
© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

1

Moab and TORQUE Highlights
CUG 2015

David Beer

TORQUE Architect

Gary D. Brown

HPC Product Manager

28 Apr 2015

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

2

Agenda

▪ NUMA-aware Heterogeneous Jobs

▪ “Ascent” Project

▪ Power Management and Energy
Accounting

▪ DataWarp Integration

▪ Nitro HTC Scheduler

▪ Collaboration Invitation

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

3 © 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

3

NUMA-aware
Heterogeneous Job

Task Placement

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

4

NUMA-aware Job Task Placement

▪ Moab job submission options (msub)
▪ Task-oriented (tasks=nnn), not job- or node-

oriented

▪ Logical processors/task (lprocs=nn)

▪ Logical processor definition
▪ Cores (usecores – on request)
▪ Threads (usethreads – on request)
▪ Cores or threads (allowthreads – default)

▪ Memory per task (memory=xxx)

▪ Other options per task (features, generic resources,
accelerators, etc)

▪ TORQUE qsub supports same syntax

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

5

NUMA-aware Job Task Placement (continued)

▪ Places task exclusively on resources of
specified locality
▪ node Compute node

▪ socket

▪ numa NUMA node (Intel Xeon “Haswell” and AMD Opteron)

▪ core

▪ thread

▪ Uses control groups (cgroups) to pin task
to resources
▪ Processors

▪ Memory

▪ PCIe devices (GPUs, MICs)

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

6

NUMA-aware Job Task Placement (continued)

▪ Example job submission commands

Simple 1 task per core, regardless if hyper-threaded

qsub –L tasks=100:lprocs=1:usecores:place=core

Coupled-simulation (1 solid task, 2000 Cray fluid tasks)

msub –L tasks=1:usecores:memory=800GB:place=node:bigmem

 -L tasks=2000:usecores:place=core:memory=2GB:cray

1 task using 1 thread per 2 threads (e.g., Intel MIC KNL)

qsub –L tasks=1200:lprocs=1:usethreads:place=thread=2

1 task per 2 sockets with 6 cores (3 / socket) and 1 GPU

msub –L tasks=100:lprocs=6:usecores:memory=200GB:gpu=1:

 place=socket=2

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

7

NUMA Example 1 – Heterogeneous Nodes

qsub −L tasks=288:lprocs=1:usecores:place=core=2 myMPIjob

10 tasks
per node

5 tasks
per node

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

8

NUMA Example 2 – GPU Cluster

qsub -L tasks=16:lprocs=1:usecores:gpu=1:place=core myGPUsim

GPUs NUMA
0

NUMA
1

NUMA
2

NUMA
3

0/1 100% 85% 54% 48%

2/3 58% 33% 100% 86%

4/5 58% 33% 98% 85%

6/7 58% 33% 100% 86%

Excellent performance

Good performance

Fair performance

Poor performance

GPU/Memory Data Transfer Speed

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

9

NUMA Example 3 – Avionics Simulation

msub -L tasks=1:lprocs=3:memory=5GiB:usecores:place=core=4 # red System board
 -L tasks=4:lprocs=1:memory=10GiB:usecores:place=core=2 # orange A board
 -L tasks=2:lprocs=2:memory=20GiB:usecores:place=core=3 # yellow B board
 -L tasks=1:lprocs=4:memory=50GiB:usecores:place=core=5 # green C board
 -L tasks=3:lprocs=8:memory=30GiB:usecores:place=socket # blue D board
 -l naccesspolicy=singlejob AvionicSim.pbs

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

10

NUMA-aware Benefits

▪ Accurately place jobs on cores according to
memory access
▪ NUMA-optimized, memory-bound workloads can run up to

2.5x faster

▪ More consistent job runtimes with predictable memory
access times

▪ Much less job-to-job or task-to-task interference on each
compute node

▪ User can define resources as needed by apps
▪ Request resources on a per-task type basis, allowing jobs

to reserve only what they need

▪ Increases hardware ROI with higher job
throughput due to shorter job runtimes

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

11 © 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

11

Ascent Project

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

12

Focus and Goals

▪ Main goals
▪ Improve scalability (>10x)

▪ Improve job throughput (>10x)

▪ Improve stability (rock-solid)

▪ Improve architecture

▪ Timeframe
▪ 24 months with four deliveries

▪ Moab 8.0 / TORQUE 5.0

▪ Moab 8.1 / TORQUE 5.1

▪ Moab 9.0 / TORQUE 6.0

▪ Next version

▪ People
▪ Focused team of top engineers

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

13

Moab 8.0
Example

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

14

TORQUE 5.0 Results

▪ Reduced “jitter” by eliminating polling
of compute nodes for job information

▪ Job submission rate of 250+ jobs per
second for 100K jobs with no errors

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

15

Moab 8.1 Results

▪ Moab scheduling cycle time
reduced by 55%

▪ Moab client command response delay
reduced by 84%

▪ Moab job submission time
reduced by 60%

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

16

Moab 9.0 Results (target of 29 July)

▪ Moab “query” client commands’
response delay reduced to sub-second

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

17 © 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

17

Power Management

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

18

CPU Clock Frequency Control

▪ Power management for running nodes

▪ Job submission cpuclock= option

▪ Absolute Clock Frequency Number

▪ cpuclock=2200

▪ cpuclock=1800mhz

▪ Linux Power Governor Policy

▪ cpuclock=conservative

▪ Relative P-state Number

▪ cpuclock=0

▪ cpuclock=p2

▪ Can set in job scripts and Moab templates

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

19

Node Power State Management

▪ Additional Power States (C-states)
▪ Power management for idle nodes

▪ Suspend (C3/C6)

▪ Hibernate (S4)

▪ Shutdown (S3)

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

20

Power Management Control Architecture

Moab MWS

Power RM
Plug-in

NodePower
Script

pbsnodes

Linux OS
/sys/power

TORQUE
pbs_mom

IPMI

On
Off

Suspend

On

Off

pbs_server

Hibernate
Shutdown

Wake-on-LAN

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

21

Moab/Cray Power Management Control
Architecture

Moab
NodePower

Script

SMW

capmc
On
Shutdown

On

Off

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

22

Per-Job Energy Accounting

▪ Part of TORQUE/Cray integration

▪ End of job
▪ TORQUE checks for RUR-based energy

consumption information

▪ Sums energy use for each job step (aprun)

▪ Sends energy_used job metric to Moab

▪ Moab passes job metric to Moab
Accounting Manager for possible
charging

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

23 © 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

23

DataWarp Integration

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

24

DataWarp Integration Project

▪ Supports all DataWarp storage types
▪ Per-Job DW storage

▪ Persistent DW storage (across multiple jobs)

▪ All DW storage scheduled by Moab

▪ Out-of-the-box functionality
▪ Some site-specific information configuration required

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

25

DataWarp Integration

▪ 2 per-job DW storage models supported
▪ Selectable by user at job submission

▪ 3-job Model
▪ Favors compute nodes as “scarce” resource

▪ Compute nodes allocated only during user job

▪ Prologue/Epilogue Model
▪ Favors DW storage as “scarce” resource

▪ Compute nodes allocated during entire DW
storage allocation

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

26

3-Job Model

▪ Follows Moab Data-staging Model
▪ Uses Moab “system” jobs

▪ Automatically creates 3-job workflow
▪ DW creation/input data staging

▪ User job

▪ Output data staging/DW destruction

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

27

3-Job Model Architecture

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

28

Prologue/Epilogue Model

▪ Uses TORQUE prologue and epilogue

▪ Prologue
▪ Create job’s DW storage allocation

▪ Stage input data to DW storage

▪ User job

▪ Epilogue
▪ Stage output data from DW storage

▪ Destroy job’s DW storage allocation

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

29

Prologue/Epilogue Model Architecture

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

30

Persistent DataWarp
Storage

▪ Moab tracks DW
storage capacity

▪ Moab persistent DW
storage reservation

▪ Persistent DataWarp
storage management
▪ Created by reservation

start trigger

▪ Destroyed by reservation
end trigger

▪ Jobs get mount point

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

31 © 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

31

Nitro
HTC Job Scheduler

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

32

Nitro Product

▪ High-throughput Computing (HTC)
▪ Usually short, single-core jobs

▪ Nitro HTC Scheduler Product
▪ Eliminates traditional scheduler overhead for

HTC jobs

▪ Executes HTC jobs very fast

▪ Shorter the HTC jobs, the greater the speedup

▪ Submitted as normal batch job to HPC job
scheduler

▪ Scheduler-agnostic

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

33

Nitro Architecture

▪ Nitro Coordinator
▪ Executes on first host allocated to Nitro job

▪ Schedules all HTC tasks defined in “Tasks” file

▪ Assigns tasks to Nitro “workers” for execution

▪ Nitro Workers
▪ Execute on all hosts allocated to Nitro job

▪ Worker executes assigned tasks as fast as
possible

▪ Can run more tasks than “cores” on worker host

▪ Task File

▪ Log Files

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

34

Nitro Product Architecture

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

35

Nitro Job Progress Log

▪ In-progress and Final versions

▪ Nitro Job Information
▪ Start / Finish/ Elapsed Times

▪ Job ID

▪ Task / Job Progress Log / Completed Task Log
File Paths

▪ Success/Failure/Timeout/Invalid Task Statistics

▪ Average Task Time

▪ Tasks per Second

▪ Worker Statistics

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

36

Completed Task Log

▪ All tasks

▪ Task Status
▪ Success

▪ Failure

▪ Timeout

▪ Invalid task definition

▪ Tab-delimited format
▪ Spreadsheet, database, etc

▪ Optional column headings

Task Information

• Job ID

• Task ID

• Line Number

• Task Status

• Exit Code

• Host Name

• Task Start Time

• Task Duration

• User CPU Time

• System CPU Time

• Core Count

• Max Physical Memory

• Max Virtual Memory

• Task Name (optional)

• Labels (optional)

• Failure Message (optional)

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

37

Nitro “Linger” Mode

▪ --linger Command Line Option

▪ Coordinator continues execution after
Task file end-of-file encountered
▪ Periodically polls Task file

▪ User appends new task definitions to
Task file
▪ Nitro executes additional tasks

▪ Statistics  Last 60 seconds

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

38 © 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

38

Collaboration Invitation:
Malleable/Evolving Job API

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

39

Job Types and Scheduling

Classification Description

Rigid A job that requires a fixed set of resources, all of which the batch system must allocate to
the job before it starts (fixed static resource allocation)

Moldable A job that allows a variable set of resources for scheduling but requires a fixed set of
resources to execute, which the batch system must allocate before it starts the job and
which the job must discover in order to execute properly (variable
static resource allocation)

Malleable A job that allows a variable set of resources, which the batch system dynamically allocates
and deallocates and of which allocation/deallocation the scheduler must inform the running
job so it can adapt to the new resource allocation (unidirectional, scheduler-initiated and
application-executed, variable dynamic resource allocation)

Evolving A job that dynamically requests and relinquishes resources during its runtime and of which
the scheduler must be informed while the job is running so it can allocate or deallocate the
resources (unidirectional, application-initiated and scheduler-executed, variable dynamic
resource allocation)

Dynamic Adaptive Computing Definition
A job where the scheduler or the job can dynamically initiate resource allocation changes
during the job's runtime and of which the other must be informed while the job is running
so they both keep the job's resources allocation synchronized (bidirectional, application- or
scheduler-initiated and scheduler- or application-executed, variable dynamic resource
allocation)

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

40

System Utilization with No Malleable or
Evolving Jobs

8

7

6

5

4

3

2

1
0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240

B

A

C D

F

E
G

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

41

System Utilization with Malleable Job M
and Evolving Job D

8

7

6

5

4

3

2

1
0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240

M1 M2

M3

M4

B

A

C

F

E
M7 G

M5

M6

D2

D1

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

42

Standard Malleable/Evolving Job API

▪ Currently no standard application API

▪ Much research done
▪ Univ of Illinois at Urbana-Champaign (UIUC)

▪ Malleable jobs (Charm++ codes)

▪ German Research School for Simulation Sciences
(RWTH Aachen) (group now at Technische Universität
Darmstadt)

▪ Evolving jobs (AMR code with Maui/TORQUE)

▪ Invitation to start API collaboration
▪ Application Developers

▪ Scheduler Vendors

▪ Email: gbrown@adaptivecomputing.com

© 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

43 © 2014-2015 ADAPTIVE COMPUTING ENTERPRISES, INC.
Cray User Group 2015

43

Questions?

