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BlueTides Simulation

● Largest hydro-dynamical simulation of the universe;

● 700 Billion Particles; 

● 20250 of Cray XE nodes in BlueWaters; (90% utilization)

● 81000 MPI ranks, 8 OpenMP Threads each;

● MP-Gadget:

– Substantially improved scaling for BlueTides



  

BlueTides on the Chart 



  

BlueTides Simulation

BlueTides: How did first galaxies rise 
from a uniform universe?



  

Galaxy Catalog
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Contain

Particle ID
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Type

Position, Velocity, Mass, ...

Group number

Position, Velocity, Mass, ...

Size per particle type

Offset per particle type

● A physicist's database:

– Sort particles by their 
Group Number

– Store a jump-table for the 
offset of the first particle in 
a galaxy

– More complicated in 
reality, because particles 
have different types

– Google: bigfile github
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Introducing MP-sort

● At BlueTides scale (81,000 ranks, choice of sorting algorithm 
matters.

– Comparison based, parallel Merge-sort scales badly.
● MP-sort is the new sorting module in BlueTides Simulation

– Partition-based sorting

– Performs reasonably well

– A standalone library
● Simple API, via C and Python
● Small code footprint ( < 2,000 lines)

– http://github.com/rainwoodman/MP-sort

http://github.com/rainwoodman/MP-sort


  

MP-Sort: Partition-Based Sorting

● Many names:

Partition-sort, 
histogram-sort, 
bucket-sort;

● Distributed data

● Naive algorithms

● “Plan & Deliver”

● Need numerical keys for 
items

– galaxy number

● Algorithm

1. Local Sorting

2. Find Splitters: edges of 
the histogram bins;

3. Solve for Shuffling Matrix 
(P x P);

4. Shuffle Items: moving 
from initial ranks to the 
final ranks

5. Local Sorting



  

Partition-Based Sorting Illustrated

[8 6 4 2 0] [9 7 4 3 1] 

1. Local Sorting

[0 2 4 6 8] [1 3 4 7 9]

2. Find Splitters

(0, 4, 10)

3. Calculating Shuffling Matrix

 [0 2 4 6 8] [1 3 4 7 9]

4. Shuffle with MPI_Alltoallv

[0 2 4 1 3] [6 8 4 7 9]

5. Local Sorting

[0 1 2 3 4] [4 6 7 8 9]



  

Partition-based Sorting: Remarks

● Simplest Implementation

– Local sorting: qsort_r

– Splitter finding: binary search

– Shuffle: MPI_Alltoallv
● Plan & Deliver:

– Any item is on the network at most once.
● Only non-trivial step is to solve for Shuffling Matrix.



  

Step 3: Solving for Shuffling Matrix

(0, 4, 10)  [0 2 4 6 8] [1 3 4 7 9]

● Shuffling Matrix L[q, p]: 

– SendDispl: Rank p sends items L[q – 1, p] : L[q, p] to Rank q;

– Bounded by C1[q, p] ≤ L[q, p] ≤ C2[q, p]

– Constrained by total number of items to be received per rank
● Lower and Upper Bounds:

– C1[q, p] is the total number of items less than splitter E[q];

– C2[q, p] is the total number of items less than or equal to splitter 
E[q].

– C1 = [(0, 2, 5), (0, 2, 5)], C2=[(0, 3, 5), (0, 3, 5)]



  

Parallel Solver

(0, 4, 10)  [0 2 4 6 8] [1 3 4 7 9]

● For every column in L

– Initialize with lower bound C1 

– Increase the items in L from 
lower to high row, limited by 
the upper bound C2 

– Until the column sum equals 
to the expected (cumulative) 
sum.

● Parallel in columns

C1=[(0, 2, 5),

 (0, 2, 5)]

C2=[(0, 3, 5),

(0, 3, 5)]

L=[(0, 2, 5),
(0, 2, 5)]

✘ Sum of L: 0, 4, 10 

L=[(0, 3, 5),
(0, 2, 5)]

✓   Sum of L: 0, 5, 10 



  

Shuffling Matrix Solver: Remarks

● With parallelism: 

– Time complexity is O(P);

– memory requirement per rank is O(P);
● Without parallelism both becomes O(P2)

– 100,000 Ranks => 10G elements in Shuffling Matrix!
● Communication overhead is small

– 3 AlltoAll communication to transpose C1, C2, and L.

● Stable

– Maintaining relative ordering of non-unique items

– Items from lower ranks are sent to lower ranks



  

MP-Sort: Algorithm Summary

● Intuitive algorithm:

– Massively parallel sorting in 5 steps
● Standard routines:

– qsort_r, bindary search and MPI_Alltoallv
● No local optimization was done

● “Plan & Deliver”

– A single call to MPI_Alltoallv

– Items are on the network at most once

– Optimal Communication



  

Benchmarks

How does MP-sort perform?



  

Scaling with fixed load

Single call to MPI_Alltoallv
Optimal communication

99% of wall-time



  

Scaling with fixed ranks



  

Insights from Benchmarks

● In large scale parallel applications (~100,000 MPI ranks)

– Effectiveness of local optimization can be marginalized

– Because, communication eventually takes over (99% of walltime)
● What does not help:

– Overlapping communication with local sorting

– Merge instead of sorting in final step

– Requiring unique keys
● What really helps:

– Faster inter-connection network, lower latency and higher bandwidth;

– And maybe, a smarter MPI_Alltoallv



  

Production in BlueTides

● 10x faster than the old merge sort module

● Sorting is no longer the bottleneck

● ~ 2000 seconds per catalog

● ~ 20 catalogues produced, and actively used in scientific 
publications



  

Further Insights

● MP-sort is a key part enabling the scientific discovery in 
BlueTides

● Building “relational” scientific simulation data

– (somewhat) Big Data in a traditional HPC environment 

– Database perspective, without database management 
systems

– Efficiently; as fast as the BlueWaters allows
● Parallel non-numerical algorithms alike have a place in 

large scale numerical applications



  

Conclusion

● MP-sort: A Library for Massively Parallel Sorting

– Optimal in communication

– Performed at scale on BlueWaters for BlueTides simulation

– Scaling Tests up to 160,000 cores
● MPI_Alltoallv is the key

– A tool for Big Data analysis on traditional HPC infrastructure
● http://github.com/rainwoodman/MP-sort

– C Interface

– Python Interface

– Like MP-sort on Github!

https://github.com/rainwoodman/MP-sort/blob/master/README.rst#mp-sort


  

Building the galaxy catalog

1. Assign global index to particles;

2. Sort global index of particles by galaxy/group number;

3. Assign ranks to particles

4. Sort ranks of particles by global index;

5. Exchange particles to the ranks with particle-exchange 
module

Sorting is used twice!



  

Weak Scaling Summary

● At scale (large load and large number of ranks), 
communication dominates the total time

● Hardware and software implementation of MPI_Alltoall 
seems to treat large number of ranks differently, as seen 
by the sudden jump at 80000 ranks.

● Matrix solver scales worse than linear:

– A large fraction of time is in Alltoall of C1, C2 and L;

– Still small fraction of time than the Alltoall of data items.
● Local sorting always a small fraction of wall-time.



  

Galaxy catalogue

● Galaxy catalog (PIG) 

– Less than 5% of all 
particles; or 1.5 TB in 
size;

– Contains all galaxies;

– Particles are indexed by 
galaxies;

● Full snapshot:

– 40 TB per snapshot

– Hard to transfer and 
analyze

– challenging for offline 
analysis



  

Step 3: Parallel Solver Example

0 0 0 0 0
2 1 1 2 6
3 2 2 4 11
4 4 4 6 18
6 6 5 7 24

C
1

0 0 0 0 0
2 1 1 3 7
3 2 3 5 13
5 4 4 6 19
6 6 5 7 24

C
2

L
0 0 0 0 0
2 1 1 2 6
3 2 2 4 11
4 4 4 6 18
6 6 5 7 24

L
0 0 0 0 0
2 1 1 2 6
3 2 2 4 11
4 4 4 6 18
6 6 5 7 24

L
0 0 0 0 0
2 1 1 2 6
3 2 3 4 12
4 4 4 6 18
6 6 5 7 24

L
0 0 0 0 0
2 1 1 2 6
3 2 3 4 12
4 4 4 6 18
6 6 5 7 24Sender -> Sum

R
ecv->



  

Strong Scaling Summary

● Small number of ranks

– The single AlltoAll operation uses a small fraction of walltime (~ 
30%)

– Increasing number of items increases walltime; due to increased 
Local sorting time

● Large number of ranks

– The single AlltoAll operation uses a large fraction of walltime (~ 
90%)

– Increasing number of items does not increase walltime;

– Walltime of local sorting is negligible;

– Walltime of Split and Matrix solver is stable and negligible.
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