Cray DataWarp
Administration & SLURM Integration

Tina Declerck, NERSC
Iwona Sakrejda, NERSC
Dave Henseler, Cray
Background

• Computing is a balancing act
• CPU, memory capacity, memory bandwidth, IO, network bandwidth, network latency
• Things are getting out of balance
Cray DataWarp Intro

• What is it?

Software + Development
Why use it?

• Checkpoint / Restart
Use Cases

• Pre and Post staging of files

DataWarp
Use Cases

• Other use cases
 – Compound jobs
 • Multiple jobs or users access the same data
 – Implicit cache
 • Intermediary storage between RAM and disk
 – Private cache used as swap
 – Private scratch used as a /tmp
 – Stripe across multiple DW nodes
 • Additional space
 • Improved performance
DataWarp Phases

• Phase 0
 – Statically configured as swap or scratch

• Phase 1
 – dynamic allocation and configuration of DataWarp storage to jobs
 – job/application controlled explicit movement of data between DataWarp and PFS storage

• Phase 2
 – movement of data between DataWarp and PFS storage

• Phase 3
 – Ability to run applications on DataWarp server nodes
SSD Considerations

• **Consumable resource**
 – Based on drive (or diskful) writes per day (DWPD) for some specified time frame (usually 5 years).
 – Example:
 • Device size is 400GB
 • Listed as 3 DWPD
 • 5 year life

 \[\text{DWPD} \times \text{Device size} \times \text{life in years} \times \text{days per year} = \text{Data written} \]

 \[3 \times 400 \times 5 \times 365 = 2,190,000 \text{ GB} \]
 can be written to the device
 – Can wear out a device in a relatively short period of time
SSD Considerations

• Wear leveling
 – Balances block usage to ensure even use on an SSD
 • Dynamic - ensures new writes or re-writes are written to new areas on the SSD
SSD Considerations

• Wear leveling
 – Static – same as dynamic + relocates static files occasionally to free those blocks for additional writes
TRIM command

• **Required on both SSD and at OS level**
 – Identifies blocks that can be removed.
 – SSD can’t over-write like a disk
 – Data written in pages but on SSD must be erased in blocks
 • Active data must be written to a different block so the block can be erased.
 – If not used it can affect performance over time
Admin for DataWarp nodes

• In general hardware similar to other hardware
 – No special monitoring needed at node level

• Need to monitor
 – Available life
 – Excessive use
 – Bit error rates

• Query firmware / software levels

• Event logging

• Command line and API
DataWarp Operating Modes

• Understand access request types
 – Job instance
 – Persistent instance

• Two types of use for DataWarp
 – Scratch
 – Cache

• Access in three ways
 – Striped
 – Private
 – Load balanced
WLM Admin Requirements

Why isn’t my job running?

• Query a DataWarp instance – job or persistent
 – Owner, size, duration, parameters, owning job (if applicable), DataWarp nodes

• Diagnostic information
 – Same information as a query but based on a job id
 – Provide status of DataWarp nodes

• Restrict access
 – Limit number or space used by a single user
 – Limit access by a specific user or group
 – Limit access to only a specific user/group etc.
WLM Requirements
Other User Related Items

• Modify existing DataWarp instance
 – Duration
 – Size (if possible)
 – Add/Modify user access
 – Other parameters (TBD)

• Provide DataWarp statistics for each job
 – Bytes in/out per server
WLM Requirements
Maintenance Tasks

• Kill an existing job or persistent DataWarp instance
 – Why?
 • Node is in a bad state and needs to be fixed
 • TheDW instance is no longer in use but is still held
 – Data Considerations
 • Purge
 • Migrate
 • Drain

• Disallow access – system maintenance
Other

• Attempt to wear level across all DataWarp nodes.
 – Keep one from wearing out before the others
SLURM Specific Requirements

• Job Prioritization
 – DataWarp use should be included in the calculation for job prioritization

• Advanced Reservations
 – Allow DataWarp instances to be created in advance and requested by jobs as needed.

• Resource Limits
 – Allow to set resource limits on a per job, per user,
Conclusion

• Cray’s DataWarp will be a useful tool
• We want to ensure we have the data we need to provide support
 – At the hardware level
 – At the job level
Acknowledgments

• Iwona Sakrejda - NERSC
• Dave Henseler – Cray

This work was supported by the Director, Office of Science, Office of Advance Scientific Computing Research of the U.S. Department of Energy under contract No. DEAC02-05CH11231
Thank you!

Questions?