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Yrs. truly

� Education

� University of Maine

− B.A. Mathematics ’04

− B. S. Computer Science ’04

� University of North Carolina – Chapel Hill

− M.S. Computer Science, ‘08, 

− Ph.D. Computer Science ’10

− Entered fall ‘04, advisor Ming C. Lin

− ‘Graphics’ (physically-based animation)

− GPGPU + Parallel computing
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Yrs. truly

� Intel

− Intern in ARL (now PCL) ‘06 & ’07

» Physics KNF: collision detection, fluid simulation 

− PCL full-time 9/2010

» Traffic simulation, CFD, database indexes, linear 
algebra, graphs, reservoir sim.

− Joined DCG MICRO in 12/2013 (Virtual site in 
Pemaquid, ME)

» Training

» Optimization

» Ex officio PCL
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Agenda
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1. What is Knights Landing?

2. How do I get good performance on Knights Landing?

3. Break

4. What can I do now to get ready for Knights Landing?



What is Knights Landing?
The next generation of Intel® Xeon Phi ™
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Increasing parallelism in
Xeon and Xeon Phi

Intel® Xeon®

processor

64-bit
series 

Intel® Xeon®

processor 

5100 
series

Intel® Xeon®

processor 

5500 
series

Intel® Xeon®

processor 

5600 
series

Intel® Xeon®

processor 
code-named 

Sandy 
Bridge EP

Intel® Xeon®

processor 
code-named

Ivy Bridge 
EP 

Intel® Xeon®

processor 
code-named

Haswell
EX 

1 2 4 6 8 12 18

2 2 8 12 16 24 36

128 128 128 128 256 256 256

Intel® Xeon Phi™ 

coprocessor

Knights 
Corner

Intel® Xeon Phi™ 
processor & 

coprocessor

Knights 
Landing1

61 60+

244 4x #cores

512 512

*Product specification for launched and shipped products available on ark.intel.com.        1. Not launched.

Core(s)

Threads

SIMD Width



Moore’s Law and Parallelism
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Parallelism and Performance

Peak GFLOP/s in Single Precision

� Clock Rate x Cores x Ops/Cycle x SIMD

2 x Intel® Xeon® Processor E5-2670v2

� 2.5 GHz x 2 x 10 cores x 2 ops x 8 SIMD
= 800 GFLOP/s

Intel® Xeon Phi™ Coprocessor 7120P

� 1.24 GHz x 61 cores x 2 ops x 16 SIMD
= 2420.48 GFLOP/s

8

5

40

100

800

1.24

19.84

151.28

2420.48

1

10

100

1000

Scalar & ST Vector & ST Scalar & MT Vector & MT

G
F
LO
P
/s

G
F
LO
P
/s

G
F
LO
P
/s

G
F
LO
P
/s

2 x Processor Coprocessor

Note the logarithmic scale on the y-axis.
ST = Single Thread, MT = Multiple Threads



Parallelism and Performance

On modern hardware,
Performance = Parallelism

Flat programming model on parallel 
hardware is not effective.

Parallel programming is not optional.

Codes need to be made parallel 
(“modernized”) before they can be 
tuned for the hardware (“optimized”).
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Parallel concepts
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Parallel computing uses multiple computing units in parallel to

� Solve problems more quickly than a single processor (“strong scaling”)

� Solve larger problems in the same time as a single processor (“weak scaling”)

� Solve problems with higher fidelity

High-performance parallel computing is hard and requires

� Finding enough parallelism 

� Deciding the optimal granularity, locality and load balance

� Coordination and synchronization

Real-world applications/algorithms are complex and often hierarchical: 
monolithic programming model is limited



Amdahl’s Law
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Impact of Amdahl’s Law
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Amdahl’s Law in Practice

13

� Assumption that � and � are independent is unrealistic.

� Strong Scaling:
All-to-all communication costs increase with �.
For sufficiently large �, applications will start to slow down again!

� Weak Scaling:
Increasing problem size may not linearly increase compute time.

� Key takeaway from both laws:
maximize � to maximize efficiency and performance at scale.

� Parallelism “bolted on” to scalar applications will not scale.
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Knights Landing
Holistic Approach to Real Application Breakthroughs

…

…

.
.

.

.
.

.

Integrated Intel® Omni-Path

Over Over Over Over 60 Cores

Processor Package

Compute

� Intel® Xeon® Processor Binary-Compatible

� 3+ TFLOPS1, 3X ST2
perf. vs Xeon PhiTM coprocessor

� 2D Mesh Architecture

� Out-of-Order Cores

On-Package Memory
� Over 5x STREAM vs. DDR43

� Up to 16 GB at launch

Platform Memory

Up to 384 GB DDR4 (6 ch)

Omni-Path
(optional)(optional)(optional)(optional)

� 1st Intel processor to integrate

I/O Up to 36 PCIe 3.0 lanes

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other 

information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

For more complete information visit http://www.intel.com/performance.
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Knights Landing

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.
All projections are provided for  informational purposes only.  Any difference in system hardware or software design or configuration may affect actual 
performance.

� > 8 billion transistors 
� 14nm process

� Over 10 GF/W 
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Knights Landing at large

• Cori @ NESRC, built by Cray (> 9,300 nodes, mid-2016)

• Trinity @ NNSA, also built by Cray

• >100 Petaflops of deals to date
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Form factors

• Bootable, standalone processor

• Up to 384GB DD4 using 6 channels

• 3 or more KNL in 1U

• PCIe coprocessor

• Both native and offload programming models
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Single-threaded performance

• 3x single-thread performance compared to current generation

• ‘Silvermont’-based core with modifications

• 2 VPUs/core

• Advanced branch prediction

• 2x ROB depth

• 32 kb Icache, 32 kbDcache

• 1MB L2 per tile

• 2 64B load ports

• First processor that supports AVX-512

• AVX-512F, CDI, ERI, & PFI
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AVX-512 in Knights Landing

ISAISAISAISA AVXAVXAVXAVX----512F512F512F512F AVXAVXAVXAVX----512 CDI512 CDI512 CDI512 CDI AVXAVXAVXAVX----512512512512 ERIERIERIERI AVXAVXAVXAVX----512 PFI512 PFI512 PFI512 PFI

Features ‘Foundation’:
double, float, 
int32, int64 
arithmetic, 
load/store, 
with masks

vector confict
detection, lzcnt

Transcendentals Prefetches
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Many-core performance

• 2D mesh of tiles

• 30+ tiles

• 2 cores/tile

• 1MB shared L2/tile
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Near memory

• AKA ‘on-package memory’, ‘high-bandwidth memory’, MCDRAM

• Partnership with Micron Technology

• > 400 GB/s

• Up 16GB (at launch)

• NUMA support

• Over 5x energy efficiency, 3x density vs. GDDR5

• Multiple usage models, including ‘L3 cache’ and ‘flat’



22

Intel® Omni Path fabric integration

• See more from Intel’s Barry Davis tomorrow @ 3pm (Technical Session 8B)

“A Storm (Lake) is Coming to Fast Fabrics: The Next-Generation Intel® Omni-Path 
Architecture”
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Q & A



How do I get good performance on Knights 
Landing?
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Efficiency on Knights Landing

• 1st Knights Landing systems appearing by end of year

• How do we prepare for this new processor without it at hand?

• Let’s review the main performance-enabling features:

• 60+ cores

• 2x VPU, AVX-512

• High-bandwidth MCDRAM

• Plenty of parallelism needed for best performance.
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MPI needs help

• Many codes are already parallel (MPI)

• May scale well, but…

• What is single-node efficiency?

• MPI isn’t vectorizing your code…

• It has trouble scaling on large shared-memory chips. 

• Process overheads

• Handling of IPC

• Lack of aggregation off-die

• Threads are most effective for many cores on a chip

• Adopt a hybrid thread-MPI model for clusters of many-core
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OpenMP 4

• OpenMP helps express thread- and vector-level parallelism via directives

(like #pragma omp parallel, #pragma omp simd)

• Portable, and powerful

• Don’t let simplicity fool you! 

• It doesn’t make parallel programming easy

• There is no silver bullet

• Developer still must expose parallelism & test performance
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The “Evolutionary” Approach

Identify 
Hotspots

#pragma omp
parallel for

Read Compiler 
Report

#pragma omp
simd

Arithmetic 
Optimizations

Start
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Case Study: European Options Pricing

� European Options Pricing kernel

� Longstanding HPC proxy for 
financial workloads

� Simulation phase only

� 1D Monte Carlo integration

� Many (1e5-1e7+) options considered

� Long (256k) paths

� Uses normally-distributed random numbers

� Pre-generated and streamed

� �, � � � �
 �	 � � �� ���������

�
 �
1

� � � �
ln

�

�
� � �

��

2
�� � ��

�� � �
 � � � � �

S :: Spot price 
K :: Strike price
C(S,t) :: Price of call option with price S at time t
N(x) :: CDF of normal dist. with variance x
σ :: volatility of returns
T :: expiration date
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Baseline Implementation

� Performance is O((c0 + c1*npath)*nopt)

� Since we do ~218 paths per option, path 
computation (c1) dominates runtime 

� > 99% of work in 3 lines of code

� Conventionally viewed as compute 
bound

� Exponentiation, lots of arithmetic

� Small working set (1 RNG per path 
step, reduction on output)

for(int o = 0; o < nopt; o++) {
const REAL_T v_rt_t = sqrt(T[o]) * vol;
const REAL_T mu_t = T[o]  * mu;
REAL_T v0 = 0, v1 = 0, res;
for(int p = 0; p < npath; ++p) {
res = max(0, S[o]*exp(v_rt_t*m_r[p] 

+ mu_t)-X[o]);
v0 += res;
v1 += res*res;

}
result    [o] += v0;
confidence[o] += v1;

}
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Optimized & Modernized Implementation

� Loop Unrolling (#pragma unroll)

� Short loop hurts instruction scheduling.

� Threading (#pragma omp parallel)

� Embarrassingly parallel.

� No write conflicts and small working set.

� Vectorization (#pragma omp simd)

� v0/v1 must be reduced.

� max() call introduces control 
divergence.

� m_r[p] should be aligned.

� Arithmetic

� Use native exp2() call on coprocessor.

#pragma omp parallel for
for(int o = 0; o < nopt; o++) {
const REAL_T _rt_tLN2=sqrt(T[o])*vol/M_LN2;
const REAL_T mu_tLN2 = T[o]*mu/MLN2;
REAL_T v0 = 0, v1 = 0, res;

#pragma omp simd reduction(+:v0), reduction(+:v1),
aligned(m_r:64)
#pragma unroll(4)
for(int p = 0; p < npath; ++p) {
res = max(0, S[o]*exp2(v_rt_tLN2*m_r[p] 

+ mu_tLN2)-X[o]);
v0 += res;
v1 += res*res;

}
result    [o] += v0;
confidence[o] += v1;

}
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Performance Results

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components, 
software, operations and functions.  Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the 
performance of that product when combined with other products.  For more information go to http://www.intel.com/performance.
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The “Evolutionary” Approach – Summary

The “evolutionary” approach can get you 1000x if:

� Your baseline is serial and scalar.

� Your code is embarrassingly parallel with no dependencies.

� You have one hotspot – no file I/O, MPI* communication.

If only more codes looked like this… �

Real codes will get somewhere between 0x and 1000x, depending on: code, 
compiler ability and the amount of exposed parallelism.



34

The Evolution/Revolution Approach

Identify 
Hotspots

#pragma omp
parallel for

Read Compiler 
Report

#pragma omp
simd

Arithmetic 
Optimizations

Start

Examine 
Algorithm

Design New 
Algorithm

Implement New 
Algorithm

Identify when the existing algorithm 
has stopped working, and re-design.
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Case Study: Cosmic Microwave Background Analysis

Version Decoder:
1: Baseline
2+3: Low-hanging Fruit
4: Flat OpenMP*
5: Nested OpenMP*
6: Blocking

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components, 
software, operations and functions.  Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the 
performance of that product when combined with other products.  For more information go to http://www.intel.com/performance. System configuration on Slide 62.
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Case Study: Cosmic Microwave Background Analysis

Version Decoder:
1: Baseline
2+3: Low-hanging Fruit
4: Flat OpenMP*
5: Nested OpenMP*
6: Blocking
7: Trapezium Rule7: Trapezium Rule7: Trapezium Rule7: Trapezium Rule
8: DGEMM
9: Alignment
10: Prefetching 

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.  Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components, 
software, operations and functions.  Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the 
performance of that product when combined with other products.  For more information go to http://www.intel.com/performance. System configuration on Slide 62.

Revolutionary change.



Summary
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� Adding pragmas and crossing fingers rarely solves the problem.

� Consider how hardware should be used before worrying about the 
implementation.

� Can’t know if the compiler is doing the “right thing” without first knowing what that is.

� Choosing a programming model/methodology first may restrict algorithmic choice.

� Revisit your algorithms and throw out your assumptions.  A parallel 
implementation of a “slower” algorithm may be faster at scale.

� Investment in code yields improved performance and better science.



After the break
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� Getting code built for Knights Landing & testing correctness

� Working with the best proxy for Knights Landing



Q & A



Break

40



What can I do now to get ready for Knights 
Landing?

41



Proxies for Knights Landing 

42

� Two pronged approach for Knights Landing readiness

� Software support tools

− Intel® Composer Studio XE 2015 compiles for Knights Landing

− Intel® Software Development Emulator functionally emulates; rough perf. analysis.

− Memkind & hbw_malloc harness MCDRAM

� Use the best available real-world proxy for performance testing

− Intel® Xeon PhiTM



memkind & hbw_malloc

43



A Heterogeneous Memory Management Framework

� The memkind library

• Defines a plug-in architecture

• Each plug-in is called a “kind” of memory

• Built on top of jemalloc: the FreeBSD OS 
default heap manager

• Partition is defined by functions that 
provide inputs for operating system calls

• High level memory management 
functions can be over-ridden as well

• Available via github: 
https://github.com/memkind

� The hbwmalloc interface

• The high bandwidth memory interface

• Implemented on top of memkind interface

• Simplifies memkind plug-in (kind) selection

• Uses all kinds featuring on package memory 
on the Knights Landing architecture

• Provides support for 2MB and 1GB pages

• Select fallback behavior when on package 
memory does not exist or is exhausted

• Check for existence of on package memory



Knights Landing Memory Overview

• Large numbers of cores can consume large 
amounts of memory bandwidth.

• Knights Landing is equipped with 6 
bidirectional DDR4 memory channels and 
MCDRAM.

• Memory requests are serviced by a mesh 
network maintaining cache coherence.

• MCDRAM can be configured as a third level 
cache, as a flat, distinct region of memory, 
or somewhere in-between.   

� Basic memory features

� MCDRAM is high bandwidth, lower 
capacity.

� DDR is high capacity lower bandwidth.



MCDRAM as Cache Flat Mode

� Upside

� No software modifications required.

� Bandwidth benefit.

� Downside

� Latency hit to DDR.

� Limited sustained bandwidth.

� All memory is transferred DDR -> 
MCDRAM -> L2.

� Less addressable memory.

� Upside

� Maximum bandwidth and latency 
performance.

� Maximum addressable memory.

� Isolate MCDRAM for HPC application use 
only.

� Downside

� Software modifications required to use 
DDR and MCDRAM in the same 
application.

� Which data structures should go where?

� MCDRAM is a limited resource and 
tracking it adds complexity.
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What mode should I pick?



hbwmalloc Interface



memkind Interface
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End Goal Usage: Code Snippets

float   *fv;

fv = (float *)malloc(sizeof(float) * 1000);

Allocate 1000 floats from DDR
float   *fv;

fv = (float *)hbw_malloc(sizeof(float) * 1000);

Allocate 1000 floats from MCDRAM

c     Declare arrays to be dynamic
REAL, ALLOCATABLE :: A(:), B(:), C(:)

!DIR$ ATTRIBUTES FASTMEM :: A

NSIZE=1024
c
c     allocate array ‘A’ from MCDRAM
c

ALLOCATE (A(1:NSIZE))
c
c     Allocate arrays that will come from DDR
c

ALLOCATE  (B(NSIZE), C(NSIZE))

Allocate arrays from MCDRAM & DDR in Intel FORTRAN



Intel® Software Development Emulator
Functional emulation

51



• Freely available instruction emulator

• Emulates existing ISA as well as ISAs for upcoming processors (including 
Knights Landing)

• Record dynamic instruction mix; useful for tuning/assessing vectorization 
content 

• http://www.intel.com/software/sde

• First step: compile for Knights Landing:

$ icpc –xMIC-AVX512 <compiler args>
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Intel® Software Development Emulator



• SDE invocation is very simple:

$ sde <sde-opts> -- <binary> <command args>

• By default, SDE will execute the code with the CPUID of the host.

• The code may run more slowly, but will be functionally equivalent to the target 
architecture.

• For Knights Landing, you can specify the -knl option.

• In addition to emulation, SDE can summarize the types of instructions that were 
executed

$ sde <sde-opts> -omix <output-file> -- <binary> <command args>

• The output file will contain statistics about the instruction mix, with adjustable 
granularity
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Running SDE



� # ==============================================
� # STATS FOR TID 0 EMIT# 1
� # ==============================================
� # EMIT_TOP_BLOCK_STATS FOR TID 0 EMIT # 1 EVENT=ICOUNT
� BLOCK: 00000   PC: 0000000000410c23   ICOUNT: 15983666400 EXECUTIONS: 270909600 #BYTES: 272   %:    15 cumltv%:    

15  FN: swUpdatePress2ndTiltedZ_DDz1_8  IMG: swell-TTC2-12x12x8 Source: swUpdatePress2ndTilted-orig.tc 274,273
� XDIS 0000000000410c23:  SSE 430F101498               movups xmm2, xmmword ptr [r8+r11*4]
� XDIS 0000000000410c28:  SSE 420F101C98               movups xmm3, xmmword ptr [rax+r11*4]
� XDIS 0000000000410c2d:  SSE 0F59D1                   mulps xmm2, xmm1
� XDIS 0000000000410c30:  SSE 410F59DF                 mulps xmm3, xmm15
� XDIS 0000000000410c34: BASE 4C8BBC2468010000         mov r15, qword ptr [rsp+0x168]
� XDIS 0000000000410c3c:  SSE 0F58D3                   addps xmm2, xmm3
� XDIS 0000000000410c3f:  SSE 430F105C9D00             movups xmm3, xmmword ptr [r13+r11*4]

• ICOUNT:  total dynamic instructions executed by this basic block.  Basic blocks sorted by ICOUNT from 
highest to lowest.

• EXECUTION:  number of time is basic block is invoked

• %:  percent of total instructions that come from this basic block

• cumltv%:  cumulative % of instruction count up to this basic block  
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Basic Block Stats from SDE mix



• Look for unpack *ss or *sd instructions (i.e., scalar instructions) in top basic 
blocks

• Are they SSE, AVX, AVX2, AVX512 instructions?

• For KNL, we want as many AVX512 instructions as possible

• Sometimes, non AVX512 instructions come from math libraries and some math functions 
are not optimized for AVX512 yet.

• Are there gathers/scatters (non-unit stride)?  Can code be transformed to 
remove gathers/scatters?
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Basic Block Stats from SDE mix (cont.)



Xeon PhiTM as proxy for Xeon PhiTM
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A performance proxy
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� Functional emulation and advanced APIs are invaluable for testing out new 
instructions and features

� Performance testing very important 

� How will your code run on Knights Landing?

� Know your code! Is it compute-hungry? Memory bandwidth-hungry?

� How do the performance features of Knights Landing affect those limits?

� Is there an existing processor that is a good proxy for Knights Landing for 
your code?



Proxy Matching
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� Modern Xeon® processors have more 
cores and wider SIMD than ever

� Xeon PhiTM is still much closer to 
Knights Landing in width

� Compute-bound codes should seek 
peak on Xeon PhiTM

� Bandwidth-bound codes will find Xeon 
PhiTM closer

� Only high memory-capacity codes 
favor Xeon® in this comparison

� May not be throughput codes anyway

� Consider using reduced problem size for 
tuning

Intel® Xeon® 
E5-2696v3

Intel® Xeon PhiTM

7120
Knights Landing

Cores/threads 14/28 61/244 60+/240+

Nom. Hz 2.6GHz 1.3GHz N/A

STREAM BW ~50 GB/s ~170 GB/s >400 GB/s (MCDRAM)

SIMD width 256 bits 512 bits 512 bits

LLC capacity 35MB 30.5MB 30+MB

DRAM cap. 768GB 16GB 384GB



Using the proxy
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� The current Xeon PhiTM is almost always the closest proxy to Knights Landing

� Native Xeon Phi corresponds to bootable Knights Landing

� What drives performance on Xeon PhiTM?

� Thread scalability

− Load balancing

− Divergence

− (Inter-core) communication costs

� SIMD vectorization

� High bandwidth GDDR5

� Thread-level parallelism is not easy, but shares similarities with MPI-type

� SIMD is less familiar ground for most…



Opening the Flop floodgates
Efficiency from a SIMD Mindset
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Motivation

61

• Single-instruction, multiple data 
(SIMD) available on most 
processors

• 4x-16x ‘on the table’

• Powerful, but more restrictive than 
multiple cores

• New tools, better hardware: the 
stars are right!

• <TODO> die photo w/blacked out 
SIMD



What is SIMD?
Data Level Parallelism

SIMD primer

SIMD and other forms of parallelism
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Data level Parallelism

63

• “I have lots of data I want to do the same 
operation to”

• Very common idiom in HPC

• Classic for loop:

� for(int i=0;i<8;++i)

� A[i] = alpha*B[i] + C[i];

• Lots of iterations

• Independent

• Arithmetic

• Multi-node, multi-core possible

• Overheads

• Is there a more efficient way?



SIMD primer
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• SIMD execution (Wx)

• Vector registers

• Vector functional units

• Vector instructions

• ~W FLOPs/instruction

• Conceptually: ‘lanes’

W W

W

W
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SIMD in the Parallel Pantheon

• Modern processors have multiple cores

• SIMD is in each core

• (Mostly) orthogonal to threading

• Modern processors are superscalar

• SIMD can be superscalar

• How is it different than threading?

• SIMD data layout demanding

• Can affect data structures and memory

• Linked control flow 

• Branches can be tricky!

• ‘Communication’ fine-grained



How does SIMD work?
Field guide to SIMD

How it helps

SIMD schemes

SIMD considerations

66
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A field guide to SIMD

• Which scalar instructions should be ‘ported’ 
to SIMD?

• Which data types? (multiple widths!)

• Always a ‘common core’: arithmetic

• add, sub, mul, div, fma

• Some make no sense

• cpuid?? cli? int? 

• Some new instructions only for SIMD

x86_64 SIMD

mov vmov

add vadd

mul vmul

fmadd vfmadd

rdtsc -

jmp -

cli -

cmpxchg -

cpuid -

nop -

- vgather

- vshuff

- hadd
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“Vanilla” SIMD

• Arithmetic (add, sub, mul, div, fma)

• Conversion 

• Bit manip (and, or, xor, not, shift)

• Math (min, max, abs, sqrt, rsqrt, rcp, 
exp, sin, cos, etc…)

• Comparison (eq, lt, gt, etc)
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MOV, writ large

• New problem: how do you fill these 
registers?

• Fill with 1 value from a (scalar) 
register/memory (broadcast)

• Fill with W values from memory 

• Are they packed (contiguous)? (load)

• Are they not? (gather)

• How do you store the result?

• Write W values to memory

• Packed? (store)

• Not? (scatter)



SIMD Exclusives
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• Concepts in SIMD with no scalar 
meaning

• Inter-lane shuffle

• shuffle/permute

• Combining registers

• blend

• Domain-specific

• ‘Horizontal’ add

• Dot product

• Absolute difference

• String search/compare

• Encryption



How it helps
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• SIMD version of inst. usually same 
throughput as serial

• Same flops, less cycles

• Fewer instructions

• Performance gain depends on ratio 
of instructions compared to serial

• Overhead from algorithm/ISA causes 
slowdown

• Look for most efficient mapping



SIMD schemes
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• ‘Op’: an (arbitrary) piece of 
independent work

• For SIMD of width 4…

• Vertical

• 4 ‘ops’; same time 1 serial

• Horizontal

• 1 ‘op’; 1/4 the time 1 serial

Time

4 wide SIMD working on 1 op at a time

4 wide SIMD working on 4 ops at a time

Time for 1 op in 
serial



Example: Particle integration
Serial code
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struct particle {

double x[2];

double v[2];

};

int N = 2000;

double  dt = 2e-3;

particle *p = ….

….

for(int i = 0; i < N; ++i) {

for(int j = 0; j < 2; ++j) {

p[i].x[j] += p[i].v[j]*dt;

}

}

2 fused multiply-adds/particle



Example: Particle integration
‘Horizontal’ approach
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struct particle {

double x[2];

double v[2];

};

int N = 2000;

double  dt = 2e-3;

particle *p = ….

….

for(int i = 0; i < N; ++i) {

for(int j = 0; j < 2; ++j) {

p[i].x[j] += p[i].v[j]*dt;

}

}

• Maximum speedup: 2x

• Independent of N

• Same data layout

• Depends on W



Example: Particle integration
‘Vertical’ approach
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struct particle {

double x[2];

double v[2];

};

int N = 2000;

double  dt = 2e-3;

particle *p = ….

….

for(int i = 0; i < N; ++i) {

for(int j = 0; j < 2; ++j) {

p[i].x[j] += p[i].v[j]*dt;

}

}

• Maximum speedup: N or W

• Data layout ‘wrong’

• Independent of W (< N)
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Data layout for SIMD

• Array-of-Structure

• For ‘vertical’ methods, lots of movement

• Inputs ‘gathered’ into SIMD, ‘scattered’ back

• Gather/scatter more work

• Serialize for load

• Special gather/scatter hardware speeds it up 

• Structure-of-Array

• Data layout changed to make SIMD more efficient

struct particle {

double x[2];

double v[2];

};

particle *p = new particle[200];

struct particle_arrays {

double *x0,*x1;

double *v0,*v1;

};

particle_arrays p = { new double[200],

new double[200],

new double[200],

new double[200] };



How do you use SIMD?
Contemporary ISAs

Low-level

Mid-level

High-level
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SIMD in your code

• Many flavors of SIMD

• MMX, SSE{2,3,4,etc}, AVX{2}, IMCI, AVX-512

• Different widths/types (bytes->doubles, 128-bits->512-bits)

• Common ‘basic’ core

• Different ‘specials’

• For portability, stay as high level as possible

• Horizontal/hybrid schemes necessarily tied to width; operations too

• Think out ‘SIMD version’ of algorithm first!



Elemental Functions

• Write a function for one element and add  #pragma omp declare simd

• Call the scalar version:

• Call scalar version via auto-vectorized or SIMD loop:

• Call it with array notations:
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#pragma omp declare simd

float foo(float a, float b, float c, float d) {

return a * b + c * d;

}

for(i = 0; i < n; i++) {

A[i] = foo(B[i], C[i], D[i], E[i]);

}

A[:] = foo(B[:], C[:], D[:], E[:]);

e = foo(a, b, c, d);



Loop Vectorization

� Auto-Vectorization:

� One of the loop nest optimizations

� Heuristics-driven

� Write optimizable code (with optimization hints) and it just happens

� SIMD Pragma:

� Vector programming construct: “vectorize here”

� Similar to OpenMP*, which is for parallel programming: “parallelize here”.

� Optimizable code (and optimization hints) still helpful for better code 
generation
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SIMD Pragma

• Programmer asserts:

• *p is loop invariant

• A[] not aliased with B[], C[] and sum

• sum not aliased with B[] and C[]

• + operator is associative (compiler can reorder for better vectorization)

• Vectorized code generated even if efficiency heuristic does not 
indicate a gain*
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#pragma omp simd

reduction(+:sum)

for(i = 0; i < *p; i++) {

A[i] = B[i] * C[i];

sum = sum + A[i];

}

*Some things, like intrinsics & assembly can prevent it 



SIMD Pragma & OpenMP*

• OpenMP*-like pragma for vector programming

• “Go ahead and generate vector code” model

• Additional semantics (private, reduction, linear, 
etc.)  given to compiler via clauses
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#pragma omp simd

for(int ray=0; ray < N; ray++) {

float Color = 0.0f, Opacity = 0.0f;

int len = 0;

int upper = raylen[ray];

while (len < upper) {

int voxel = ray + len;

len++;

if(visible[voxel] == 0) continue;

float O = opacity[voxel];

if(O == 0.0) continue;

float Shading = O + 1.0;

Color += Shading * (1.0f - Opacity);

Opacity += O * (1.0f - Opacity);

if(Opacity > THRESH) break;

}

color_out[ray] = Color;

}

directive hint

vector SIMD IVDEP

thread OpenMP* PARALLEL



Think SIMD

83

• Efficient tool for data-level parallelism

• Several variations, increasing sophistication

• Widely available,  many models for use

• Rapidly improving tools

• Understanding what you want to happen is key

• Realization follows

• SIMD rarely works ex post facto

• Build data structures & algorithms that work with it



Intel, the Intel logo, Intel® Xeon Phi™, Intel® Xeon® Processor are trademarks of Intel Corporation 
in the U.S. and/or other countries. *Other names and brands may be claimed as the property of 
others. See Trademarks on intel.com for full list of Intel trademarks. 

From ‘Correct’ To ‘Correct & Efficient’: A Case 
Study With Hydro2D



Case study: 2D Shock Hydrodynamics

• Open-source version of production code from CEA

• Port from Fortran with so-so Xeon performance and awful Phi performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as 
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors 
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, 
including the performance of that product when combined with other products. Source:intel



Case study: 2D Shock Hydrodynamics

• 2D Euler equations

• Nonlinear system of 4 PDEs

• Equation of state

• ρ		is density

• u,	v		are x- and y- components of
velocity

• E  is total energy

• p		is pressure

• γ is adiabatic constant

• In conservation form; each eq. is a 
conservation law



Godunov’s scheme

• Classically hyperbolic nonlinear system

• Shocks expected!

• Need integral form

• Solve with Godunov’s method

• Finite Volume representation

• Piecewise-constant (vector) state in ea. cell

• Estimate state for left, right of ea. cell 
interface

• Compute fluxes between cells based on 
that

• Riemann problem

• Explicitly integrate contributions for each 
cell

• “Reconstruct-evolve-average”



Dimensional splitting

• Above scheme is 1-dimensional

• For 2+ spatial dimensions, use 
dimensional splitting

• Form of operator splitting

• Solve x-interfaces to 
intermediate state, then solve  y-
interfaces using that state to next 
timestate

• Same kernel, different access 
patterns



Riemann solver throughput

� Explicit Euler integration

� Trivial compute

� Flux computation requires that we solve 2(n+1) (independent) Riemann 
problems

� The Riemann problem is a “zoom in” of two spatially-constant states

� How do they evolve?

� This gives flux

� Complex structure

� Use Newton-Raphson to solve x

t

x

t

xx

t



Our baseline: The reference code

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as 
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors 
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, 
including the performance of that product when combined with other products. Source: intel



Making it faster: Better threading, less data



Problem I: Bad threading, too much state

• Original code used ‘slabs’ for 
compute
• Copy slice of grid to buffer, do all 

compute in buffer, copy back
• The good:

• Vectorization/code path for slabs 
always the same

• The bad:
• Lots of data movement (transpose 

in y!)
• Parallelism restricted by slab size



Problem I: Bad threading, too much state

• Original code does each step across all cells in 
slab, synchronizes
• No race conditions
• Ballooning working set

make_boundary();
constoprim();
equation_of_state();
slope();
trace();
qleftright();
riemann();
cmpflx();
updateConservativeVars();

Each applied to all cells 
in slab inside function, 
sync in between



Problem I: Bad threading, too much state

• Stablity
• Advance by dt in stability region
• dt < dx/maxspeed

• dx constant
• Maxspeed largest wavespeed
among cells

• We must find maximum speed across all cells
• Special, low-intensity pass to compute at 
each step

• Bandwidth hog
• Thread control overhead



Optimization I: Tiling decomposition, narrowed 
updates

� Decompose domain into 
exclusive tiles

− Locality (NUMA)

− Communication control

− Local sync

� Surprisingly simple

− Each tile looks like a whole 
domain; boundaries 
become communication



Optimization I: Tiling decomposition, narrowed 
updates

� Use data flow analysis to reduce 
working set

− Compute only what is needed to 
update a cell, save what is needed 
for next cell

� ‘Rolling updates’; operating on 
each 1D section per thread 
minimizes redundant compute 

� For stability: combine speed 
computation with update stage

for(int i = 0; i < n[d]; ++i) {
make_boundary(i);
constoprim(i);
equation_of_state(i);
slope(i);
trace(i);
qleftright(i);
riemann(i);
cmpflx(i);
updateConservativeVars(i);

}



Optimization I results

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as 
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors 
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, 
including the performance of that product when combined with other products. Source: Intel



Making it faster: Less & cheaper math



Problem II: Lots of divisions

• Original code used lots of divisions 
and sqrts

• Divisions can take 40+ cycles in DP

• Less throughput in SIMD
for (iter = 0; iter < Hniter_riemann ; iter++) {

if (goon) {
double wwl, wwr;
wwl = sqrt(cl_i * (one + gamma6 * (pstar_i - pl_i) / pl_i));
wwr = sqrt(cr_i * (one + gamma6 * (pstar_i - pr_i) / pr_i));
double ql = two * wwl * Square(wwl) / (Square(wwl) + cl_i);
double qr = two * wwr * Square(wwr) / (Square(wwr) + cr_i);
double usl = ul_i - (pstar_i - pl_i) / wwl;
double usr = ur_i + (pstar_i - pr_i) / wwr;
double delp_i = MAX((qr * ql / (qr + ql) * (usl - usr)), (-

pstar_i));
pstar_i = pstar_i + delp_i;
// Convergence indicator
double uo_i = DABS(delp_i / (pstar_i + smallpp));
goon = uo_i > PRECISION;

}



Optimization II: Cache reciprocals, use algebra

� rcp instruction is much faster than division

− Usually acceptable for accuracy

� Cache reciprocals and square roots (rho and c, in particular)

− Rolling update makes this less memory-intensive (constant storage 
overhead)

const REAL_T inv_rho_0 = rcp(rho_0);
const REAL_T c_0 = std::max(my_sqrt(std::abs(GAMMA * p_0 * inv_rho_0)), SMALLC);
const REAL_T ushock = w_0 * inv_rho_0 - sgnm * u_0;



Optimization II: Cache reciprocals, use algebra

� Algebraic tweaking of Riemann terms to reduce divs



Optimization II results

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as 
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors 
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, 
including the performance of that product when combined with other products. Source: Intel



Making it faster: Vectorization



Problem III: Poor vector efficiency

• Vector units allow same work, fewer instructions

• Overhead when data not packed

• Overhead for control divergence

• Placing #pragma simd in existing code might not always work well

• Compiler must be conservative about assumptions

• Some architectures have penalty for un-aligned data

• Vectorization can expose bandwidth (arithmetic intensity drops 
precipitously!)



Optimization III: Vector thinking

• First: know how SIMD should be used

• Worry about how to achieve it later

• Here, y-passes are easy (two adjacent 
y-rows are packed)

• X-passes are tricky

• We can gather…

• Or do shifting

• C++ SIMD classes unify serial and 
vector code

• Two intrinsic-based functions rotate 
reused data in SIMD

void rotate_left_wm2(F64vec8 *v0, const F64vec8 v1)
{

static const I32vec16 shift2(11, 10, 9, 8,  7,  6,  5,  4, \
3,  2, 1, 0, 15, 14, 13, 12);

*v0 = _mm512_permutevar_epi32     (              shift2,*v0);
*v0 = _mm512_mask_permutevar_epi32(*v0, 0xFFF0U, shift2, v1);

}

void rotate_left_wm1(F64vec8 *v0, const F64vec8 v1)
{

static const I32vec16 shift1(13, 12, 11, 10, 9, 8,  7,  6, \
5,  4,  3,  2, 1, 0, 15, 14);

*v0 = _mm512_permutevar_epi32     (              shift1, *v0);
*v0 = _mm512_mask_permutevar_epi32(*v0, 0xFFFCU, shift1, v1);

}



Optimization III results

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as 
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors 
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, 
including the performance of that product when combined with other products. Source: Intel



Summary



Overall progress

• Xeon Phi started out looking bad

• ~0.5x 2-socket Xeon performance

• As it turns out, Xeon wasn’t doing well either…

• With systematic optimization, as much as

• 12x on Xeon Phi

• 5x on Xeon



Learnings

• Adding pragmas, crossing fingers rarely solves the problem

• No silver bullet

• Consider how hardware should be applied

• Then worry about how; the realization is often simple

• PhD in EE not required

• A working model of major components is enough to tap resources

• A rising tide lifts all boats

• Xeon and Xeon Phi benefit from the same optimizations



Summary

� Knights Landing is a high-throughput successor to the first Xeon Phi

� Socketable, bootable processor with access to large amounts of RAM

� Greatly improved single-thread performance

� Very high bandwidth, flexible MCDRAM

� Power-efficient

� Optional on-chip interconnect (Omni Path)

� Much of Knights Landing’s throughput comes from parallelism

� Codes will need to be modernized to fully exploit the features of the chip

� The current generation Xeon Phi has parallelism at similar scales and is the best proxy 
for performance on Knights Landing



Summary

� Peak performance is not automatic

� Parallelism of all types requires forethought and careful design

� Design and coding modernization efforts invested now will pay dividends in 
future hardware

� Evolving standards like OpenMP help realize modernization 

� Numerous tools (Intel®SDE, memkind, Intel® Composer XE) exist today to help 
test Knights Landing, in addition to other Intel® performance analysis tools
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