
MP-sort: Sorting at Scale on Blue Waters – for a Cosmological
Simulation

Yu Feng1,3, Mark Straka2, Tiziana Di Matteo3, and Rupert Croft3

1Berkeley Center for Cosmological Physics, 341 Campbell Hall, Berkeley, CA 94720
1Berkeley Institute for Data Science, 190 Doe Library, Berkeley, CA 94704

2National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St.,
MC-257, Urbana, IL 61801

3McWilliams Center for Cosmology, 5000 Forbes Avenue, Pittsburgh, PA 15213

April 6, 2015

Abstract

We implement and investigate a parallel sorting algorithm (MP-sort) on Blue Waters. MP-sort sorts
distributed array items with non-unique integer keys into a new distributed array. The sorting algorithm
belongs to the family of partition sorting algorithms: the target storage space of a parallel computing
rank is represented by a histogram bin whose edges are determined by partitioning the input keys. The
algorithm is used in a cosmology simulation (BlueTides) that utilizes 90% of the computing nodes of Blue
Waters, the Cray XE6 supercomputer at the National Center for Supercomputing Applications. MP-sort
is optimal in communication: any array item is exchanged over the network at most once. We analyze a
series of tests on Blue Waters with up to 160,000 MPI ranks. At scale, the single global shuffling of items
takes up to 90% of total sorting time, and overhead time added by other steps becomes negligible. MP-sort
demonstrates expected performance on Blue Waters and served its purpose in the BlueTides simulation.
We make the source code of MP-sort freely available to the public.

1 Introduction
A complex supercomputing application utilizes data
algorithms as well as numerical algorithms. Sort-
ing allows efficient random access of the data cre-
ate by these applications in post-processing and
data analysis. The dataset being sorted is typi-
cally distributed across many computing ranks of
the massively parallel application, and thus paral-

0This research is supported by the National Science Foun-
dation (award number OCI-0725070, OCI-0749212 and AST-
1009781) and by the state of Illinois (the Blue Waters
sustained-petascale computing project). Blue Waters is a joint
effort of the University of Illinois at Urbana-Champaign and
its National Center for Supercomputing Applications.

lel algorithms on multiple-instruction, multiple-data
(MIMD) computer architectures are of particular in-
terest.

One of such applications is the BlueTides simula-
tion, a smoothed particle hydrodynamics (SPH) sim-
ulation to study the formation of the first galaxies in
the early universe.

BlueTides is carried out on the Cray XE6 super-
computer, Blue Waters at National Center for Super-
computing Applications (NCSA), and ran on 20,250
Cray XE nodes with 81,000 MPI process ranks (4
MPI tasks per node, each using 8 OMP threads). A
total of 697 billion particles are used to model the
formation of galaxies and structure in a uniform vol-

1



ume that is 300 times larger than the largest Hubble
Deep Field survey campaign, the BoRG survey[16],
and with a resolution that can resolve the physical
processes inside individual galaxies. Computation at
this scale has only recently become accessible with
the increased power of computers like Blue Waters[3].

The simulation software MP-Gadget is based on
Gadget [14], but heavily modified to include addi-
tional physics and to accommodate such a large com-
puting scale.

Each snapshot of BlueTides consumes 40 TB of
disk storage, and poses severe challenges in data anal-
ysis. BlueTides utilizes a Friend-of-Friend [4] finder
to identify groups (or equivalent classes) of particles
that have formed structure. The properties of these
particles are stored into “Particle in Group” (PIG)
files, where particles of the same group, are stored in
a contiguous data chunk. PIG files are much smaller
(∼ TB each) than snapshots.

Parallel sorting by the group number is an essen-
tial step in building PIGs. We sort in parallel the
meta-data of particles twice calculate the shuffling
scheme of the particle data cross 81,000 MPI ranks,
before calling the particle exchange module to order
the particles into the correct ordering in PIG files.

As we scaled up the production runs for BlueTides,
we discovered that the original parallel merge-sorting
module in MP-Gadget had serious scaling limitations.
At redshift1 z = 14, most of the MPI ranks are cou-
pled into the sorting (because gravitational collapse
happens at all places in the universe). The original
merge-sort based parallel sorting algorithm degrades
significantly, even though the total number of items
sorted is only a few billion (out of 700 billion parti-
cles in BlueTides). Ultimately it was this sorting that
brought the simulation to a halt. This inspired the
construction of MP-sort, a partition based parallel
sorting algorithm.

Sorting is one of the fundamental algorithms in
computing, and parallel sorting algorithms have been
extensively studied, on both shared memory and dis-
tributed memory systems[see, e.g. 1, 10]. Of various
proposed algorithms in the literature, partition based

1redshift marks the time of the simulation. The number
decreases as the simulation evolves from the past toward now.

algorithms have been shown to out-perform other al-
gorithms by a large margin on a massively parallel
computing environment[see, e.g. 5, 8, 9].

Our new parallel sorting module for the BlueTides
simulation, MP-sort, falls into the partition based al-
gorithm family: every item of the input array is ex-
changed at most once across all computing nodes.
The source code of MP-sort is available2. In this pa-
per, we studied the scaling of the algorithm on Blue
Waters at extremely large scale (160,000 MPI ranks),
and show that at scale, the global shuffling of items
uses more than 90% of total wall-time, and overhead
time in other steps is negligible. We also emphasize
that the algorithm has been used in the BlueTides
Simulation that runs continuously for several days on
20,250 nodes with 81,000 MPI ranks and 8 OpenMP
threads per rank. This is 90% of the full capability
of Blue Waters.

The sorting algorithm that is implemented in MP-
sort is described in section 2, where we also show that
the sorting algorithm can be made stable. In section
3, we report and analyze the results of the scaling
tests on Blue Waters, as well as the improvement due
to switching to MP-sort in BlueTides simulation. Sec-
tion 4 is our conclusion. We describe the architecture
of Blue Waters in the appendix.

2 MP-sort: the Algorithm

In this section we describe the algorithm that is im-
plemented in MP-sort. The algorithm, as well as
many other variants of partition based sorting algo-
rithms, is based on the idea of partitioning the local
array into buckets that are directly sent to the tar-
get rank. Because the amount of communication is
minimal, (without global merging) these algorithms
out-perform others at an extreme scale [8]. MP-sort
in BlueTides is a particular version of partition sort,
where the ordering of items is defined via a key func-
tion

K : a→ k, k ∈ Integer,

where a is an item being sorted. We note that it
is crucial NOT to require the keys to be unique, as

2http://github.com/rainwoodman/MP-sort

2



in BlueTides, the group numbers of particles in the
same group are identical. Also, BlueTides does not
need a stable sorting algorithm.

2.1 Overview of the Algorithm

In general, a partition based parallel sorting algo-
rithm contains 5 steps (Algorithm 1). In order to
illustrate the algorithm in a clear way, we will define
a few variables and discuss their relevant properties
in this section.

Definition 1 (Distributed Array). A distributed ar-
ray A[i, p;N ] is distributed to ranks p ∈ [1, P ]. i ∈
[1, np] is the index of the item on rank p.
We also define the distribution N = (n1, n2, ...nP )

as the number of items per rank, and cumulative dis-
tribution N c[p] =

∑
q<p np, the cumulative sum of

N .

Definition 2 (Splitters). The splitters are integer
values E[p], such that for any item in sorted dis-
tributed array B[i, p],

E[p− 1] ≤ B[i, p] ≤ E[p].

It is implied that E[0] = 0.

Definition 3 (Local Bounds). The lower bound
C1[q, p] is the total number of items with keys less
than E[q], on rank p. The upper bound C2[q, p] is
the total number of items with keys less than or equal
to E[q], on rank p. For convenience, we also define
cumulative sums of C1 and C2

R1,2[q] =
∑
q∈P

C1,2[q, p].

R1,2[p] is the total number of items less than (or less
than or equal to) E[p]. The computation of C1,2 is
completely local, while computing each of R1,2 re-
quires a single global communication of size P .

Definition 4 (Shuffling matrix). A rank p sends
items (of the locally sorted array) L[q − 1, p] : L[q, p]
to another computing rank q, and L[q, p] is called the
Shuffling Matrix.

We see that L[p, q] is constrained by the target dis-
tribution N , ∑

q∈P

L[q, p] = N c[p],

and also by the lower and upper bounds C1,2[q, p]

C1[q, p] ≤ L[q, p] ≤ C2[q, p].

Algorithm 1 MP-sort: top-level algorithm
1 Locally sort A[:, p];
2 Find splitters E[p] and local bounds C1[i], C2[i];
3 Solve for a shuffling matrix L[i, p] based on E[p],
C1,2;
4 Shuffle locally sorted A[:, p] into B[:, p];
5 Locally sort B[:, p];

2.2 Details of the Algorithm
2.2.1 Step 1: Local Sorting

The initial local sort serves two purposes. First, the
shuffling can be implemented via a MPI_Alltoall op-
eration when all items that are targeted to the same
bucket are collected into a contiguous array. Second,
when the local array is sorted, counting the number
of local items within a bucket can be accelerated with
a binary search algorithm.

2.2.2 Step 2: Splitters and Local Bounds

In this step, we want to find the splitters and local
bounds such that partitions the output array accord-
ing to the distribution N = (n1, . . . , nP ), where np is
the number of items on rank p.

Because we can locally sort A[:, p] in previous step,
for any give spliters E[p], C1,2 (and hence R1,2) ma-
trices can be quickly calculated via a binary search,
with wall-time complexity O[P logN/P ].

We then want to find E[p] and C1,2 such that

R1[p] ≤ N c[p] ≤ R2[p].

R1,2[p] is monotonic function of E[p], and E[p] is
bound. Therefore a solution can be found via binary

3



search in the “key” domain. The total number of
iterations is only proportional to the number of bits
of the key, which is typically in logarithm of the total
number of items.

2.2.3 Step 3: Shuffling Matrix

As the keys are non-unique, the splitters E[p] insuffi-
ciently determines the splits. We begin with a serial
algorithm to solve for L (Algorithm 2). We see that
the algorithm ensures that the total number of items
rank p receives s = N [p].

Algorithm 2 Serial Algorithm to solve for L[i, p]
for i = 1 to P do
L[i, p]← C1[i, p]
s←

∑
p L[i, p]− L[i− 1, p]

if s < N [i] then
for p = 1 to P and s 6= N [i] do
d← min(C2[i, p]− L[i, p], N [i]− s)
L[i, p]← L[i, p] + d
s← s+ d

end for
end if

end for

For a very large dataset decomposed over a large
number of ranks (P > a few thousand), the matrices
become too large to be practical. We decompose the
matrices along the row direction, and use a parallel
algorithm. The rows are solved in parallel. The algo-
rithm is listed in Algorithm 3. The parallel algorithm
is similar to the serial algorithm, but we use the cu-
mulative distribution N c to avoid data dependency
between different rows.

2.2.4 Step 4: Shuffle

In this step, we call an MPI_Alltoallv function to ex-
change the items between computing ranks according
to the constructed communication layout L[:, :]. We
note that this step is the only place in MP-sort where
a large amount of communication is involved. Every
item is sent directly to the destination rank at this
step. The total number of items exchanged within
the communication network is N .

Algorithm 3 Parallel Algorithm to solve for L[i, p]
Require: Arrays L[i, p], C1[i, p], C2[i, p] are dis-
tributed to computing rank i by rows.
L[i, p]← C1[i, p]
s←

∑
p L[i, p]

if s < N c[i] then
for p = 1 to P and s 6= N c[i] do
d← min(C2[i, p]− L[i, p], N c[i]− s)
L[i, p]← L[i, p] + d
s← s+ d

end for
end if

2.2.5 Step 5: Final local sort

After the final local sort, the distributed array will be
sorted. We note that because the distributed array
is already partially sorted, the local algorithm may
perform slightly better than in the initial local sort.
Some authors further exploit this and replace the step
with merging [e.g. in 8]; however we note that the
gain is negligible at a massive scale, for the time spent
in local sort is less than 5% of the total wall-time in
our largest test runs.

2.3 Stability

To guarantee a stable algorithm, two conditions must
be met: (1) the algorithm that is used for local sort is
stable; (2) the layout solver preferentially consumes
items from lower ranks. Condition 1 preserves the rel-
ative ranking of two items with identical keys within
a computing rank; Condition 2 preserves the rela-
tive ranking of two such items after the All-to-All
exchange.

For local sorting, we use the unstable qsort_r im-
plementation in glibc version 2.18[11]. Therefore, our
implementation violates Condition 1.

We note however, our implementation preserves
Condition 2, therefore, if desired, it can be made sta-
ble by replacing qsort_r with a stable local sorting
algorithm.

4



3 Scaling Tests and Analysis
We performed weak-scaling and strong-scaling tests
of MP-sort on Blue Waters at ni = 100, 000,
1, 000, 000 and 10, 000, 000 64-bit integer items per
MPI rank. We vary the number of MPI ranks up
to 160,000 (5000 nodes on Blue Waters, 32 ranks per
node). Table 1 lists all of the test runs and their total
wall-time.

We randomly generate integers with 56 bits: since
the key space is much larger than the number of
items, key collision is unlikely in the tests.

3.1 Weak-scaling: Component analy-
sis

We break the timing of the algorithm into 5 steps,
each corresponding to one major section of the algo-
rithm. (Figure 1)

LocalSort1 and LocalSort2: These are the first and
last local sorting steps in the algorithm. The lo-
cal sorting steps do not utilize any network com-
munication; however there is a necessary barrier
synchronization at the end of the step. We ob-
serve that the two steps together take a negligi-
ble fraction of the total computing time as the
size of the problem increases. (< 1% on 160,000
ranks.)

FindEdges: The step corresponds to Step 3. The
algorithm is iterative with a binary search. Fix-
ing the splitters requires 56 iterations (56 corre-
sponds to the number of bits in a key). In an
iteration, we perform two MPI_Allreduce opera-
tions along the columns of integer arrays C1[i, p]
and C2[i, p] (reduction of two P+1-length 64-bit
integer arrays on P ranks). In addition, we per-
form one MPI_Allreduce of a boolean variable to
collectively evaluate the terminal condition. We
observe that the time spent in this step scales
linearly with the number of MPI ranks.

SolveLayout: The step corresponds to Algorithm
3. The algorithm includes one MPI_Alltoall to
transpose the 64-bit integer arrays C1[i, p] and
C2[i, p]. Overall, we observe that the time spent

in this step scales near linearly to the number of
MPI ranks, and is dominated by the communi-
cation.

Exchange: The step contains (1) an MPI_Alltoall
call that builds the 32-bit integer receiving dis-
placement array, and (2) an MPI_Alltoallv call
that exchanges all of the items. The total num-
ber of items sent out from a rank is N/P , and
the average message size is N/P 2, decreasing
with the number of MPI ranks. The number
of messages posted by a rank is P , and the to-
tal number of messages on the communication
subsystem is P 2. For example, with the 10M,
80000-rank test, an MPI rank posts 80,000 mes-
sages, each of which contains 1250 items or 10
KB, totaling to 80 MB. Overall, we observe that
the communication time scales near linearly with
the number of MPI ranks.

3.2 Communication and Load Balance
Analysis

We observe that the communication performance ap-
pears bandwidth-limited for MPI rank counts fewer
than about 8k, due to the size of the decomposition
at that scale. The weak-scaling plots (Figure 2) sug-
gest that smaller process counts exhibit dispropor-
tionately larger exchange times with increasing N,
likely due to saturating the bandwidth of the nodes
at that scale or perhaps greater load imbalance (dis-
cussed below). The configurations with fewer MPI
ranks are much more sensitive to very large N, in-
dicating that a performance threshold is crossed be-
tween N = 106 and 107.

The strong scaling charts (Figure 2) show that
bandwidth is not yet being saturated at process
counts greater than 8k since the times remain flat,
or in fact decrease, with super-linear performance,
as the average message size decreases with P2. Al-
though the total communication time naturally in-
creases with the number of ranks, the growth rate
above 8k tasks is essentially independent of the mes-
sage payload. The steady growth in communication
time at MPI counts >8k is due to the increasing over-
head as the number of messages grows as P2.

5



Table 1: Total wall-time of tests
1024 2048 4096 8192 16384 80000 160000

100K 2.167 4.088 7.094 13.95 20.45 269.5 342.5
1M 3.324 5.404 8.949 13.32 28.48 285.4 462.5
10M 25.35 26.33 32.59 29.9 39.37 309 475.8

Figure 1: Weak Scaling tests with increasing number of MPI ranks

6



Figure 2: Strong Scaling tests at 100K, 1M, 10M load.

7



For the global exchange pattern dominating these
tests, the global bandwidth is actually twice the bi-
section bandwidth, since half of the total communi-
cation is local, with only half actually crossing the
bisection. Depending on a job’s size and placement
within the 3D torus, the bisection bandwidth of that
partition of nodes can determine the performance
of some all-to-all communications[6]. The bisection
bandwidth available to these larger partitions of Blue
Waters would comfortably exceed the requirements of
our tests. Therefore we would like to point out that
the communication time is likely due to message la-
tency. Other studies [e.g. 13, 15, 17] have addressed
bandwidth and latency performance over the Cray
Gemini interconnect with both well-defined commu-
nication benchmarks and full applications in greater
detail.

In these tests (and the full BlueTides simulation
as well), the data is random, but the communication
pattern is not unpredictable. It is worth comment-
ing on the distribution of message sizes. Since the
items are roughly drawn from a uniform distribution,
the number of items sent from one rank to another
roughly follows a Poisson distribution:

Nij ∼ P (N/N2
P )

In other words, the 10M load/160K rank run would
have on average 100 items per message, with 1 − σ
uncertainty of 10 items. This corresponds to a 10
percent message imbalance. With fewer ranks, the
imbalance tends to grow; for the 100K load/160K
run, with an average of 0.6 items per message, many
messages are expected to be zero-length. This ex-
plains the slight decrease in communication time of
the run. (See the last panel of Figure 2)

3.3 Performance in BlueTides Simula-
tion

Sorting of particles in the BlueTides simulation is
implemented as part of the I/O subroutine of the
FOF module. Figure 3 shows the timing before and
after replacing the old merge-sort module with MP-
sort.

After switching to MP-sort, we process 10 times
more particles in the module within the same amount

of wall-time, indicating MP-sort has substantially im-
proved the performance of the simulation.3

This can be further seen from the time spent in
sorting. The FOF I/O module performs 4 operations:

• Two sorting steps on an array of 128 bit in-
tegers with the same length as the number of
sorted particles to work out the particle ex-
change scheme;

• Globally exchange the sorted particles with the
particle exchange module in MP-Gadget;

• Write the sorted particles to disk.

Ideally one should have had a separate timer for the
sorting module, but unfortunately the simulation did
not distinguish these times in this version. As a lower
bound, we estimate 1000 seconds are spent in opera-
tions other than sorting. Therefore the upper bound
of the sorting time is tall − 1000. We see that the
improvement in sorting can be a factor of 4 at 4 bil-
lion particles and it increases to a factor of 10 as
the number of sorted particles increases to 20 billion.
This improvement in sorting is mostly due to the
amount of communication dropping from O[N logN ]
(old merge-sort) to O[N ]. As the simulation pro-
ceeds, more particles will be included in the sort, and
we observe an even larger improvement.

4 Conclusion

We implemented an optimally communication effi-
cient massively parallel sorting algorithm on Blue
Waters. Because there is only one global shuf-
fling of items, the algorithm demonstrates sustained
parallel scaling as well as vastly improved time-to-
solution over the previously implemented method
(10x wall-time improvement). For problems at a
large scale (large number of MPI ranks and large
load), more than 90% of wall-time is spent in the sin-
gle MPI_Alltoall shuffling operation. Our tests show
that for large problems, wall-time spent in other steps

3We were inspired to switch to MP-sort at 3.7 billion parti-
cles when the run stalled during the old sorting for more than
30 minutes.

8



Figure 3: MP-sort in BlueTides Simulation: Before and After. The sorting time is recovered from the timing
reported by the full FOF I/O timer. (See text) The solid lines show the total FOF I/O time measured from
the simulation. The dash-line gives a projection of the wall-time of the old sorting module.

of a partition based parallel sorting algorithm is es-
sentially negligible, and the sorting time is limited
by the message latency of the network. Future im-
provements in wall-time will benefit the most from
increased efficiency and performance of network hard-
ware and software (MPI implementation). This algo-
rithm has been run on NCSA’s Blue Waters Cray
XE6 at up to 160,000 MPI ranks and is integrated
as part of the BlueTides SPH cosmology simulation
which has successfully run for days on 90% nodes of
Blue Waters.

We release the source code of MP-sort at http://
github.com/rainwoodman/MP-sort. Contributions
to the software package are welcomed. We also pro-
vide the IPython notebook and raw data to reproduce
the figures and tables in this paper with the source
code under the paper/ directory.

A Appendix: Blue Waters Sys-
tem Architecture

The Blue Waters supercomputer provides sustained
performance of 1 petaflop/s on a range of real-world
science and engineering applications. Blue Waters is

composed of 237 Cray XE6 cabinets plus 32 cabinets
of Cray XK7 with NVIDIA Kepler(TM) GPU com-
puting capability [12]. The Cray XE6 processor is
a 16-core 64-bit AMD Opteron 6276 series (Interla-
gos). It features 8x64 KB of L1 instruction cache,
16x16 KB of L1 data cache, 8x2 MB of L2 cache per
processor core, and 2x8 MB shared L3 cache. Up to
192 processors can populate a cabinet. The memory
system is 64 GB, registered ECC DDR3 SDRAM per
compute node, with a memory bandwidth of up to
102.4 GB/s per node.

The interconnect is a 3-D torus, with 2 compute
nodes connected to a Cray Gemini ASIC router.
There are 2 network interface cards, 48 switch ports
per Gemini chip providing a 160 GB/s switching ca-
pacity per chip[7][2].

Disk storage is comprised of a Sonexion 1600 with
the Lustre parallel file system. Total available storage
is 26.4 PB and can achieve an aggregate I/O band-
width of greater than 1 TB/second.

References
[1] Selim G. Akl. 1990. Parallel Sorting Algorithms.

Academic Press, Inc., Orlando, FL, USA.

9



[2] Jason Beech-Brandt. 2011. Gemini description,
MPI. In Parallel Programming Workshops and
Programming Language Courses 2011. Uni-
versity of Stuttgart, Allmandring 30, D-70550
Stuttgart, Germany. https://fs.hlrs.de/
projects/par/events/2011/parallel_prog_
2011/2011XE6-1/08-Gemini.pdf

[3] Rupert Croft, Tiziana Di Matteo, Nishikanta
Khandai, and Yu Feng. 2015. Petascale Cos-
mology: Simulations of Structure Formation.
Computing in Science & Engineering 17, 2
(2015), 40–46. DOI:http://dx.doi.org/10.
1109/MCSE.2015.5

[4] Marc Davis, George Efstathiou, Carlos S. Frenk,
and Si D. M. White. 1985. The evolution of
large-scale structure in a universe dominated by
cold dark matter. The Astrophysical Journal
292 (May 1985), 371–394. DOI:http://dx.doi.
org/10.1086/163168

[5] David J. DeWitt, Jeffrey F. Naughton, and
Donovan A. Schneider. 1991. Parallel Sorting on
a Shared-nothing Architecture Using Probabilis-
tic Splitting. In Proceedings of the First Inter-
national Conference on Parallel and Distributed
Information Systems (PDIS ’91). IEEE Com-
puter Society Press, Los Alamitos, CA, USA,
280–291. http://dl.acm.org/citation.cfm?
id=382009.383693

[6] Richard Fiedler. 2013. Improving Performance
of All-to-All, Random Pair, and Nearest-
Neighbor Communication on Blue Waters.
In Blue Waters User Workshop , February,
2013. National Center for Supercomputing
Applications, Urbana-Champaign, IL, USA.
https://bluewaters.ncsa.illinois.edu/
documents/10157/12008/AdvancedFeatures_
PRAC_WS_2013-02-27.pdf

[7] Forest Godfrey. 2012. The Cray Gemini Net-
work, Basic Architecture and Failure Analy-
sis. Technical Report. Urbana-Champaign,
IL, USA. http://i2pc.cs.illinois.edu/
public_archive/Godfrey_Talk.pdf

[8] Michael Hofmann and Gudula Runger. 2011.
A Partitioning Algorithm for Parallel Sorting
on Distributed Memory Systems. In Proceed-
ings of the 2011 IEEE International Confer-
ence on High Performance Computing and Com-
munications (HPCC ’11). IEEE Computer So-
ciety, Washington, DC, USA, 402–411. DOI:
http://dx.doi.org/10.1109/HPCC.2011.59

[9] Daniel Jiménez-González, Juan J. Navarro, and
Josep-L. Larriba-Pey. 2002. The Effect of Lo-
cal Sort on Parallel Sorting Algorithms. In Pro-
ceedings of the 10th Euromicro Conference on
Parallel, Distributed and Network-based Pro-
cessing (EUROMICRO-PDP’02). IEEE Com-
puter Society, Washington, DC, USA, 360–
367. http://dl.acm.org/citation.cfm?id=
1895489.1895536

[10] Vivek Kale and Edgar Solomonik. 2010. Paral-
lel Sorting Pattern. In Proceedings of the 2010
Workshop on Parallel Programming Patterns
(ParaPLoP ’10). ACM, New York, NY, USA,
Article 10, 12 pages. DOI:http://dx.doi.org/
10.1145/1953611.1953621

[11] David Miller and contributors. 2013.
GNU C Library v2.18. (August 2013).
https://sourceware.org/ml/libc-alpha/
2013-08/msg00160.html

[12] NCSA. 2012. BlueWaters System Summary.
Technical Report. Urbana-Champaign, IL,
USA. https://bluewaters.ncsa.illinois.
edu/hardware-summary

[13] Hongzhang Shan, Nicholas J. Wright, John
Shalf, Katherine Yelick, Marcus Wagner, and
Nathan Wichmann. 2011. A Preliminary Evalu-
ation of the Hardware Acceleration of the Cray
Gemini Interconnect for PGAS Languages and
Comparison with MPI. In Proceedings of the
Second International Workshop on Performance
Modeling, Benchmarking and Simulation of High
Performance Computing Systems (PMBS ’11).
ACM, New York, NY, USA, 13–14. DOI:http:
//dx.doi.org/10.1145/2088457.2088467

10



[14] Volker Springel. 2005. The cosmological sim-
ulation code GADGET-2. Monthly Notices of
the Royal Astronomy Society 364 (Dec. 2005),
1105–1134. DOI:http://dx.doi.org/10.1111/
j.1365-2966.2005.09655.x

[15] Yanhua Sun, Gengbin Zheng, Laximant V. Kale,
Terry R. Jones, and Ryan Olson. 2012. A
uGNI-based Asynchronous Message-driven Run-
time System for Cray Supercomputers with
Gemini Interconnect. In Proceedings of the
2012 IEEE 26th International Parallel and Dis-
tributed Processing Symposium (IPDPS ’12).
IEEE Computer Society, Washington, DC, USA,
751–762. DOI:http://dx.doi.org/10.1109/
IPDPS.2012.127

[16] M. Trenti, L. D. Bradley, M. Stiavelli, P. Oesch,
T. Treu, R. J. Bouwens, J. M. Shull, J. W.
MacKenty, C. M. Carollo, and G. D. Illingworth.
2011. The Brightest of Reionizing Galaxies Sur-
vey: Design and Preliminary Results. ApJ 727
(Feb. 2011), L39. DOI:http://dx.doi.org/10.
1088/2041-8205/727/2/L39

[17] Abhinav Vishnu, Monika ten Bruggencate, and
Ryan Olson. 2011. Evaluating the Potential of
Cray Gemini Interconnect for PGAS Communi-
cation Runtime Systems. In Proceedings of the
2011 IEEE 19th Annual Symposium on High
Performance Interconnects (HOTI ’11). IEEE
Computer Society, Washington, DC, USA, 70–
77. DOI:http://dx.doi.org/10.1109/HOTI.
2011.19

11


