in the case of 7 anomalous samples,
when these failures include a particular job identifier they
can be associated with entries in the MOAB logs. The
problem with the 7 anomalous samples was incomplete
information. For instance, an anomalous sample results when
a runaway job starts execution but is never reported as
cancelled, or failed, or ended. In such instances, we were
unable to compute all the features of the job. Fortunately, for
98.75% of the filtered failure database, all the information
on the jobs is available.
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Figure 6: Effect of Failures on the Workload of Titan during 2014

The 557 system failures that can be correlated to job
information in the MOAB logs are separated into two
categories: software and hardware. We separate the two
because each has a different profile as we will see below.
We compute the impact of failures on the workload by
counting the total resources allocated to a job. For instance,
if a hardware failure shuts down the power source of one
node allocated to a job running on n nodes, we assume
the failure impacts the whole set of n nodes because the
job must finish execution. With that perspective, the total
number of nodes impacted by software failures is 676, 535,
while hardware failures affected 1, 258, 717 total nodes. In
terms of the execution time, the total execution time of jobs
that crashed because of software reasons adds up to 33, 406
minutes, while their hardware counterpart affected 75, 706
minutes of execution. The total wait time of jobs abruptly
finished by software failures adds up to 267, 495 minutes,
while hardware failures represent 582, 545 minutes in the
queue. Finally, the impact of software failures on the total
number of node service units is 4, 080, 000, while hardware
failures impacted 7, 222, 000 total node service units. The
combined number of node SUs represent 8% of the total
number of node SUs executed on Titan during 2014.

Figure 6 shows a collection of descriptors for the set
of jobs that failed because of a software or hardware
malfunction. Figure 6a presents the cumulative share of

total node service units executed by jobs before a crash
occurs. The data shows that software failures represent 36%
of the total number of affected node SUs, while hardware
failures are responsible for the remaining 64%. The reason
behind that distribution is offered in Figures 6b and 6c. Both
figures show that software failures tend to affect small and
short jobs. That is, jobs requesting few nodes and a short
wall clock time. The net effect of that combination is also
presented in Figure 6d where there are only a few software
errors affecting large jobs. The wait time on jobs affected
by either type of failure is shown in Figure 6e. The data
demonstrates jobs affected by software failures wait less time
than their hardware counterparts. However, jobs affected by
hardware failures are more uniformly distributed in terms of
execution time as presented in Figure 6f.

The fact that software failures tend to be reflected on short
and small jobs seems to suggest the user may be somehow
connected. Usually, small and short jobs are associated
with software testing (programs that attempt to use a new
type of strategy to solve a problem). We theorize such
jobs may stress the system beyond its normal capacity or
inappropriately use a resource, thus ending up in software
failures.



VI. RECOMMENDATIONS

Based on the results in the previous sections, we offer
a series of recommendations to improve the utilization of
extreme-scale systems:

• Incorporate fault-tolerance mechanisms at the user
level. As applications in different fields reach new scal-
ability milestones, failures become a norm rather than
an exception. The results in Section IV demonstrate
that this is already the case in systems as big as Titan.
The user code can not assume the underlying hardware
is failure-free. Rollback-recovery strategies, such as
checkpoint/restart must be considered as an option to
permit applications to make progress in the presence
of failures. The abstraction behind checkpoint/restart is
simple enough to be easily adapted to most programs,
and powerful enough to run across architectures.

• Design fault-tolerance strategies that tolerate a single-
node failure. Figure 5a presents a distribution of the
failures according to the number of nodes it affects.
The majority of the incidents only affect a single node.
Fault-tolerance strategies should be optimized for the
common case and should perhaps sacrifice generality
for performance.

• Enable automatic restart at the runtime system level.
For certain types of failures where the affected com-
ponent can be isolated from the rest of the system,
the job scheduler may be able to avoid terminating
the job execution by letting the runtime system handle
the problem. Smart runtime systems are known to deal
with this scenarios effectively [13]. Such a feature may
prevent the time resubmissions spend in the queue,
as presented in Section V. At the same time, runtime
systems must develop strategies for running malleable
jobs (shrink and expand to use a different number of
nodes) and maintaining progress despite the presence
of failures.

• Maintain separate queues for development and testing.
The results in Section V may suggest many software
failures are caused by the stress imposed on the system
by user codes. Therefore, during testing and debugging,
when failures are more prone, special queues would
confine the impact of failures. In addition, a special
queue for the development of large node-count but short
duration testing jobs may prove useful.

• Simulate extreme-scale workloads and failure rates.
Simulating large-scale systems may provide under-
standing of the interplay between workload and failures
in different environments. This paper contain descrip-
tors of both the way a machine is used and the way
a machine fails. Those values can be plugged into a
simulator to measure how a particular variable may
change the overall utilization of the system.

VII. CONCLUSION AND FUTURE WORK

Failures are a common occurrence in large-scale systems.
Activities which yield understanding of failure phenomena
are essential, especially activities which yield understanding
of how workload and failures interplay. This paper explored
both aspects in Titan, a leadership-class supercomputer.

The results show that the workload of the system may
be behind a significant number of software errors in the
system, even when there is no direct proof the user actually
caused the failure. The effort of running demanding codes
may put the system through excessive stress that inevitably
cause failures. On the other hand, the failures of the system
may heavily impact running jobs, forcing users to resubmit
the failed jobs. Those failures affect approximately 8%
of the total execution units of the system. In the worst
case, those calculations must be repeated. In addition, a
job resubmission must spend time in the queue, potentially
delaying new scientific and engineering discoveries.

We believe future extreme-scale systems must be designed
with careful consideration given to resilience. In particular,
user codes, runtime systems, and job schedulers must be
written with the explicit assumption that the underlying
hardware may fail.
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