
  

CUG 2015 Technical Talk: Applications

 MP-sort:
Sorting at Scale on BlueWaters 

in BlueTides Simulation

Yu Feng (UCB), Mark Straka (NCSA), 
Tiziana Di Matteo (CMU), Rupert Croft (CMU)

Supported by NCSA and NSF OCI-0725070, OCI-0749212 and AST-1009781



  

BlueTides Simulation

● Largest hydro-dynamical simulation of the universe;

● 700 Billion Particles; 

● 20250 of Cray XE nodes in BlueWaters; (90% utilization)

● 81000 MPI ranks, 8 OpenMP Threads each;

● MP-Gadget:

– Substantially improved scaling for BlueTides



  

BlueTides on the Chart 



  

BlueTides Simulation

BlueTides: How did first galaxies rise 
from a uniform universe?



  

Galaxy Catalog

Galaxy

Particle

1

*

Contain

Particle ID

Group Number

Type

Position, Velocity, Mass, ...

Group number

Position, Velocity, Mass, ...

Size per particle type

Offset per particle type

● A physicist's database:

– Sort particles by their 
Group Number

– Store a jump-table for the 
offset of the first particle in 
a galaxy

– More complicated in 
reality, because particles 
have different types

– Google: bigfile github



  

Galaxy Catalog

Galaxy

Particle

1

*

Contain

Particle ID

Group Number

Type

Position, Velocity, Mass, ...

Group number

Position, Velocity, Mass, ...

Size per particle type

Offset per particle type

● A physicist's database:

– Sort particles by their 
Group Number

– Store a jump-table for the 
offset of the first particle in 
a galaxy

– More complicated in 
reality, because particles 
have different types

– Google: bigfile github



  

Introducing MP-sort

● At BlueTides scale (81,000 ranks, choice of sorting algorithm 
matters.

– Comparison based, parallel Merge-sort scales badly.
● MP-sort is the new sorting module in BlueTides Simulation

– Partition-based sorting

– Performs reasonably well

– A standalone library
● Simple API, via C and Python
● Small code footprint ( < 2,000 lines)

– http://github.com/rainwoodman/MP-sort

http://github.com/rainwoodman/MP-sort


  

MP-Sort: Partition-Based Sorting

● Many names:

Partition-sort, 
histogram-sort, 
bucket-sort;

● Distributed data

● Naive algorithms

● “Plan & Deliver”

● Need numerical keys for 
items

– galaxy number

● Algorithm

1. Local Sorting

2. Find Splitters: edges of 
the histogram bins;

3. Solve for Shuffling Matrix 
(P x P);

4. Shuffle Items: moving 
from initial ranks to the 
final ranks

5. Local Sorting



  

Partition-Based Sorting Illustrated

[8 6 4 2 0] [9 7 4 3 1] 

1. Local Sorting

[0 2 4 6 8] [1 3 4 7 9]

2. Find Splitters

(0, 4, 10)

3. Calculating Shuffling Matrix

 [0 2 4 6 8] [1 3 4 7 9]

4. Shuffle with MPI_Alltoallv

[0 2 4 1 3] [6 8 4 7 9]

5. Local Sorting

[0 1 2 3 4] [4 6 7 8 9]



  

Partition-based Sorting: Remarks

● Simplest Implementation

– Local sorting: qsort_r

– Splitter finding: binary search

– Shuffle: MPI_Alltoallv
● Plan & Deliver:

– Any item is on the network at most once.
● Only non-trivial step is to solve for Shuffling Matrix.



  

Step 3: Solving for Shuffling Matrix

(0, 4, 10)  [0 2 4 6 8] [1 3 4 7 9]

● Shuffling Matrix L[q, p]: 

– SendDispl: Rank p sends items L[q – 1, p] : L[q, p] to Rank q;

– Bounded by C1[q, p] ≤ L[q, p] ≤ C2[q, p]

– Constrained by total number of items to be received per rank
● Lower and Upper Bounds:

– C1[q, p] is the total number of items less than splitter E[q];

– C2[q, p] is the total number of items less than or equal to splitter 
E[q].

– C1 = [(0, 2, 5), (0, 2, 5)], C2=[(0, 3, 5), (0, 3, 5)]



  

Parallel Solver

(0, 4, 10)  [0 2 4 6 8] [1 3 4 7 9]

● For every column in L

– Initialize with lower bound C1 

– Increase the items in L from 
lower to high row, limited by 
the upper bound C2 

– Until the column sum equals 
to the expected (cumulative) 
sum.

● Parallel in columns

C1=[(0, 2, 5),

 (0, 2, 5)]

C2=[(0, 3, 5),

(0, 3, 5)]

L=[(0, 2, 5),
(0, 2, 5)]

✘ Sum of L: 0, 4, 10 

L=[(0, 3, 5),
(0, 2, 5)]

✓   Sum of L: 0, 5, 10 



  

Shuffling Matrix Solver: Remarks

● With parallelism: 

– Time complexity is O(P);

– memory requirement per rank is O(P);
● Without parallelism both becomes O(P2)

– 100,000 Ranks => 10G elements in Shuffling Matrix!
● Communication overhead is small

– 3 AlltoAll communication to transpose C1, C2, and L.

● Stable

– Maintaining relative ordering of non-unique items

– Items from lower ranks are sent to lower ranks



  

MP-Sort: Algorithm Summary

● Intuitive algorithm:

– Massively parallel sorting in 5 steps
● Standard routines:

– qsort_r, bindary search and MPI_Alltoallv
● No local optimization was done

● “Plan & Deliver”

– A single call to MPI_Alltoallv

– Items are on the network at most once

– Optimal Communication



  

Benchmarks

How does MP-sort perform?



  

Scaling with fixed load

Single call to MPI_Alltoallv
Optimal communication

99% of wall-time



  

Scaling with fixed ranks



  

Insights from Benchmarks

● In large scale parallel applications (~100,000 MPI ranks)

– Effectiveness of local optimization can be marginalized

– Because, communication eventually takes over (99% of walltime)
● What does not help:

– Overlapping communication with local sorting

– Merge instead of sorting in final step

– Requiring unique keys
● What really helps:

– Faster inter-connection network, lower latency and higher bandwidth;

– And maybe, a smarter MPI_Alltoallv



  

Production in BlueTides

● 10x faster than the old merge sort module

● Sorting is no longer the bottleneck

● ~ 2000 seconds per catalog

● ~ 20 catalogues produced, and actively used in scientific 
publications



  

Further Insights

● MP-sort is a key part enabling the scientific discovery in 
BlueTides

● Building “relational” scientific simulation data

– (somewhat) Big Data in a traditional HPC environment 

– Database perspective, without database management 
systems

– Efficiently; as fast as the BlueWaters allows
● Parallel non-numerical algorithms alike have a place in 

large scale numerical applications



  

Conclusion

● MP-sort: A Library for Massively Parallel Sorting

– Optimal in communication

– Performed at scale on BlueWaters for BlueTides simulation

– Scaling Tests up to 160,000 cores
● MPI_Alltoallv is the key

– A tool for Big Data analysis on traditional HPC infrastructure
● http://github.com/rainwoodman/MP-sort

– C Interface

– Python Interface

– Like MP-sort on Github!

https://github.com/rainwoodman/MP-sort/blob/master/README.rst#mp-sort


  

Building the galaxy catalog

1. Assign global index to particles;

2. Sort global index of particles by galaxy/group number;

3. Assign ranks to particles

4. Sort ranks of particles by global index;

5. Exchange particles to the ranks with particle-exchange 
module

Sorting is used twice!



  

Weak Scaling Summary

● At scale (large load and large number of ranks), 
communication dominates the total time

● Hardware and software implementation of MPI_Alltoall 
seems to treat large number of ranks differently, as seen 
by the sudden jump at 80000 ranks.

● Matrix solver scales worse than linear:

– A large fraction of time is in Alltoall of C1, C2 and L;

– Still small fraction of time than the Alltoall of data items.
● Local sorting always a small fraction of wall-time.



  

Galaxy catalogue

● Galaxy catalog (PIG) 

– Less than 5% of all 
particles; or 1.5 TB in 
size;

– Contains all galaxies;

– Particles are indexed by 
galaxies;

● Full snapshot:

– 40 TB per snapshot

– Hard to transfer and 
analyze

– challenging for offline 
analysis



  

Step 3: Parallel Solver Example

0 0 0 0 0
2 1 1 2 6
3 2 2 4 11
4 4 4 6 18
6 6 5 7 24

C
1

0 0 0 0 0
2 1 1 3 7
3 2 3 5 13
5 4 4 6 19
6 6 5 7 24

C
2

L
0 0 0 0 0
2 1 1 2 6
3 2 2 4 11
4 4 4 6 18
6 6 5 7 24

L
0 0 0 0 0
2 1 1 2 6
3 2 2 4 11
4 4 4 6 18
6 6 5 7 24

L
0 0 0 0 0
2 1 1 2 6
3 2 3 4 12
4 4 4 6 18
6 6 5 7 24

L
0 0 0 0 0
2 1 1 2 6
3 2 3 4 12
4 4 4 6 18
6 6 5 7 24Sender -> Sum

R
ecv->



  

Strong Scaling Summary

● Small number of ranks

– The single AlltoAll operation uses a small fraction of walltime (~ 
30%)

– Increasing number of items increases walltime; due to increased 
Local sorting time

● Large number of ranks

– The single AlltoAll operation uses a large fraction of walltime (~ 
90%)

– Increasing number of items does not increase walltime;

– Walltime of local sorting is negligible;

– Walltime of Split and Matrix solver is stable and negligible.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

