
Detecting and Managing GPU Failures

 Nicholas P. Cardo
HPC Operations, Systems Group Lead

Swiss National Supercomputer Centre (CSCS)
Lugano, Switzerland

Nicholas.Cardo@cscs.ch

Abstract— GPUs have been found to have a variety of failure
modes. The easiest to detect and correct is a clear hardware
failure of the device. However, there are a number of not so
obvious failures that can be more difficult to detect. With the
objective to provide a stable and reliable GPU computing
platform, it is imperative to identify issues with the GPUs and
remove them from service. At the Swiss National
Supercomputing Centre (CSCS), a significant amount of effort
has been invested in the detection and isolation of suspect
GPUs. Techniques have been developed to identify suspect
GPUs and automated testing put into practice, resulting in a
more stable and reliable GPU computing platform. This paper
will discuss these GPU failures and the techniques used
identify suspect nodes.

Keywords-component; formatting; style; styling; insert (key
words)

I. ABOUT CSCS
“Founded in 1991, CSCS, the Swiss National

Supercomputing Centre, develops and provides the key
supercomputing capabilities required to solve important
problems to science and/or society. The Centre enables
world-class research with a scientific user lab that is
available to domestic and international researchers through a
transparent, peer-reviewed allocation process. CSCS's
resources are open to academia, and are available as well to
users from industry and the business sector. The Centre is
operated by ETH Zurich and is located in Lugano.”

“CSCS is a unit of the Swiss Federal Institute of
Technology in Zurich (ETH Zurich). Since October 1st,
2008, CSCS has been part of the division headed by the Vice
president for personnel, resources and infrastructures of ETH
Zurich.” [1]

II. INTRODUCTION
Traditionally, High Performance Computing (HPC) has

been focused on Time to Solution (TtS). However, with the
scalability of today’s systems, the power required to run such
systems would be enormous, putting the total cost of
ownership, which includes operational costs, out of reach. In
recent years there has been a new focus, Energy to Solution
(EtS). Not only is it important to provide systems that can
make the unobtainable calculations, obtainable, but also do
so in a power efficient design. The combination of TtS and

EtS in a system design is expanding the possibilities of
scalability by allowing systems to grow in scale to new
heights. [2]

GPU based systems have grown in HPC due to the fact
of their ability to achieve high performance with low energy
consumption. This has expanded the realm of scientific
computing by allowing larger computationally capable
systems to be deployed.

While traditional processor systems have enjoyed a long
and successful life in HPC, allowing them to mature through
the generations, GPUs on the other hand are relative
newcomers to the playing field. While their success is
growing, there are still areas for improvement. Only through
a combined effort between GPU providers, computer system
manufacturers and customers, can the success of the GPU
continue to grow.

CSCS is committed to advancing GPU processing and to
sharing gained knowledge for managing such a system. One
area is focused on identifying problematic GPUs and
removing them from service before a user application finds
it. A significant time investment has been made to improve
the diagnostic capabilities of GPUs in order to provide a rock
solid computational system

III. PIZ DAINT CONFIGURATION
The flagship system for the Swiss national High

Performance Computing (HPC) service is Piz Daint, a
Cray® XC™ 30 name for a prominent mountain peak in the
Grisons that overlooks the Fuorn pass1.

Piz Daint has 5,272 compute nodes and 52 service nodes.
Each compute node contains an 8-core Intel® Xeon® E5-
2670 host processor running at 2.6 GHz with 32 GB of
DDR3 memory and an NVIDIA® Tesla K20x Graphics
Processing Unit (GPU) with 6 GB of GDDR5 memory. This
yields for each compute node approximately 1.5 TFlops of
computing power resulting in an impressive total
computational capability of about 7.8 PFlops of theoretical
peak performance for the entire system.

As of November 2014, Piz Daint sits at position #6 on
the Top500 List. However, this only shows that the system
is delivering on the TtS. The Green500 List focuses on the
second component, EtS. At position #9, Piz Daint is
showing that it possible for a state of art HPC system to be
both computationally and efficient in the power consumption
required to achieve solutions.

IV. GPU FAILURES
Production computing is supported by the fundamental

principle of providing a stable and reliable compute
platform. Minimizing interruptions and improving the
overall success rate of completing applications will enhance
the user experience on the system. The end result is
increased scientific productivity.

It has been found that the system is very capable of
identify node related issues but is lacking in the
identification of GPU problems. Having a stable node with a
problematic GPU presents itself as a problem to the user. It
is a key objective to remove problems from service before
detection by the user community.

With this in mind, it is important to detect and correct
problems before returning the system back to production
service. CSCS has gone to great lengths to develop a
process to locate potential problems before exposing the
system to the production workload. Each test performed has
its roots in a problem that was encountered. Over time, this
has grown into a suite of system and application checks
designed to detect system problems, hardware and software.

A. Technical Error Identification[3]
GPUs report device errors through xid codes. Each

xid code is intended to provide insight into the root cause of
the problem, which in turn suggests a corrective action. The
complication is that errors may multiple root causes. Each
error identifies the following:

• XID Code
• Failure Description
• Hardware Error
• Driver Error
• User Application Error
• System Memory Corruption
• Bus Error
• Thermal Issue
• Frame Buffer Corruption

For example, XID 56 is a Display Engine Error that

could be a Hardware Error or a Driver Error. Hopefully, in
cases like this, there are sufficient error messages
surrounding this error to provide the necessary clues to
resolve the error.

B. Common Hardware Failures
Compute nodes can fail for a wide variety of hardware

related reasons. In most cases, these are relatively simple to
identify by performing fault isolation procedures or even by
the errors called out in the logs. Even GPUs can fail in such
a manner to indicate that the hardware has failed. The
recovery procedures for these types of errors is to replace the
failing component once identified. If only all failures were
this simple to identify and correct…

C. GPU Has Fallen Off the Bus
One of the more annoying errors is the report that a

“GPU Has Fallen Off the Bus”. The symptom to the user is

that their application has failed due to an unexpected error on
one of their nodes. When the node is investigated, it appears
to be completely healthy. When searching system logs, the
error can be found.

However, this error can be reported as a result of a wide
variety of issues, as well as for an unknown error. Because
of this, it has been incredibly difficult to diagnose a root
cause. Since there are no hardware errors reported, it is
difficult to simply replace parts. Furthermore, this is a
software reported hardware error for which the hardware has
not produced an error. As these nodes are reported or
identified they are removed for service. The process is to
remove and clean the GPU and then return the node back to
service.

The annoyance factor is high for this error, as it requires
a user to complain that their application has failed in an
unexpected way. A number of bugs have been filed against
this problem: 789858, 790527, 804390, 808113, 808114,
814107, and 818374.

It is possible that improvements in the GPU driver may
help to further identify the root cause of this problem or even
correct the problem. Plans are in place to upgrade CUDA®
to version 6.5, which includes the latest driver.

D. GPU Killed by Applications
Applications have been found to hang or even crash the

compute node. Sometimes only the GPU would crash but it
is not possible to recover just the GPU. When any of these
situations occurs, it is necessary to reboot the system, as a
warmboot is not sufficient to recover the GPU. Relying on
user applications to crash a compute node due to a GPU not
functioning correctly is not a diagnostic. The challenge is to
remove these nodes from service before they are found by a
user application.

At CSCS, it was found that a GPU optimized version of
HPCG is sufficient to crash the compute nodes that would
have been crashed by user applications. A short 10-minute
run will remove the suspect nodes from the system by
crashing them. Because of the success rate of this test to find
nodes with issues by taking them down, it has been
nicknamed the “GPU Killer”.

The failure mode of each of these compute nodes is
analyzed to determine the proper course of action. In some
cases, the problem is clearly hardware, requiring the failing
components to be replaced. However, in most cases, no
component is called out and the error condition reported is
simply a generic catchall error with no clear indication of the
problem. This is the majority of failures encountered. It has
been found that by pulling the GPU, cleaning all contacts
and reseating the GPU, the problem goes away. There is no
clear explanation as to why this corrects the problem. In
many cases, simply rebooting the system clears the problem.
The Standard Operating Procedure for this type of failure
where no failed hardware can be identified is to reseat and
clean the GPU.

This test has also been found to remove nodes from
service that would have produced “GPU Has Fallen Off the
Bus” errors. Since implementing this test, the occurrence of

user applications killing nodes or encountering “GPU Has
Fallen Off the Bus” have been almost eliminated.

E. Slow GPUs
Obtaining consistent performance levels across the entire

system is important for all HPC systems. This is
complicated on Piz Daint by the fact there is a host node and
accelerator in the same node. Performance issues can often
be difficult to identify as well as identify which node is
affecting the applications overall performance. The problem
is how to respond to a complaint that an application is
running slower than normal.

CSCS developed a test code that utilizes a GPU
optimized version of DGEMM to identify slow performing
GPUs. In just a few minutes a base performance level of the
GPU can be ascertained. By analyzing the results from all
nodes against a base performance level, slow performing
nodes can be identified. Nodes failing to meet the baseline
are flagged for further investigation. The typical failure
mode of this test is a drop in performance of over 40%, easy
to detect. By performing this test prior to returning the
system back to production CSCS has significantly reduced
the occurrences of reports of degraded performance.

However, relying on an application to detect problems is
not a sustainable solution and the root of the problem needed
to be identified. A device showing signs of such
performance degradation should also be showing signs of a
problem. After careful investigation, the problem was clear
and could be detected with nvidia-smi -q. The root
cause of this problem was that the PCI link width dropped
from 16x down to 8x.

GPU Link Info
 Link Width
 Max : 16x
 Current : 8x

This excerpt from nvidia-smi -q shows that the

maximum link width is 16x and that currently it is only
performing at 8x. The symptom is a significant drop in
application performance.

Now, a simple check after each system boot can detect if
nodes are exhibiting this problem. The DGEMM test is still
performed to help catch other failure modes where the
symptom is performance degradation.

Ideally, this check should be performed as part of the
Node Health Check as nodes can degrade after system boot.
Bug 822929 has been filed to request that this test be
included in order to catch these failures. However, Cray
support has decided to treat this as a Request For
Enhancement. Currently, there is nothing supplied by Cray
to catch that the PCI link width is running at less than the
maximum.

The corrective action for this failure is to replace the
GPU. There is no known way to restore the PCI Link Width
back to its maximum rate.

V. SYSTEM AND REGRESSION TEST SUITES
Building tools and test cases is only part of the solution.

It is crucial to have a reliable, yet simple, interface to
consistently run the tests in an automated method.
Furthermore, the regression suite needs to be quick and
clearly identify failures. [4]

After each reboot, it takes approximately 30 minutes to
test and validate the system is ready for production service.
This is done through a series of system checks followed by
the regression test suite.

The first set of tests focus on the system itself. Here,
checks for correct device settings, error conditions, and
operational ability are all performed. Most of these checks
are fairly standard and performed on HPC systems in
general. However, a few checks specifically for GPUs have
been added. Piz Daint runs with the GPU Operation Mode
(GOM) set. A check is performed to ensure that the setting
is not lost. Another is for the PCI Link Width as described
earlier in this paper. The objective of these tests is to
provide a stable compute platform to be validated by the
regression test suite. Ideally, all error conditions would have
been detected by the completion of the system checkout
tests.

Following a successful system checkout, the regression
test suite is run. These are an automated set of tests designed
to validate the user environment as well the capability of the
system to run the production workload. Each test has been
specifically designed based on reported errors and the ability
to quickly detect any problems that may have been missed
by the system checkout.

In the end, the combination of both sets of tests results in
a system that has been stressed, checked, and is ready for the
standard production workload. This has proven itself to
improve the reliability of the system as well as the user’s
ability to get their work done efficiently and effectively.

CSCS continues to refine the existing checks and add
new checks as failure modes are identified. These tests have
proven to be highly effective in identifying problems before
putting the system into full production operation.

VI. METRIC OF SUCCESS
There are many ways to measure success. For HPC

systems, the true measure of success is the amount of science
that can be accomplished on the system. Providing the
maximum possible hours on the system with the least
amount of interruptions results in the maximizing the time
spent on science.

For Piz Daint, the benefits were realized in two areas:
the time necessary to return the system back to production
and minimizing user found suspect nodes.

Before returning the system to production after a system
boot, both the system checks and regression tests would be
run to validate the state of the system. Several runs would be
required in order to complete the regression tests. This
process would take approximately 3 hours to complete.
Now, after implementing improved tests and checks, the
process completes in less than 1 hour. This represents an

additional 10,544 node hours that are now available for
scientific computations.

The user experience on the system is an important
consideration. The checks now in place are so successful,
that user interrupts due to GPU related issues have virtually
been eliminated. These types of failures are no longer
routine, but rather have become exceptions.

The improvements made in time to return to service and
user interrupts have returned a significant amount of
compute cycles back to the users while improving their
application success rate.

VII. CONCLUSION
Maintaining any HPC system can be a challenge. Add in

the complexity of a GPU and the combination of challenges
can mount. With careful planning and management, these
challenges can be overcome to provide a stable and reliable
compute platform creating a positive end-user experience.
The benefits enjoyed by a stable compute platform far
exceed the overall investment in the creation of the tests
used.

There is still much work to complete. It is possible that
software improvements in NVIDIA® CUDA® Toolkit 6.5
and the latest driver improve error handling and
recoverability. Plans are in place to complete this upgrade
along with an upgrade to the latest version of the Cray Linux
Environment (CLE) and Programming Environment (PE).

Work will continue on enhancing and refining the system
and regression tests in order to optimally find suspect nodes
and remove them from service before detection by a
production application.

The end result of all the time invested has been an overall
improvement in the reliability of the system. Most problems
are now caught before exposing the system to the production
workload. However, there are still areas where
improvements can be made. All these tests can identify
issues, but they are run only after each system boot. The
regression test suite has the ability to focus on individual

nodes, once a suspect node is identify, usually from a
produce application failure. Ideally, improvements in the
Node Health Checker could better capture error conditions
and remove nodes from service as they fail.

Work continues on understanding each GPU issue in
hopes of finding a solution to mitigate the impact of that type
of failure. Additionally, work continues on identifying ways
to perform as much of the system software updates without
the requirement of removing the system from production
operation. The ultimate goal is to maximize the available
computational hours for the user community.

Next steps include tracking the various errors that could
be produced by the GPU. There are 69 documented error
codes (XID) by NVIDIA®. For each error code, the
possible root cause is documented. By tracking these error
codes, it will be possible to better quantify the root causes
and improve the time to diagnosis and return to service. [66]

ACKNOWLEDGMENT
The work reported within this paper is the result of a

large concentrated effort by a large number of staff at CSCS.
I would like to recognize Timothy Robinson for his work on
the regression test suite. I would also like to recognize
Vincenzo Annaloro, Nicola Bianchi, Marco Induni, and
Fabio Verzelloni for their work on implementing system
level checks.

REFERENCES
[1] CSCS Web Pages, http://www.cscs.ch/about/index.html.
[2] “Application centric energy-efficiency study of distributed multi-core

and hybrid CPU-GPU systems”, Cumming, Fourestey, Fuhrer, Gysi,
Fatica, Schultess, SC14.

[3] “Understanding XID Errors”, NVIDIA®,
http://docs.nvidia.com/deploy/xid-errors.

[4] “Systems-level Configuration and Customisation of Hybrid Cray
XC30, Aielli, Alam, Annaloro, Bianchi, Benini, McMurtrie,
Robinson, Verzelloni”, CUG 2014.

