Cray DataWarp Administration & SLURM Integration

Tina Declerck, NERSC Iwona Sakrejda, NERSC Dave Henseler, Cray

Background

- Computing is a balancing act
- CPU, memory capacity, memory bandwidth, IO, network bandwidth, network latency
- Things are getting out of balance

Cray DataWarp Intro

What is it?

Software + Development

Why use it?

Checkpoint / Restart

Use Cases

Pre and Post staging of files

Use Cases

Other use cases

- Compound jobs
 - Multiple jobs or users access the same data
- Implicit cache
 - Intermediary storage between RAM and disk
- Private cache used as swap
- Private scratch used as a /tmp
- Stripe across multiple DW nodes
 - Additional space
 - Improved performance

DataWarp Phases

Phase 0

Statically configured as swap or scratch

Phase 1

- dynamic allocation and configuration of DataWarp storage to jobs
- job/application controlled explicit movement of data between DataWarp and PFS storage

Phase 2

movement of data between DataWarp and PFS storage

Phase 3

Ability to run applications on DataWarp server nodes

SSD Considerations

Consumable resource

- Based on drive (or diskful) writes per day (DWPD) for some specified time frame (usually 5 years).
- Example:
 - Device size is 400GB
 - Listed as 3 DWPD
 - 5 year life

```
DWPD * Device size * life in years * days per year = Data written 3 * 400 * 5 * 365 = 2,190,000 GB can be written to the device
```

Can wear out a device in a relatively short period of time

SSD Considerations

Wear leveling

- Balances block usage to ensure even use on an SSD
 - Dynamic ensures new writes or re-writes are written to new areas on the SSD

SSD Considerations

Wear leveling

 Static – same as dynamic + relocates static files occasionally to free those blocks for additional writes

TRIM command

Required on both SSD and at OS level

- Identifies blocks that can be removed.
- SSD can't over-write like a disk
- Data written in pages but on SSD must be erased in blocks
 - Active data must be written to a different block so the block can be erased.
- If not used it can affect performance over time

Admin for DataWarp nodes

- In general hardware similar to other hardware
 - No special monitoring needed at node level
- Need to monitor
 - Available life
 - Excessive use
 - Bit error rates
- Query firmware / software levels
- Event logging
- Command line and API

DataWarp Operating Modes

- Understand access request types
 - Job instance
 - Persistent instance
- Two types of use for DataWarp
 - Scratch
 - Cache
- Access in three ways
 - Striped
 - Private
 - Load balanced

WLM Admin Requirements

Why isn't my job running?

Query a DataWarp instance – job or persistent

Owner, size, duration, parameters, owning job (if applicable), DataWarp nodes

Diagnostic information

- Same information as a query but based on a job id
- Provide status of DataWarp nodes

Restrict access

- Limit number or space used by a single user
- Limit access by a specific user or group
- Limit access to only a specific user/group etc.

WLM Requirements Other User Related Items

Modify existing DataWarp instance

- Duration
- Size (if possible)
- Add/Modify user access
- Other parameters (TBD)

Provide DataWarp statistics for each job

Bytes in/out per server

WLM Requirements Maintenance Tasks

- Kill an existing job or persistent DataWarp instance
 - Why?
 - Node is in a bad state and needs to be fixed
 - TheDW instance is no longer in use but is still held
 - Data Considerations
 - Purge
 - Migrate
 - Drain
- Disallow access system maintenance

Other

- Attempt to wear level across all DataWarp nodes.
 - Keep one from wearing out before the others

SLURM Specific Requirements

Job Prioritization

DataWarp use should be included in the calculation for job prioritization

Advanced Reservations

 Allow DataWarp instances to be created in advance and requested by jobs as needed.

Resource Limits

Allow to set resource limits on a per job, per user,

Conclusion

- Cray's DataWarp will be a useful tool
- We want to ensure we have the data we need to provide support
 - At the hardware level
 - At the job level

Acknowledgments

- Iwona Sakrejda NERSC
- Dave Henseler Cray

This work was supported by the Director, Office of Science, Office of Advance Scientific Computing Research of the U.S. Department of Energy under contract No. DEAC02-05CH11231

Thank you!

Questions?

