
procmon: Real-time process monitoring on the Cray
XC-30

Douglas M. Jacobsen
Computational Systems Group

NERSC, Lawrence Berkeley National Laboratory
Berkeley, USA

Email: dmjacobsen@lbl.gov

Abstract—Increasingly complex workflows of data-intensive
calculations are extremely challenging to characterize. In prepa-
ration for the increasing prevalence of this new style of workload,
we describe a recent effort to implement the “procmon” system
on the Cray XC30 system. The procmon system was developed to
characterize data-intensive workflows of the mid-range clusters
at NERSC, enabling efficient whole system monitoring of all
running processes on the system with live real-time analysis of
the data. procmon’s resource-conscious implementation results
in a scalable monitoring system that is minimally disruptive to
both user and system processes, thereby providing useful mon-
itoring opportunities on the large-scale Cray systems deployed
at NERSC. Use of AMQP messaging enables flexible and fault-
tolerant delivery of messages, while HDF5 storage of data allows
efficient analysis using standardized tools. This approach results
in an open monitoring system that provides users and operators
detailed, real-time feedback about the state of the system.

Keywords-monitoring, RabbitMQ, AMQP, HDF5, Data Analy-
sis

I. INTRODUCTION

In addition to classic HPC workloads, NERSC has engaged
in providing data-intensive calculation platforms for several
years, owing to the partnerships that NERSC maintains with
PDSF and the Joint Genome Institute (JGI). Observing the
JGI workload in particular, we found few means of eas-
ily discovering which codes comprised the workload since
the codes rarely rely on MPI (cannot instrument mpirun or
similar), the codes are not always directly compiled on the
computational platform (some popular codes are statically
linked binaries provided by the developer without source code)
preventing systems like ALTD [1] from being informative, and
in many cases, the batch scripts executed are perl or python
scripts running a diverse and complex set of executables. To
aid in system planning and resource prioritization, as well
as more day-to-day tasks like job debugging, we needed to
know the answer to a number of questions: which executables
consume the most CPU time? Which executables block the
most walltime? Which filesystems are used by which users and
projects and which jobs have the most I/O to those filesystems?
How does the batch workload differ from the interactive
workload? Are the system resources being effectively used
and managed?

Therefore, to answer these questions we constructed the
procmon monitoring system to systematically and periodically

sample all the running processes on a logical computational
resource and centrally store those data. The data collected are
typically similar to a combined output of a detailed “ps” and
“lsof” command. This is distinct from traditional BSD-style
process accounting in that the procmon data is sampled at an
instant in time and is tagged with contextual information such
as the batch job identifier, however, since the data are sampled
many processes which run shorter than the sampling period
may be missed entirely. Given the periodic nature of procmon
sampling, a sufficiently long process is sampled numerous
times providing a time-series trace of many different relevant
process characteristics - a very simple job profile. We have
used these data to see an at-a-glance view of a particular
job, and have also summarized and aggregated the data to
generate a system-wide distribution of the types, identities,
and approximate resources consumed of all the processes on
the system over a specified period of time - a detailed workload
analysis.

It is critical that NERSC deliver as many system resources
to the scientific applications as possible, thus there are a
number of requirements to which a monitoring system needs
to conform. The monitoring system should minimally impact a
running job by ensuring that it uses very little CPU time, does
not use any filesystems on the compute node, does not over-
utilize network resources or engage in blocking network I/O.
To get system information, the monitoring system should not
fork processes if possible, or read data from interfaces other
than the /proc, /sys or kernel interfaces that Linux provides
(i.e., don’t stat or read real files). Most importantly however,
is that sampling of data is sufficient, on systems of large scale
there is no need to capture every detail. The scale of NERSC
systems require that monitoring systems be designed to handle
large volumes of data, owing to the many thousands of nodes
in a single logical computational resource which need to be
simultaneously monitored. The large volumes of data typically
lead to complications due to large bandwidth or filesystem I/O
requirements. Therefore, it is also important that monitoring
systems be scalable at every level, and that message producers
must not be able to overwhelm network resources or services.

The author’s philosophy regarding the capture and storage
of monitoring data is that the rawest possible form should be
aggregated and stored for later analysis. The ensures that data
will be available to most completely answer the questions the

procmon System Design
In

iti
al

 D
at

a
Co

lle
ct

io
n

Ra
bb

itM
Q

M
es

sa
ge

 E
xc

ha
ng

er

procmon Message
Exchange

“procmonProd”
Message Queue

..*.*

Anonymous
Message Queue

.<jobid>..*

30s

Compute Node nidX

Job 12345

Job 12346

procmon

procmon

/proc

30s
nidX.12345.1.<type>

nidX.12346.1.<type>

Re
ad

in
g

pr
oc

m
on

 d
at

a
off

 th
e

w
ire

ProcMuxer
1

ProcMuxer
2

striped h5
1

striped h5
2

PostReducer

pr
oc

m
on

M
an

ag
er

.p
y

procmon_<system>
.<datetime>.h5

bad_procmon_<system
>.<datetime>.h5 Network Disk

Archive

Po
st

 A
na

ly
si

s

ProcMonitor

logfile
.csv

procmonRead

Terminal

Login Node svc0Y

/proc

procmon
(secured)

30s

svc0Y.INT.LOGIN.<type>

Web Node svc0Z

/proc

procmon
(secured)

30s

svc0Z.WEB.vista.<type>

Fig. 1. Monitoring and Data flow through the procmon system.

monitoring system was designed for, but will also provide a
rich dataset to serve future needs. Reducing and aggregating
data too early typically leads to similar systems collecting
similar data with a slightly different bias or perspective, due
to changing needs.

Given the large volumes of data that a large-scale monitor-
ing system must manage, it is also critically important that
a data management strategy be delivered with the monitoring
software. Typically, this may involve simple log rotation. How-
ever, because of the strategic nature of the data being collected
and the large volumes of complex data being generated, a more
managed approach, ideally integrated with an archival system
is in order. The form in which the data are stored is also
critical, data analysis of time series data is not immediately
amenable to common relational databases, because while the
data are highly structured, the time-series nature frequently
obscures relationships in the data.

The procmon system has been designed to deliver the an-
swers to complex questions, and to do so in a highly scalable,
robust method conserving the highest resolution data possible
using data formats that enable large-scale data analysis. Since
these features are related to the needs of a general purpose
monitoring system at the scale of a Cray XC system, we
decided to evaluate procmon’s performance on the larger scale
system.

This paper discusses the architecture of the procmon system;
how data are collected, managed, and analyzed; methods for
integrating procmon into an XC30; performance analysis; and
finally future directions and conclusions.

II. ARCHITECTURE OF MONITORING SYSTEM AND
SCALABILITY

The procmon monitoring system has a multi-level archi-
tecture that discretely separates monitoring, communication,
aggregation, reduction, and data management capabilities.
Figure 1 shows a high-level view of the architecture and how
all the major components of the system tie together. The same
data structures and a common I/O framework are used at every
stage of the monitoring hierarchy - enabling the infrastructure
to be wired and connected in a variety of ways to best match
the needs of the site being monitored. Special attention has
been paid to minimize any single points of failure, which maxi-
mizes availability of the service while simultaneously enabling
tremendous scalability. The major components used in an HPC
environment are: the monitoring agent (“procmon”), one or
more RabbitMQ [2] servers for network communication, one
or more data collectors (“ProcMuxers”) to aggregate and write
data to disk, a post-collection reduction tool (“PostReducer”),
and the procmonManager script to orchestrate the data man-
agement activities. There are a number of auxiliary tools for
data and workload analysis to be discussed elsewhere.

The monitoring agent, “procmon”, actively acquires the data
and pushes it to the I/O framework to serialize and publish
the data. The I/O framework has multiple possible formats or
media for transmitting or saving the data to disk. Under normal
circumstances, the AMQP backend (enabled by embedding

the rabbitmq-c library [3] into the application) for the I/O
framework is used to transmit monitored data. The AMQP
back-end transfers data to a centralized RabbitMQ service,
however it is possible to provide a list of RabbitMQ servers
to increase scalability and reliability of the system. If a list of
RabbitMQ servers is provided, then one server is selected at
random. Any failure in connection will cause another random
re-selection of the server – this implements a very inexpensive
form of High-Availability fail-over.

The monitoring agent performs minimal data transformation
and no data interpretation or aggregation. It simply reads data
and pushes it out across the wire. Our reasoning for doing
it this way is several-fold: (1) the agent minimizes CPU and
memory requirements if no state is saved between observations
or comparisons performed, (2) the agent reports the data as
closely as possible to the observable state of the system while
minimizing biases if no on-system filtering or aggregation is
performed, and (3) it simplifies the programming and improves
maintainability and extensibility of the system by strictly
defining the roles of the various subcomponents of the system.
The separation of these responsibilities gives the administrator
of the system maximum flexibility in the way in which the
data are collected, reduced, and summarized ensuring that raw
data is losslessly stored and archived to serve a variety of data
needs.

A. Process Monitoring

procmon was originally developed to determine which pro-
cesses were running as part of a contextual batch job. This
does not include system processes (e.g., crond, syslog, etc.)
which were not started as part of the job. Thus, procmon
has a variety of ways of selecting which processes are part
of the selected job. These are closely related to the way the
batch system starts a job and determines which processes are
also part of a job. The simplest mechanism is the hierarchical
process tracking – e.g., monitor every thing that is an eventual
child of some ancestor process. This is frequently a part of the
filter used, track everything that is a child of the batch script,
for example; or pid 1 to track all the user-space processes.
Process sessions IDs can be used for tracking related processes
– this is a common approach used for Torque. procmon also
supports the use of a UNIX Group ID (gid) for tracking –
this is not the process group id, but one on the groups list in
the process; this functionality is useful for Sun Grid Engine.
Linux cgroup tasklist support is the latest addition, is the most
performant option, and should work with most modern batch
systems if the cgroup functionality is enabled. The use of
process sessions, group IDs, or cgroups (in order of least to
most effective), enables procmon to find processes which have
left the batch job hierarchy, for example by daemonizing.

Once the appropriate set of processes is selected, procmon
then reads much of the data in /proc/pid/status, /proc/pid/stat,
/proc/pid/statm, /proc/pid/io, and performs readlinks of cwd,
exe, and a configurable number of file descriptors within
/proc/pid/fd. This means that procmon is tracking most of the
numeric and string data statistics for every identified process.

IDENTIFIER_SIZE = 24
EXEBUFFER_SIZE = 256
BUFFER_SIZE = 1024

identifier char[IDENTIFIER_SIZE]
subidentifier char[IDENTIFIER_SIZE]
recTime unsigned long
recTimeUSec unsigned long
startTime unsigned long
startTimeUSec unsigned long
pid unsigned int
ppid unsigned int
execName char[EXEBUFFER_SIZE]
cmdArgBytes unsigned long
cmdArgs char[BUFFER_SIZE]
exePath char[BUFFER_SIZE]
cwdPath char[BUFFER_SIZE]

procdata

IDENTIFIER_SIZE = 24
EXEBUFFER_SIZE = 256
BUFFER_SIZE = 1024

identifier char[IDENTIFIER_SIZE]
subidentifier char[IDENTIFIER_SIZE]
recTime unsigned long
recTimeUSec unsigned long
startTime unsigned long
startTimeUSec unsigned long
pid unsigned int
ppid unsigned int
state char
pgrp int
session int
tty int
tpgid int
realUid unsigned long
effUid unsigned long
realGid unsigned long
effGid unsigned long
utime unsigned long (ticks)
stime unsigned long (ticks)
priority long
nice long
numThreads long
vsize unsigned long (bytes)
rss unsigned long (bytes)
rsslim unsigned long (bytes)
signal unsigned long
blocked unsigned long
sigignore unsigned long
sigcatch unsigned long
rtPriority unsigned int
policy unsigned int
delayacctBlkIOTicks unsigned long long (ticks)
guestTime unsigned long
vmpeak unsigned long (bytes)
rsspeak unsigned long (bytes)
cpusAllowed int
io_rchar unsigned long long (bytes)
io_wchar unsigned long long (bytes)
io_syscr unsigned long long (count)
io_syscw unsigned long long (count)
io_readBytes unsigned long long (bytes)
io_writeBytes unsigned long long (bytes)
io_cancelledWriteBytes unsigned long long
m_size unsigned long (bytes)
m_resident unsigned long (bytes)
m_share unsigned long (bytes)
m_text unsigned long (bytes)
m_data unsigned long (bytes)

procstat

IDENTIFIER_SIZE = 24
EXEBUFFER_SIZE = 256
BUFFER_SIZE = 1024

identifier char[IDENTIFIER_SIZE]
subidentifier char[IDENTIFIER_SIZE]
recTime unsigned long
recTimeUSec unsigned long
startTime unsigned long
startTimeUSec unsigned long
pid unsigned int
ppid unsigned int
path char[BUFFER_SIZE]
fd int
mode unsigned int

procfd

IDENTIFIER_SIZE = 24
EXEBUFFER_SIZE = 256
BUFFER_SIZE = 1024

identifier char[IDENTIFIER_SIZE]
subidentifier char[IDENTIFIER_SIZE]
recTime unsigned long
recTimeUSec unsigned long
startTime unsigned long
startTimeUSec unsigned long
pid unsigned int

procobs (never sent on wire)

procmon datasets

Fig. 2. Monitoring and Data flow through the procmon system.

See figure 2 for more information about the data structures of
collected data.

B. Secured procmon for interactive/MOM nodes

Typically, procmon is run as a the user and initiated upon
job or step start. However, on interactive and MOM nodes it
can be advantageous to run procmon persistently (not as part
of a batch job). This means that procmon will run all the time,
and will be reading processes run by other users. Therefore
it may be necessary to run procmon as root in order to read
data that is otherwise kept private, for example performing the
readlink for exe, cwd, and the file descriptors as a regular user
is not possible for processes owned by other users.

procmon has been supplied with a “secured” mode, which
allows it to run as root, or start with root privileges, retain
the needed capabilities and switch to another less privi-
leged user. Performing the needed readlink()s requires the
CAP SYS PTRACE capability in Linux. Therefore the “se-
cured” binary, will, upon initialization drop all other capa-
bilities. Another facet of secured-mode is that procmon will
actually become a multi-threaded executable wherein monitor-
ing responsibilities are performed by one thread (which has
the CAP SYS PTRACE capability), and I/O responsibilities
are performed by another thread, which drops all capabilities.
This ensures that the communication layer of the monitoring
agent is less likely to be involved in providing an ability for
someone to achieve heightened privileges on the system.

Another aspect of running procmon persistently is that it
may need to collect data for multiple batch jobs – e.g., in
the context of a MOM node in a Cray XE/XC system, or in
the context of a multi-tenancy compute node like NERSC’s
edison serial queue. In those cases procmon will need to
assign the job context for each identified process. This can be
done in one of two ways by procmon, either by reading the
process startup environment (/proc/pid/environ) and looking
for telling environment variables, like $PBS JOID, or by using
the cgroup hierarchy and identifying job id based on the
cgroup naming. The latter is much faster if it is available.

C. AMQP Network Communication

Once data has been collected by the procmon sensor it
is serialized to an ASCII representation and sent via AMQP
to a central (or one of several) RabbitMQ servers using the
procmon I/O framework – which is itself supported by the
rabbitmq-c communication library. The selection of AMQP
over many other communication protocols was driven by (1)
robustness of AMQP for handling exception scenarios – the
administrator can make explicit choices about how to configure
RabbitMQ to deal with clients producing messages at too-
high rates, how to manage resources and users; (2) the robust
message routing features of AMQP Topic Exchanges; (3) the
automated queuing capabilities to allow temporary shortfalls
in message consumption to be buffered; and (4) the general
popularity and robustness of the RabbitMQ system combined
with a desire to not write a communication framework from
scratch.

The procmon monitoring system takes full advantage of
the AMQP Topic Exchange concept. This is a form of
message routing where each message includes a “Routing
Key”, a period-separated string, used by connecting clients
(really the client queues) to subscribe to desired messages.
In the procmon system, a four-tiered key is typically used:
hostname.Identifier.Subidentifier.dataType. hostname
is typically the output of gethostname() on the monitored
system. Identifier is usually a job id, but could be any user-
defined string that helps to provide context for the monitored
processes. Subidentifier is usually a task id, or job array
task id, but could be any user-defined string that helps to
provide context for the monitored processes. dataType is
the string identifier for the data structure represented by the
message. The dataType is used to help determine how to
parse the message and handle it appropriately in the receiving
application.

When a procmon sensor starts on host-to-be-monitored,
it will automatically form a connection to the configured
RabbitMQ server, and will attempt to create a “procmon”
topic exchange (or other configured exchange). If the exchange
already exists, then no error is thrown, as the goal is that
all related procmon sensors will communicate on a single
exchange in a given RabbitMQ server. In this system, message
producers like the procmon sensor never create queues to at-
tach to an exchange. This is because there is a tight division of
labor between the message producers and message consumers
(clients), and a philosophy that as important as the data might
be, the communication agent should not be used for more than
ephemeral routing and queuing. If no clients are connected to
listen for messages, then no queues will exist and the exchange
will simply drop the messages. This ensures that the central
RabbitMQ resource is not overwhelmed or required to start
writing data to disk due to large numbers of queued messages
caused by a failed client.

Any number of clients can connect to an exchange and
form a queue. When a client creates a queue on a RabbitMQ
topic exchange, it binds a routing key template, like “*.*.*.*”
to get all messages, or something like “*.123456.*.*” to
just get messages for job “123456”. In fact, multiple clients
can connect and create the same queue. In this case, the
messages are striped across the two (or more) clients – though
the striping is not perfectly load balanced, nor is it fully
guaranteed to be unique – every once in a great while a
message is duplicated. The RabbitMQ system itself enables
a high degree of resiliency. The way procmon uses RabbitMQ
allows multiple peered instances to be used separately, but it
is possible to cluster RabbitMQ instances and automatically
funnel messages between them. This functionality has not
be used thus far by procmon, but represents an intriguing
possibility.

RabbitMQ requires authentication to connect to the server.
In procmon, this is typically done with one account with a pre-
shared password, but there are options available for bifurcating
access to secure the communications if desired. RabbitMQ can
optionally use TLS/SSL to secure the socket connection. On

trusted networks the TLS/SSL may not be necessary, but can
be enabled if secure communications is a priority.

D. Data Collection and Data Management

Owing to the nature of the data being collected by the
procmon system, it is important to collect as much of the
data as possible for archival for post-analysis, as well as
enable streaming/live access to selected data. The choice of
RabbitMQ as discussed in section II-C supports multiple
consumers for the same datastream, as well as aggregating data
streams. In this way a generic connecting client can subscribe
to messages from a single procmon sensor, a subset of them,
or all of them. This allows all data from all the nodes of a
particular job to be captured, or all the data in the system if
that is preferable.

The lower segment of figure 1 shows how the data archival
and other data consuming clients connect to the RabbitMQ
server(s). The typical configuration is that one or more “Proc-
Muxer” processes connect to to a single named queue attached
to procmon’s topic exchange. This causes the messages to
be semi-striped across the two or more ProcMuxer instances.
This enables the data collection backend to scale up regardless
of underlying filesystem performance or message load. This
striping capability also creates a nice facility for increasing the
reliability of data acquisition by load balancing across clients.
If one client dies, the other can take the full load. It also
suggests a mechanism for migrating clients without data loss
– e.g., start with two clients one one listening host, then start
two clients up on the target host, finally terminate the original
two and copy the data to the new host.

The ProcMuxer processes each write data to separate HDF5
files, the structure is shown in 3. At the beginning of each hour
the previous HDF5 file is closed and a new one is created. In
this way, the archival data are made available one hour at
a time. Since the ProcMuxers are constantly writing data to
disk, it is recommended, if possible, to run the ProcMuxers
on a system with local disk instead of targetting a remote
networked filesystem. This ensures that the ProcMuxers can
adequately keep up with the data volume. Since frequently
two or more HDF5 files are generated per hour (owing to
the multiple ProcMuxer instances running), the PostReducer
process is run to merge all the files, detect any bad data
(e.g., truncated messages), and de-duplicate the data. Each
datatype defines a reduction function that PostReducer can use
to skip/remove repeated or redundant observations. Consider
the case of an idling bash process or sshd process, most often
these processes will not change any counter information, and
so many observations will be identical except for the changing
timestamps. Using the procstat or procdata reduction function,
the PostReducer will detect these repeated observations and
only keep the most recent record changed record. For every
observation, regardless of whether or not any data changed,
a ProcObs record will be inserted per process. This ensures
that that an effective heart-beat is kept for all the observed
processes, and yet the detailed data is only kept for unique

procmon Raw HDF5 File Layout

/

host 1

host 2

source CSV list of striped files
writer software that wrote the file
 (e.g., PostReducer)
writer_version version of writer software
writer_host hostname
recording_start start time (uint seconds since epoch)
recording_stop end time (uint seconds since epoch)
n_writes # of individual write operations

“/“ metadata

metadata: nRecords (uint)
Length: unlimited
Chunked, default: 4

struct procdata
procdata

metadata: nRecords (uint)
Length: unlimited
Chunked, default: 128

struct procstat
procstat

metadata: nRecords (uint)
Length: unlimited
Chunked, default: 64
Deflated (zipped level 9)

struct procfd
procfd

metadata: nRecords (uint)
Length: unlimited
Chunked, default: 256
Deflated (zipped level 9)

struct procobs
procobs

REPEAT procdata, procstat, etc for each host

Fig. 3. Structure of HDF5 files used for data collection

observations. On the genepool system, this generates and
approximately 18-fold reduction of storage requirements.

The procmonManager.py python script is responsible for
managing the ProcMuxer processes, including restarting Proc-
Muxers if they should die. procmonManager.py also detects
once all of a particular set of HDF5 files are closed and
initiates the PostReducer process as well as the data archival
procedures. If a site has configured HPSS or JAMO archival
solutions, then the procmonManager.py will automatically
deposit the reduced HDF5 files into the archive as soon as they
are created – in addition to copying the data to a configurable
staging location.

procmon also enables live access to the data. This is
typically used by special-purpose filters, such as the included
“jobtop”, which emulates a multi-node “top” to display all
the performance data for a given job. Other than jobtop, these
filters tend to be site- or analysis-specific.

III. METHODS FOR SYSTEM INTEGRATION

The value of process monitoring is entirely tied to the
context or correctly assigning the context of the monitored
processes. One of the central goals of procmon is to be able
to trivially trace which process belonged to which job and be
able to show the most pertinent data.

Thus, there are a few recommended minimal modes of
running procmon on a Cray XC30 system. First the secured
procmon can be started persistently on all login nodes, typi-
cally with an identifier of “LOGIN” or similar to help identify

those processes as coming from a login node. On the MOM
nodes, for schedulers making use of MOM nodes, enabling
context discovery or “MOM-mode”, will examine either the
process environment or cgroup membership to identify which
job or job-context each process belongs to. A default identifier
or “MOM” should be provided to identify processes running
outside of a job (i.e., system processes and direct-ssh-to-
MOM-node-started processes).

Finally, if compute node monitoring is desired, there a few
strategies that can be used:

• Opt-in Monitoring Only: Use the built-in run procmon
wrapper to automatically start procmon for select jobs

• Monitor all CCM jobs: Modify
/opt/cray/ccm/default/sbin/ccm init local to start
procmon

• Monitor everything: Either start procmon persistently
in “MOM-mode” on all compute nodes to automatically
determine job context, or, start and terminate procmon
with included RUR staging plugin

IV. PERFORMANCE CHARACTERISTICS AND SYSTEMIC
IMPACT

It is critical to characterize the performance and resource
requirements of any monitoring system. This is because there
is always a prevailing concern that monitoring activity will
disrupt applications or introduce a large amount of overhead.
Based on our monitoring of process performance data (proc-
mon included) for over one year on the genepool system at
NERSC, we have found that the procmon sensor (the only
component running on a compute node) typically uses less
than 0.03% of a single core and about 2MB of memory
throughout the course of a typical batch job. Network con-
sumption is low, procmon typically transferring less than 3KB
per process per iteration.

We performed a detailed study NERSC’s Cray XC30 edison,
to see how procmon behaved on the system. Using a similar
protocol to that used to understand another real-time monitor-
ing system, LDMS [4], we used PSNAP [?] to determine the
CPU-disruption profile of the monitoring as well as a large-
scale job to determine total effect on the system. Figure 4
shows the results of running the psnap benchmark with and
without procmon. The psnap benchmark runs an inner loop a
calculated number of iterations and time how long it takes in
real time. This procedure is iterated many many times, and on
a completely uninterrupted system, each iteration will perform
the inner loop should complete in precisely the same time.
The plots show histograms of how many iterations completed
within each of a set of time windows. The primary feature is
that when psnap is run with procmon we see that a few of the
loop iterations (note the log scale of the Y axis), are right-
shifted to about 13ms. Our interpretation of this is that when
procmon is running, it remains scheduled on the CPU for up
to 13 ticks (13ms) when all features are enabled. Since we
typically do not see such a long scheduling time per iteration
for procmon (data not shown), our conclusion is that this
may be due to some of the more aggressive CPU scheduling

(ms)

(ms)

Right&shi(ed+distribu/on+of+
/mings+are+caused+by+delay+
of+psnap+being+scheduled+on+
cpu

procmon+with+all+features+
enabled+has+an+overhead+of+
about+13ms+per+itera/on

Fig. 4. 16-node psnap with and without procmon reveals 13ms average
scheduling time for procmon per iteration

techniques employed in CLE. However, the most notable result
is that on a Cray XC30 system, the “cost” of running procmon
to compute jobs is approximately 13ms per iteration.

TABLE I
HPCG PERFORMANCE DATA

NOT PRODUCTION LENGTH RUN

Measured
GFLOP/s

Target
Wall-time

Reported
Execution
Time

Date

HPCG only 82893.2 335 s 346.26 s 2015-03-06
HPCG & procmon 82131.5 335 s 349.518 s 2015-03-25

Another aspect of our investigation of procmon on edison
was a nearly full-scale test using the Intel-optimized version
of the HPCG [5] [6] benchmark. Table I shows the results of
the HPCG test. The test was to run HPCG on 130,800 cores
(5,450 nodes or 97.7% of edison) with two processes per node
(10,900 processes) and 12 threads per process. We ran this test
with and without procmon. Overall, the measured difference
in performance was less than 1%. Since the without-procmon
and with-procmon runs were on different days with slightly
different sets of nodes, it is entirely possible that this minor
effect is simply noise; without running the test several more
times it is difficult to assess the statistical significance of the
result. Empirically, we have found that running a “warmup”
hpcg run can be very helpful in getting full performance out

warmup

full calculation

Walltime Elapsed (s)

Re
si

de
nt

 M
em

or
y

(b
yt

es
)

Monitoring HPCG Resident Memory on Edison

Walltime Elapsed (s)

C
PU

 T
im

e
(ti

ck
s)

Monitoring HPCG CPU time on Edison

warmup

full calculation

Fig. 5. procmon monitoring HPCG on 5450 nodes of NERSC’s edison.
top: Resident Set Size (rss) per process. bottom: CPU-time consumption per
process. Left side shows a “warmup” calculation indended to cache all shared
libraries. Right side shows a full, size standard HPCG calculation.

of the next run. This is likely because of the overhead in
loading shared libraries, and that the second instance runs
correctly because of caching of those libraries. Figure 5 shows
the memory and cpu-consumption footprints for the “with-
procmon” HPCG runs. Each plot has 10,900 lines for each of
the “warmup” and “full calculation” runs. The “full calcula-
tion” results show most of the lines as a superposition of each
other with little variation, as expected. The warmup, however,
shows a wide spectrum of CPU consumption rates, which
was a surprising result, given that HPCG does perform an
MPI Barrier prior to starting the at-large calculation. However,
after examining the logs it was caused by a pathological set
of inputs – an invalid configuration – for HPCG which caused
inefficient communication resulting in the long execution time
and strange band of CPU times (MPI Allreduce() was very
slow). The “warmup” run demonstrates some of the utility of
using procmon to collect and then visualize job performance
data collected at very large scale.

V. FUTURE DIRECTIONS

procmon remains in heavy development despite being op-
erational at NERSC on two of the large clusters. The current

planned directions include:
• introduce plugin architecture enabling simpler expansion

of per-process or per-host monitoring capabilities
• expand support of cgroup job-context identification to

enable tighter integration on the Cray platforms, and with
SLURM

• complete work on query-able “live cache” of data, en-
abling immediate discovery of any recent data without
an express-purpose client connected

VI. CONCLUSION

procmon is an extremely scalable monitoring platform,
which based on the study presented herein, achieves the
necessary scale and performance required to operate on the
Cray XC30 platform. This platform can provide detailed
accounting of a sample of all processes running on a large-
scale computational platform to aid debugging, system visu-
alization, and perform longitudinal workload analyses. proc-
mon is an open source project which can be obtained at
https://bitbucket.org/berkeleylab/nersc-procmon.

ACKNOWLEDGMENT

This work was supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

The authors also wish to acknowledge the technical input
and support from Shane Canon, Cary Whitney, Larry Pezza-
glia, and Chris Daley from NERSC.

REFERENCES

[1] M. Fahey, N. Jones, and H. Bilel, “The automatic library tracking
database,” Proceedings of the Cray User Group, 2010.

[2] “Rabbitmq,” https://www.rabbitmq.com/.
[3] “rabbitmq-c c communication library,”

https://github.com/alanxz/rabbitmq-c.
[4] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen-

tile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman,
J. Stevenson, N. Taerat, and T. Tucker, “The lightweight distributed metric
service: a scalable infrastructure for continuous monitoring of large scale
computing systems and applications,” Supercomputing, 2014.

[5] J. Dongarra and M. A. Heroux, “Toward a new metric for ranking high
performance computing systems,” Sandia Report, 2013.

[6] “Intel optimized technology preview for high performance conjugate
gradient benchmark,” 2014, https://software.intel.com/en-us/articles/intel-
optimized-technology-preview-for-high-performance-conjugate-gradient-
benchmark.

