Tutorial: Tracking users codes
and environments on a cluster
with XALT

Mark R. Fahey, LCF Division, ANL
Robert Mclay, TACC, U. Texas Austin
Reuben D. Budiardja, NICS, U. Tennessee Knoxville

7 1V _ Syl

/\/\ogmﬁcemt Computmg

<

XALT Tutorial

Acknowledgment

This work was supported by the NSF award 1339690
entitled “Collaborative Research: SI2-SSE: XALT:
Understanding the Software Needs of High End
Computer Users.”

This material is based upon work performed using
computational resources provided by the University
of Tennessee’s Joint Institute for Computational
Sciences and the Texas Advanced Computing Center
(TACC) at the University of Texas at Austin.

Argonne National Laboratory's work was supported
by the U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research, under
contract DE-AC0O2- 06CH11357.

CUG 2015

Outline

€ Introduction and Motivation, 10 min

€ Prepare toinstall, 20 min
#® Things to consider

€ Installation and online demo, 50 min
% Configure, make, install

% Post install changes

€ Break, 30 min
€ Testing, 30 min

% Debugging

€ Production, 15 min
% Wrappers

& Data transmission

€ Data mining, 30 min

XALT Tutorial 3 CUG 2015

Introduction and Motivation

XALT Overview

« Goal is a census of libraries and applications

« Collecting job-level and link-time level data and
subsequent analytics

& L

Overview (2)

NSF funded project

Trying to balance the need for portability with support for site-
specific capabilities

Have a fairly straightforward process system administrators use
to install, configure, and manage

Attempting to build a community around analytics of software
usage

€ this would be potentially one of many tools

Making it available to the community

€ Sourceforge and github

Why

Most every computing center needs or wants

<

L L B

How many users and projects use a particular library or
executable

If a library they maintain is used (and how often)

If center provided packages are used more or less than user-
installed packages

After the fact identify users and code that used a buggy library
Provide information on how an executable was built (provenance
data) - how did | build my code 6 months ago

Catch compile time/run time differences

|dentify applications that are using deprecated libraries or just
identify old binaries

L L

Goals

Avoid impacting the user experience

Must work seamlessly on any cluster, workstation or high-end
computer

Supports both static and dynamic libraries

Lightweight solution

Tutorial Format

€ Will intersperse slide lecture with online
demonstration
€ You are highly encourage to follow along doing
the install on your own Cray (or cluster)
€ Everything we do today can be done in user
space

Prepare to install

Installation is mostly automated with some manual steps

XALT Tutorial 10 CUG 2015

Obtaining

€ Released tar file from sourceforge

% http://sourceforge.net/projects/xalt/

€ Github repo
% https://github.com/Fahey-Mclay/xalt.git

XALT Tutorial 11 CUG 2015

http://sourceforge.net/projects/xalt/
http://sourceforge.net/projects/xalt/
https://github.com/Fahey-McLay/xalt.git
https://github.com/Fahey-McLay/xalt.git
https://github.com/Fahey-McLay/xalt.git
https://github.com/Fahey-McLay/xalt.git

Prerequisites

€ Clients:
% Python 2.6 or later
% Python MySQLDb module

€ Servers

% MySQL with proper IP ranges opened for client
machines

XALT Tutorial 12 CUG 2015

Unpacking

€ Choose an installation directory

% Likely to be new versions as we provide patches and
add functionality

% Might want to provide for multiple versions

€ Directory will be referred to as XALT_DIR

XALT Tutorial 13 CUG 2015

Decisions: Database(s)

€ If you are running XALT on multiple machines, must
decide if you want to have one database for all or
multiple databases (e.g. one per machine)

% Either mode is easily support

% Developers use one database

€ Regardless, will need file/syslog to database scripts
for each machine

XALT Tutorial 14

CUG 2015

Decisions: Lmod/ReverseMap

€ If your machines have different software installations
(module lists) AND you want the ReverseMap
support in XALT, then you will need an Lmod
ReverseMap per machine

% If machines are different architectures, then need a
build of Lmod per machine

% Lmod provides the spider utility which creates the
map

% TCL module system does not need to be replaced

#® Lmod can be added later, a script is available to
update table entries with ReverseMap after the fact

XALT Tutorial 15 CUG 2015

Decisions: Intercepting

€ If you have multiple code launchers or linkers, then
you have to pick a method to intercept them

€ This also depends on how you “install” XALT: with a
module or as a replacement

€ If they are already wrapped/intercepted, then add
XALT as a plugin

XALT Tutorial 16 CUG 2015

Decisions: Intercepting
(cont)

€ With a single linker/launcher, one can replace them —
rename the originals and put XALT wrappers in place

% Not recommended as it requires modifications to our
wrappers

% If in /usr/bin, then the modulefile for each MPI must set
some environment variable that the Id and mpirun
wrappers recognize

% If, however, the XALT wrappers are placed in each each
MPI installation directory (not recommended), then the
wrappers just call “./Id.x” and “./mpirun.x”

€ Within the Id and mpirun wrappers, you still need to set
the XALT_DIR properly to where-ever it was unpacked and

configured

XALT Tutorial 17 CUG 2015

Decisions: Intercepting
cont)

€ If you have multiple launchers, then there must be a way to swap
them (assuming modules)

% Create a modulefile for XALT (for each version)

*® An example modulefile is provided with the xalt.tar file. This can be
used to help make XALT part of the default environment. The
modulefile modifies the default user PATH and puts the Id and mpirun
wrappers first in the PATH.

€ This requires addressing an issue: any change to the MPI library by a
module swap will not keep the XALT wrapper first in the path

% Have each MPI modulefile reload the XALT modulefile (or inline the
XALT modulefile contents) OR

® Use Lmod as the module system which allows one to specify priorities
on a PATH setting. Lmod has the ability to prioritize modules to keep
them first in the path

<] Set the XALT DIR priority to ensure that the MPI modulefile swaps will
not be a problem.

XALT Tutorial 18 CUG 2015

Suggestion: Intercepting
Linker on Cray

€ Cray provides (undocumented ?)
environmental variable ALT LINKER to
use (called by cc, CC, ftn wrappers)

€ Set ALT LINKER to
SXALT DIR/bin/1d in modulefile

Decisions: etc dir

€ Pick a location for a few files
% xalt_db.conf

% reverseMapD directory

€ Suggest for simplicity that these go in XALT _DIR/etc, but
this is up to you

% It may be that the site wants the xalt_db.conf file
somewhere more hidden/secure

% This can be chosen with the configuration option --with-
etcDir=ans or overridden at runtime with XALT_ETC_DIR

% Note that you will need to have a XALT_ETC_DIR directory
for each machine

XALT Tutorial 20 CUG 2015

Installation

XALT Tutorial

For this tutorial, we will install everything to

Installation Prep

SXALT_DIR

Choose a directory to be used as SXALT DIR (can be

in your Home dir), then

% export
% export

XALT DIR=[directory]
PATH=$XALT_DIR/bin:$PATH

XALT DIR [directory]
PATH SPATH\:$XALT DIR/bin

22

CUG 2015

Lmod Installation (optional)

< Optional installation of Lmod
® Needed for reverse map capability (optional, can be done after the fact)
& Can be used to replace TCL module system (optional)

< Lmod requires Lua with posix and Ifs module

*® Get Lua from Lmod'’s site (already include needed Lua modules): http:
//sourceforge.net/projects/Imod/files/lua-5.1.4.8.tar.gz/download
./configure --prefix=$XALT DIR; make; make install

< Get Lmod-5.8rc2 or greater from...

® git clone https://github.com/TACC/Lmod.git or download Lmod-<ver>.tar.gz from
github.

./configure --prefix=SXALT DIR; make install;

< Documentation for Lmod can be found at: https://www.tacc.utexas.edu/tacc-
projects/Imod

XALT Tutorial 23 CUG 2015

https://github.com/TACC/Lmod.git

XALT Installation: Automated part

< Again, mostly automated, but a few things need to be done by hand
< configure
® Will determine if a newer psmisc installation is needed

& Might want to specify

o] --prefix=[SXALT_DIR]

< --with-etcDir=[directory]

< --with-transmission=[file,syslog,directdb]
< make

& make install

® Installs mpirun, aprun, srun, ibrun

o] might want to delete inappropriate launchers

XALT Tutorial 24 CUG 2015

Installation: Manual part (1)

€ Modify the site/xalt_syshost_default.py file

% This file must return the name or names of the hosts
you want stored in the database

% We suggest one name for an entire machine, but you
could go with a name for each compute node or
partition

% We provide a stub xalt_syshost_default.py file

€ Examples work on Stampede (TACC) and Darter (NICS)
to provide one name for each node on the machines

€ Up toinstaller to modify it to return what the site
wants

XALT Tutorial 25 CUG 2015

Installation: manual part (2)

€ Might need to develop your own code launcher if
not part of XALT

% We provide mpirun, aprun, srun, and ibrun launchers

% Might also require creating site/xalt_find exec_xxxx.
Py

€ We hope sites will contribute new launchers or fixes
to these wrappers if issues are detected

XALT Tutorial 26 CUG 2015

Installation: manual part (3)

€ Might require edits to site/xalt_site pkg.py
provides LSF, SGE, SLURM and PBS hooks

should review for your site

will add as we get exposure to other batch schedulers
and hope to see sites contribute

more data for the “run” table
€ e.g. number of cores requested

> H B B

XALT Tutorial 27 CUG 2015

Installation: manual part (4)

€ Create modulefile for XALT
% unless you want to do something else
% Example modulefile is provided

% A “priority” setting is included if you are using Lmod
€ Again this can keep XALT first in the path
% Set ALT _LINKER for Cray (XC, XE) wrapper

€ Choose database transmission method

% If you didn’t choose at configure time or want to
change your choice, set XALT_TRANSMISSION_STYLE
in the modulefile

% File, syslog or directdb
€ File is best for initial testing/debugging

XALT Tutorial 28 CUG 2015

Modulefile

€ Create modulefile to put XALT's aprun
in front of PATH

prepend-path PATH /sw/xc30/xalt/0.5.3-1/sles11.2/bin
prepend-path PATH /sw/xc30/xalt/0.5.3-1/sles11.2/libexec
prepend-path PYTHONPATH /sw/xc30/xalt/0.5.3-1/sles11.2/libexec
prepend-path PYTHONPATH /sw/xc30/xalt/0.5.3-1/sles11.2/site

ALT_LINKER makes this work with the Cray compiler
setenv ALT LINKER /sw/xc30/xalt/0.5.3-1/sles11.2/bin/ld
options can be (file,directdb,syslog)

setenv XALT_TRANSMISSION_STYLE file

setenv XALT_ETC_DIR /sw/xc30/xalt/0.5.3-1/sles11.2/etc

29

Installation: manual part (5)

Set up database
€ run sbin/conf_create.py to create your own xalt_db.conf
file to point to your MySQL server
% This file needs to be put in the XALT _ETC_DIR location
that was either specified at configuration(--with-

etcDir=ans) or by the environment variable
XALT _ETC_DIR

€ Use shin/createDB.py to create the initial db schema
% may need to be run from where xalt_db.conf reside
€ For this tutorial, open MySQL server is provided

XALT Tutorial 30 CUG 2015

Installation

€ At this point, the XALT code base is installed and will
work. But there is more you likely want to do. We
will call the rest post-installation.

XALT Tutorial 31 CUG 2015

Break

XALT Tutorial 32 CUG 2015

Testing

XALT Tutorial 33 CUG 2015

Testing: setup

€ Highly suggest setting transmission style to “file” for
initial testing (default on install)

% File is best for initial testing/debugging
% Cansetit on command line or in modulefile via
XALT_TRANSMISSION _STYLE environment variable
€ Load your new XALT modulefile
% Unload old XALT or ALTD modulefile (first)
% Remember to do this inside batch jobs too!

XALT Tutorial 34 CUG 2015

Testing: setup

€ Create reverse map with Imod
% optional but nice feature

% Not necessary now, but since we are testing a good
time to do it

€ Run the spider tool that comes with Imod
% Will map all lib and exe directories to modulefiles

% On Cray’s a bit more complicated but still works
€ An example script is provided in the contrib directory

% This resulting map (text file) must go in the
XALT_ETC_DIR directory set at configure or set by the
env var in the modulefile

XALT Tutorial 35 CUG 2015

Testing: cray build rmapT.
sh

€ To create the reverse map on a Cray XC, XE series, run the
contributed script cray build _rmapT.sh
#® This uses the spider utility from Lmod
€ need to set LMOD_ DIR=[Imod’s prefix during install]
You might need to edit the PrgEnvA setting in the script
#® Typically, place the reverse map file in SXALT_ETC_DIR

% ./cray build rmapT.sh $XALT ETC DIR

€ On acluster, more simple

$ spider -o jsonReverseMapT SLMOD DEFAULT MODULEPATH >
rmapD/jsonReverseMapT. json

XALT Tutorial 36 CUG 2015

Testing: setup

€ If you plan to test XALT with multiple MPIs, then you
will need to keep XALT first in the path

€ Options
% Edit MPI modulefiles
% Use Lmod as TCL module system replacement
% Move mpirun wrappers and put ours in place

% Same for ld

€ For now, you can reload the XALT modulefile after
each MPI swap

XALT Tutorial 37 CUG 2015

Testing

€ Testing is now simple and straightforward

Compile a code and runitin a job

% Remember to have XALT loaded in the job

€ There should be two files in ~/.xalt.d/
#® link.machine.XXXX
#® run.machine XXXX

€ Lets look at both of them now

XALT Tutorial 38 CUG 2015

Link.machine.*

"build epoch": 1428693356.71,

Mouilllel g8yeshogt" MteEheEEhst i

"build user": "faheymr",

"exec path":
"/nics/d/home/faheymr/examples/HelloWorld/h
ello world",

"exit code": O,

"hash 1d":
"6facd296d9bel407315abc33660bdacdaa824b01",

XALT Tutorial 39 CUG 2015

Link.machine.* (2)

"linkA": [
[
"/nics/d/home/faheymr/examples/HelloWorld/h

ello world.o",

"422a18fc85e8f05fe89b6f501c87ad3e26843130"

1
["/opt/cray/mpt/7.0.3/gni/mpich2-
cray/83/1lib/libmpich cray.a",

"fc/lfflc/coff9c326e261037a28cef/ce2fcldB8e"
)"

XALT Tutorial 40 CUG 2015

Link.machine.* (3)

"/usr/lib64/libpthread.a",
"51883ac8b5e65£19135203e0ddd80e3e302a71£1"
]
1,

tlaink PEOYY Al el e

"yuid": "995980ad-7daa-4841-be80-
21boe05fe375",

"wd" :

"/nics/d/home/faheymr/examples/HelloWorld"
}

XALT Tutorial 41 CUG 2015

Run.machine.*

"envT": {
"ALT LINKER": "/sw/xc30/xalt/0.5.3-1/slesll.2/bin/1d",
"ASSEMBLER X86 64": "/opt/cray/cce/8.3.3/cray-binutils/x86 64-
unknown-linux-gnu/bin/as",
"ATP HOME": "/opt/cray/atp/l1.7.5",

XALT Tutorial 42 CUG 2015

Run.machine.* (2)

by
"hash id": "7b88e3f497365d6bc2f86f634a2a26a8d886056e",

"libA": T[],
"userT": {
"currentEpoch": 1428766964.8458829,
"cwd": "/lustre/medusa/faheymr",
"end time": 1428766964.73,
"execModify": "Sat Apr 11 11:42:43 2015",
"exec epoch": 1428766963.0,
"exec path": "/lustre/medusa/faheymr/hello world",
"exec type": "binary",
"exit status": O,
"num_tasksiERs,
"num threads": O,

"run time": 1.3559999465942383,
"run uuid": "e3adfl193-5f09-46c6-8c0d-18£f£0d555dde",

"start date": "Sat Apr 11 11:42:43 2015",
"start time": 1428766963.3740001,
"syshost": "darter",

"user": "faheymr"

by

XALT Tutorial 43 CUG 2015

Run.machine.* (3)

"xaltLinkT": {

"Build.Epoch": "1428693356.71",
"Build.OS": "Linux 3.0.101-0.46-default",
"Build.Syshost": "darter",
"Build.UUID": "995980ad-7daa-4841-be80-21b6e05fe375",
"Build.User": "faheymr",
"Build.Year": "2015",
"Build.compiler": "driver.cc",
"Build.date": "Fri Apr 10 15:15:56 2015",
"XALT Version": "0.5.3"
}
}
XALT Tutorial 44

CUG 2015

Things that could be wrong

€ Missing files
€ Syshost name

% Need to go back and work on xalt_syshost_default.py

€ Num_cores

% Something likely wrong with site_pkg or launcher

XALT Tutorial 45 CUG 2015

XALT Tutorial

Testing

If all the output in the files looks right, then we
should test the parsing of the data and transmission
to the database

If you have files that have bad data, then delete
them — maybe delete them all and create some new
ones when you think everything looks right

Now we can use the sbin/xalt_file to_db.py script

46

CUG 2015

Xalt file to db.py

€ Example of how to use xalt file to db.py

o\°

export PATH=/sw/tools/lmod/builds/darter/lmod/Ilmod/Ilmod/libexec:${PATH}

o\

export XALT USERS=faheymr:reubendb

o\°

ln -s $XALT DIR/etc/xalt db.conf

o\°

ln -s SXALT DIR/sbin/xalt file to db.py

SXALT DIR/sbin/xalt file to db.py —--reverseMapD
sw/tools/xalt/builds/darter/etc/reverseMapD --delete --timer

. o°

Time: 00:00:00
total processed : 25 , num links: 10 , num runs: 15 , badCnt: O

XALT Tutorial 47 CUG 2015

Testing: file to db issues

€ You may have access issues like only certain
accounts can insert or access is only granted to hosts

€ Thereis a simple summary report generated
% Total records parsed, links, runs, bad entries

% Bad could be several things:

€ Couldn’t decode file (or syslog)

® For each bad entry there is a number printed that is the
length of the number of characters — this number may
be a clue to syslog limit issues

€ Couldn’tinsert data into db

XALT Tutorial 48 CUG 2015

Things that could be wrong

€ Modulefile name

% The reverse map is likely not right

% Check the spider output

% Make sure to compile a code that uses hdf5 or netcdf or
some other package that should have a modulefile name

XALT Tutorial 49 CUG 2015

Testing: directdb

€ Set XALT _TRANSMISSION_ STYLE to directdb either
on command line or in modulefile

€ This method has the database updated immediately
when Id or mpirun wrappers are used

% This is how ALTD worked for years at many sites

€ Evenif you don’t want to use it, good to test to make
sure it works

% No files generated, so no trace of what was done
other than what is in the database

XALT Tutorial 50 CUG 2015

Testing

€ Lets log into the mysqgl server and find our own
entries

% mysql -h 104.236.169.194 -u cugxalt \
-pchicago xalt

XALT Tutorial 51 CUG 2015

Production

XALT Tutorial

Production: reverseMap

The reverse map has been mentioned several times before, but exactly
how do you create it? As described above, Lmod can be used as a
module replacement. But even if you don’t want to replace TCL
modules, you can use Lmod to create what we refer to as the reverse
map. Basically, it maps libraries (with paths) back to modulefiles.

If you have your modulefiles set up with a one-to-one to mapping of
modules to package installations, then Lmod can probably create the
reverse map without issue.

But on some machines, a modulefile (with appropriate if-tests) can
point to a variety of installations and set environment variables
depending on the currently loaded compilers and MPI. In this
scenario, the reverse map can be created, but it is a looser reverse
map with many-to-one relationships (e.g. this is how Cray’s provided
software / modulefile works)

53 CUG 2015

Production: reverseMap

€ And further on some machines (like Crays), for spider to work, you
have to run it multiple times (one for each Programming Environment)
to get multiple reverse maps, which then have to be combined
together for a master reverse map. Below you will see a sample script
for how to do this.

<e The reverse map needs to be created/updated per machine every time
a new modulefile or package is installed. So either 1). it has to become
part of the software installation process, or 2). run as a cron job every
week for example, then use a (provided) script to update the module
name entries in DB

€ And if you have multiple machines and one XALT installation, then you
will need to have a reversemap for each machine. That means as an
example the etc directory will likely need to have subdirectories for
each machine and a reverseMapD in each of those directories. And
you will need to set XALT_ETC_DIR in the modulefile for each machine
to point to the appropriate place?

XALT Tutorial CUG 2015

Production: reverseMap

Examples
< Simple command to create reverseMap
<e spider -o jsonReverseMapT SLMOD_MODULEPATH >
rmapD/jsonReverseMapT.json
o4 Cray script to create reverseMap
€ Anexample script, darter_build_rmapT.sh, for a Cray XC30 that uses

XALT Tutorial

Lmod (namely the spider utility) to create the reverseMap is provided
in the contrib/build_reverseMapT _cray/ directory.

55 CUG 2015

Production:

€ Keep XALT first in the path
% Edit MPI modulefiles
€ Unload and load XALT, or
€ Put XALT modulefile contents in MPI modulefile
% Use Lmod at TCL module system replacement
Both of these in use at sites

% If one launcher, then another option is to rename Id
and mpirun to Id.x and mpirun.x and put our
wrappers in their place

&

XALT Tutorial 56 CUG 2015

Production: wrappers

€ Some tools have issues with wrappers

#® Totalview for instance

% Itis easy to unload xalt automatically when loading
totalview if you use modules

% Much harder to automatically load xalt when
totalview is not being used

€ Sosome links and runs are missed — small percent

XALT Tutorial 57 CUG 2015

<

XALT Tutorial

Production: syslog

Arguably the best method for production
& All records first go to syslog

*® Then the records must be parsed later (like file method) to go to database

Set XALT_TRANSMISSION_STYLE to syslog
Set syslog settings (actually rsyslog)

To use syslog (and in this context we mean rsyslog since that is all we have
tested)

& set up a configuration file for syslog and place in /etc/rsyslog.d/ that we
called xalt_syslog.conf

SMaxMessageSize 256k

if Sprogramname contains ‘XALT LOGGING’ then
/var/log/xalt.log

&N

58 CUG 2015

€ This example shows that the log file is set up as /var/log/xalt.

log. Note that /var is probably local for the node where the
linker or job launcher is run.

% Thisis fine, but you will have to run the syslog parser on each
node for this setup.

% Alternatively, it might be easier if you had say one node/server
where all the log files could be put by syslog and then you

would only have to run the parser on that node, but for each
file.

% For testing, you might want to also put the files in your home or
scratch directory for some short period of time

€ Also note that 256k is the maximum message size as
given. We have hit a case where a link line was larger than
64k and this results in the XALT log message being incomplete

and as a result the parser will have to skip those entries as
incomplete

XALT Tutorial 59 CUG 2015

Production: syslog (2)

€ modify /etc/rsyslog.conf to use this new configuration

Include all config files in
/etc/rsyslog.d/

SIncludeConfig /etc/rsyslog.d/*.conf
€ Restart rsyslog
€ Can’tread the entries directly as they are encoded

€ Will have to parse the log file and see the results in the
database (or modify the parser to print the results)

XALT Tutorial 60 CUG 2015

XALT Tutorial

Testing: parse syslog file

use xalt_syslog to db.py to collect data from syslog

python xalt syslog to db.py -
reverseMapD=$BASE/etc/reverseMapD
/var/log/xalt.log.1l

Can be rerun if desired — will not make duplicate
entries

61

CUG 2015

Production: syslog rotation

XALT Tutorial

set up rotation on the /var/log/xalt.log log file with a logrotate
configuration file like

/etc/logrotate.d> cat xalt
/var/log/xalt.log{
copytruncate
rotate 4
daily
create 0644 root root
missingok
}
The above sets a 4 day rotation on the files. We suggest nothing less than
2. The above is also setting the log file to be readable by all. This is a site

dependent setting - in this case, a non-root account can be used to parse
the data and put it in the database.

62

CUG 2015

Production: syslog notes

€ Asite might want to “send” their syslog records to a
separate server and then parse the records there

® Make sure to use the appropriate reverseMap

€ We assume the installers know that all of these steps
for syslog will have to be done on each of the nodes
where the linker and the job launcher (mpirun,
aprun, etc) will be run.

XALT Tutorial 63 CUG 2015

Data Mining

€ There are many analyses that can be done with XALT data

XALT Tutorial

®

® ® H H

Usage

Most/least and trends reports for
Libraries

Modulefiles

Applications

$ & L L

Based on user or project or time used

Last time a library was used
Provenance/reproducibility reports

Providing usage statistics to developers and vendors

Restoring the program environment where user
applications were built

65

CUG 2015

XALT Tutorial

Program usage

mysqgl> select link program, build syshost,
xalt link group by link program, build syshost;

| configure
| driver.CC
| driver.cc
| ftn driver
| gt++

| gcc

| gfortran
| icc

| icpc

| ifort

| make

darter
darter
darter
darter
darter
darter
darter
darter
darter
darter
darter

66

count (*)

from

CUG 2015

Identifying users or codes or libraries

A critical bug was identified in FFTW version 3.3.0.2, affecting
code correctness

Find which users have linked this library

mysql> select distinct build user from xalt link,xalt object
where xalt object.object path like'$fftw/3.3.0.2/%' ;

- +
| username |
e T +
| userl |
| user2 |
| user3 |
useri
| userb |
- +

5 rows in set (1.33 sec)

* Querying the database reveals that several users have applications linked
to the buggy library

XALT Tutorial 67 CUG 2015

Was the buggy library used?

mysql> select distinct xalt run.run id, xalt run.job id, xalt run.date, xalt run.syshost,
xalt run.user, xalt run.exec_path from xalt run, xalt object, join run object where

xalt object.object path like '$fftw/3.3.0.2/%' AND xalt object.obj_id=join run object.obj_ id
AND join run object.run id=xalt run.run_id;

- do—m - Fom - $-—— - - Fom - +
| run_id | job_id | date | syshost | user | exec_path |
- o - e e L e e e - - Fom - +
| 7273 | 350840.0coe | 2014-10-23 13:22:29 | darter | userd4d | ~/cp2k/cp2k.psmp |
- o - o - - - Fom - +
1l rows in set (0.08 sec)

And it’s confirmed that user “user4” has run the application linked to the buggy library

It’s now up to the user services group to contact the user and recommend relinking their
applications against the newer version of FFTW, which has fixed the bug

XALT Tutorial 68 CUG 2015

How did | build my program
2 months ago?

mysql> select xalt link.* from xalt link where build user like '$%faheymr$%' AND
exec path like '%hyperslab%';

e it e e e e LT o mmmmm b e
Fom - ettt e e e L L P P P PP PP P PP PP +
| link id | date | link program | build user | build syshost |
build epoch | exit code | exec_path |
$mmm e e e T L o mmmmm e
Fom - $omm - - +
4 | 2014-09-23 14:17:29 | ftn driver | faheymr | darter |
1411496249.58 | 0 | /nics/d/home/faheymr/examples/hdf5/hyperslab |
e it e e e ittt Fom -
it e e $omm - et et e e e +

3 rows in set (0.01 sec)

XALT Tutorial 69 CUG 2015

How did | build my program 2 months ago? (cont)

mysql> select object path, timestamp from xalt object, join link object where join link object.
link id="4" AND join link object.ob]j_ id=xalt object.obj_ id;

o o e - o +
| object path | timestamp

T et il e +
//usr/lib64/libc.a	2014-09-26 15:49:53
//usr/1lib64/1ibdl.a	2014-09-26 15:49:53
//usr/l1lib64/libhugetlbfs.a	2014-09-26 15:49:53
//usr/lib64/libm.a	2014-09-26 15:49:53
//usr/l1lib64/libpthread.a	2014-09-26 15:49:53
//usr/lib64/librt.a	2014-09-26 15:49:53
//usr/1lib64/1libz.a	2014-09-26 15:49:53
/opt/cray/atp/1.7.2/1ib/1libAtpSigHCommData.a	2014-09-26 15:49:53
/opt/cray/atp/1.7.2/1ib/libAtpSigHandler.a	2014-09-26 15:49:53
/opt/cray/cce/8.2.5/craylibs/x86-64/libcsup.a	2014-09-26 15:49:53
/opt/cray/cce/8.2.5/craylibs/x86-64/1ibf.a	2014-09-26 15:49:53
/opt/cray/cce/8.2.5/craylibs/x86-64/1ibfi.a	2014-09-26 15:49:53
/opt/cray/cce/8.2.5/craylibs/x86-64/libtcmalloc minimal.a	2014-09-26 15:49:53
/opt/cray/cce/8.2.5/craylibs/x86-64/1libu.a	2014-09-26 15:49:53
/opt/cray/cce/8.2.5/craylibs/x86-64/no_mmap.o	2014-09-26 15:49:53
/opt/cray/hdf5/1.8.12/CRAY/81/1ib/1libhdf5 cray.a	2014-09-26 15:49:53
/opt/cray/hdf5/1.8.12/CRAY/81/1ib/1libhdf5 fortran cray.a	2014-09-26 15:49:53
/opt/gcc/4.4.4/snos/lib/gcc/x86 64-suse-linux/4.4.4/crtbeginT.o	2014-09-26 15:49:53
/opt/gcc/4.4.4/snos/lib/gcc/x86 64-suse-linux/4.4.4/crtend.o	2014-09-26 15:49:53
/opt/gcc/4.4.4/snos/lib/gcc/x86 64-suse-linux/4.4.4/crtfastmath.o	2014-09-26 15:49:53
/opt/gcc/4.4.4/snos/lib/gcc/x86_64-suse-linux/4.4.4/libgcc.a	2014-09-26 15:49:53
/opt/gcc/4.4.4/snos/lib/gcc/x86 64-suse-linux/4.4.4/libgcc_eh.a	2014-09-26 15:49:53
/opt/gcc/4.4.4/snos/1ib64/1libstdc++.a	2014-09-26 15:49:53
/tmp/pe_14932/hyperslab_1.o	2014-09-26 15:49:53
/usr/lib64/crtl.o	2014-09-26 15:49:53
/usr/lib64/crti.o	2014-09-26 15:49:53
/usr/lib64/crtn.o	2014-09-26 15:49:53
o Fmm e +

27 rows in set (0.00 sec)

XALT Tutorial 70 CUG 2015

How did | build my program 2 months ago? (cont)

/opt/cray/cce/8.
/opt/cray/cce/8.
/opt/cray/cce/8.
/opt/cray/cce/8.
/opt/cray/cce/8.
/opt/cray/cce/8.

XALT Tutorial

NMNMNMMDDNDDN

.5/craylibs/x86-64/1libcsup.a
.5/craylibs/x86-64/1ibf.a
.5/craylibs/x86-64/1ibfi.a
.5/craylibs/x86-64/libtcmalloc _minimal.a
.5/craylibs/x86-64/1libu.a
.5/craylibs/x86-64/no_mmap.o
/opt/cray/hdf5/1.8.12/CRAY/81/1ib/1ibhdf5 cray.a
/opt/cray/hdf5/1.8.12/CRAY/81/1ib/1ibhdf5 fortran cray.a

71

2014-09-26
2014-09-26
2014-09-26
2014-09-26
2014-09-26
2014-09-26
2014-09-26
2014-09-26

15:
15:
15:
15:
15:
15:
15:
15:

49:
49:
49:
49:
49:
49:
49:
49:

53
53
53
53
53
53
53
53

CUG 2015

Modulefile usage

mysgl> SELECT xalt object.module name, count (xalt run.
date) AS Jobs, ROUND(SUM(run_time*num_cores)/3600) as
TotalSUs FROM xalt run, xalt link, join link object,
xalt object WHERE xalt run.syshost='darter’ AND

xalt object.module name is NOT NULL AND xalt run.uuld =
xalt link.uuid AND xalt link.link id = join link object
Ll <el 20p join link object obj id = xalt _object.obj id
AND xalt run.date >= '2014-11-01’ AND xalt run.date <=

'2014-11-09’ GROUP BY xalt object.module name ORDER BY
Jobs DESC;

XALT Tutorial 72 CUG 2015

Modulefile usage (2)

IR & Femmee I i
| module name | Jobs | TotalSUs |
e - = fmm———————— +
alps/5.2.1-2.0502.8712.10.32.ari	26458	258684
cray-mpich/7.0.3	26456	259040
wlm detect/1.0-1.0502.51217.1.1.ari	13229	129342
udreg/2.3.2-1.0502.8763.1.11.ari	13229	129342
xpmem/0.1-2.0502.51169.1.11.ari	13229	129342
ugni/5.0-1.0502.9037.7.26.ari	13229	129342
pmi/5.0.5-1.0000.10300.134.8.ari	13227	129341
gcc/4.8.1	10868	59680
rca/1.0.0-2.0502.51491.3.92.ari	10852	59675
dmapp/7.0.1-1.0502.9080.9.32.ari	10852	59675
£fftw/3.3.4.0	3123	1482

|

| cray-libsci/13.0.1 | 2357 | 69848

|

| craype-intel-knc | 1758 | 522

|

| hdf4/4.2.9 | 1180 | 667

|

| cray-hdf5/1.8.12 | 586 | 174

I

| cray-netcdf/4.3.1 | 586 | 174

XALT TutJrialszip/2 . 1 73 I 295 I 167 CUG 2015

1 /"D O N 2 1 o Ra WV, | 1 T ONNAND

Other

XALT Tutorial 74 CUG 2015

Automating the process of alerting?

€ Ideally, user support specialists would be alerted
automatically to “situations of interest”

€ Users running applications linked to legacy, less-
performant, or buggy libraries

€ Users running legacy versions of applications

>

Users building code with legacy compilers

€ Users making use of their own libs or apps, when more
optimized versions are available centrally

XALT Tutorial 75 CUG 2015

TACC Stats (and SUPReMM)

€ Job-level transparent performance monitoring from
HPC compute nodes

% CPU performance counters
|IB statistics

Lustre statistics

Scheduler job statistics
Host data

% OS statistics

® H H B

€ Analyses integrate available Lariat data (and will be
XALT in the near future)

XALT Tutorial 76 CUG 2015

Future

€ Will add a feature to track function calls
% Only those function calls resolved by external libraries
#® Will not track

< User defined functions

€ Auxiliary functions in a library

€ Ability to compare run time environment against compile
time environment

% Provide warning messages to users

% May help users self-diagnose run time problems

€ Much, much more data analysis

XALT Tutorial 77 CUG 2015

Acknowledgments - Thanks

€ provided valuable feedback or [alpha] tested code

XALT Tutorial

e

$ » » »

Tim Robinson, CSCS
Bilel Hadri, KAUST
Zhengji Zhao, NERSC
Julius Westerman, LANL
Davide Del Vento, NCAR

Andrew Elwell, iVEC

78

CUG 2015

Current issues

€ International character support

% In progress to support UTF8 characters, not fully
working yet

XALT Tutorial 79 CUG 2015

XALT will collect accurate, detailed, and continuous job-level and link-time data and store that data in a database; all the data
collection is transparent to the users. The data stored will be mined to generate a picture of the compilers, libraries, and other
software that users need to run their jobs successfully, highlighting the products that our researchers do and do not nee:

compilers
system libraries
10/math/MPI libraries

linker Id

job scheduler
environment variables
executable

code
launcher

II FILE
e SYSTEM

customizable
parse asynchronously
DATABASE

The beta release supports 3 methods for how the data is
transmitted to the database (site chooses):

Files: Default for XALT - all information is dumped into
.Json files (one each for compile and run times), then a
script parses these files and uploads the data to the XALT
database.

SYSLO imilar to the File method, captured data is
written directly in SYSLOG. The syslog data is parsed by a
script that writes it into the XALT database.

Direct Database Interaction: All the linkage and execution
information is directly inserted into the XALT database in
real time when a user compiles or executes a code.

Future Feature

+ Function tracking at link time - tracking of function
calls resolved by libraries external to user code

+ Runtime environment check against compile-time

environment - code will detect runtime differences
with compile time environment and warn users

This work was supported by the NSF award 1339690 entitled “Collaborative Research:
512-SSE: XALT: Understanding the Software Needs of High End Computer Users.”

XALT is designed to track linkage and execution information for
applications that are compiled and executed on any Linux cluster,
workstation, or high-end supercomputer. Our approach is based
on wrappers that intercept both the GNU linker (Id) to get linkage
information and the code launcher (like mpirun, aprun or ibrun)
when the code is executed. Wrapping the linker and the code
launcher is a clean and efficient way to intercept information
automatically and transparently, as nearly every user will invoke
the linker (Id) at compile time and launch the code through the
code launcher (aprun, mpirun, ibrun).

Example 1: Module File Usage

mysql> SELECT _d.syshost, _d.module_name,

_d.cnt FROM (SELECT module_name, syshost, Exampl gram Usage

COUNT(*) AS cnt FROM xalt_object GROUP By~ Mysal> select link_program, build_syshost,

module_name, syshost) _d ORDER BY _d.syshost, €Ount(*) from xalt_link group by
link_program, build_syshost;

+

| darter | configure | darter
| darter | craype-intel-knc | driver.CC | darter
| darter | cray-hafs/1.8.12 | driver.cc | darter
| darter | cray-mpich/6.3.0 | ftn_driver | darter
| darter | cray-tpsl/1.4.0 lgt+ | darter
| derter | fitw/3.3.0.4 | gce | darter
| darter 9. | gfortran | darter
| darter Jice | darter
| darter icpe | darter
| darter sci/12.2. [ifort | darter
| darter | make | darter
+

+Track how many users and projects use a library or
executable

+Track if a maintained library is used and how often

+ Track if center provided packages are used more or less
than user-installed packages
+Identify users and code that used a buggy library

+Provide information on how an executable was built
(provenance data)

+Identify applications that are using deprecated libraries
or just identify old binaries

+Supports tracking of both static and dynamic libraries

mailto:mfahey@anl.gov
mailto:mfahey@anl.gov
mailto:mfahey@anl.gov
mailto:mfahey@anl.gov
mailto:mclay@tacc.utexas.edu
mailto:mclay@tacc.utexas.edu
mailto:reubendb@utk.edu
mailto:reubendb@utk.edu

