
Intel, the Intel logo, Intel® Xeon Phi™, Intel® Xeon® Processor are trademarks of Intel Corporation
in the U.S. and/or other countries. *Other names and brands may be claimed as the property of
others. See Trademarks on intel.com for full list of Intel trademarks.

Preparing for a smooth landing: Intel’s Knights
Landing and Modern Applications
Jason Sewall
TCG MICRO

Tutorial 1C
8:30-12pm, April 27
CUG 2015

Yrs. truly

� Education

� University of Maine

− B.A. Mathematics ’04

− B. S. Computer Science ’04

� University of North Carolina – Chapel Hill

− M.S. Computer Science, ‘08,

− Ph.D. Computer Science ’10

− Entered fall ‘04, advisor Ming C. Lin

− ‘Graphics’ (physically-based animation)

− GPGPU + Parallel computing

2

Yrs. truly

� Intel

− Intern in ARL (now PCL) ‘06 & ’07

» Physics KNF: collision detection, fluid simulation

− PCL full-time 9/2010

» Traffic simulation, CFD, database indexes, linear
algebra, graphs, reservoir sim.

− Joined DCG MICRO in 12/2013 (Virtual site in
Pemaquid, ME)

» Training

» Optimization

» Ex officio PCL

3

Agenda

4

1. What is Knights Landing?

2. How do I get good performance on Knights Landing?

3. Break

4. What can I do now to get ready for Knights Landing?

What is Knights Landing?
The next generation of Intel® Xeon Phi ™

5

Increasing parallelism in
Xeon and Xeon Phi

Intel® Xeon®

processor

64-bit
series

Intel® Xeon®

processor

5100
series

Intel® Xeon®

processor

5500
series

Intel® Xeon®

processor

5600
series

Intel® Xeon®

processor
code-named

Sandy
Bridge EP

Intel® Xeon®

processor
code-named

Ivy Bridge
EP

Intel® Xeon®

processor
code-named

Haswell
EX

1 2 4 6 8 12 18

2 2 8 12 16 24 36

128 128 128 128 256 256 256

Intel® Xeon Phi™

coprocessor

Knights
Corner

Intel® Xeon Phi™
processor &

coprocessor

Knights
Landing1

61 60+

244 4x #cores

512 512

*Product specification for launched and shipped products available on ark.intel.com. 1. Not launched.

Core(s)

Threads

SIMD Width

Moore’s Law and Parallelism

7

Parallelism and Performance

Peak GFLOP/s in Single Precision

� Clock Rate x Cores x Ops/Cycle x SIMD

2 x Intel® Xeon® Processor E5-2670v2

� 2.5 GHz x 2 x 10 cores x 2 ops x 8 SIMD
= 800 GFLOP/s

Intel® Xeon Phi™ Coprocessor 7120P

� 1.24 GHz x 61 cores x 2 ops x 16 SIMD
= 2420.48 GFLOP/s

8

5

40

100

800

1.24

19.84

151.28

2420.48

1

10

100

1000

Scalar & ST Vector & ST Scalar & MT Vector & MT

G
F
LO
P
/s

G
F
LO
P
/s

G
F
LO
P
/s

G
F
LO
P
/s

2 x Processor Coprocessor

Note the logarithmic scale on the y-axis.
ST = Single Thread, MT = Multiple Threads

Parallelism and Performance

On modern hardware,
Performance = Parallelism

Flat programming model on parallel
hardware is not effective.

Parallel programming is not optional.

Codes need to be made parallel
(“modernized”) before they can be
tuned for the hardware (“optimized”).

9

5

40

100

800

1.24

19.84

151.28

2420.48

1

10

100

1000

Scalar & ST Vector & ST Scalar & MT Vector & MT

G
F
LO
P
/s

G
F
LO
P
/s

G
F
LO
P
/s

G
F
LO
P
/s

2 x Processor Coprocessor

Note the logarithmic scale on the y-axis.
ST = Single Thread, MT = Multiple Threads

Parallel concepts

10

Parallel computing uses multiple computing units in parallel to

� Solve problems more quickly than a single processor (“strong scaling”)

� Solve larger problems in the same time as a single processor (“weak scaling”)

� Solve problems with higher fidelity

High-performance parallel computing is hard and requires

� Finding enough parallelism

� Deciding the optimal granularity, locality and load balance

� Coordination and synchronization

Real-world applications/algorithms are complex and often hierarchical:
monolithic programming model is limited

Amdahl’s Law

11

� � �
1

1 � � �
�
�

where:

� � � � speedup on N processors

� � � fraction of code that can be parallelised

� � � number of processors

The speedup of “strong scaling” applications is governed by Amdahl’s Law.

As � → ∞, � � →

�
��
.

Impact of Amdahl’s Law

12

1

2

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128 256 512 1024

S
p
e
e
d
u
p

Number of Processors

P = 1

P = 0.9

P = 0.8

P = 0.7

P = 0.6

P = 0.5

Amdahl’s Law in Practice

13

� Assumption that � and � are independent is unrealistic.

� Strong Scaling:
All-to-all communication costs increase with �.
For sufficiently large �, applications will start to slow down again!

� Weak Scaling:
Increasing problem size may not linearly increase compute time.

� Key takeaway from both laws:
maximize � to maximize efficiency and performance at scale.

� Parallelism “bolted on” to scalar applications will not scale.

14

Knights Landing
Holistic Approach to Real Application Breakthroughs

…

…

.
.

.

.
.

.

Integrated Intel® Omni-Path

Over Over Over Over 60 Cores

Processor Package

Compute

� Intel® Xeon® Processor Binary-Compatible

� 3+ TFLOPS1, 3X ST2
perf. vs Xeon PhiTM coprocessor

� 2D Mesh Architecture

� Out-of-Order Cores

On-Package Memory
� Over 5x STREAM vs. DDR43

� Up to 16 GB at launch

Platform Memory

Up to 384 GB DDR4 (6 ch)

Omni-Path
(optional)(optional)(optional)(optional)

� 1st Intel processor to integrate

I/O Up to 36 PCIe 3.0 lanes

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other

information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

For more complete information visit http://www.intel.com/performance.

15

Knights Landing

All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.
All projections are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual
performance.

� > 8 billion transistors
� 14nm process

� Over 10 GF/W

16

Knights Landing at large

• Cori @ NESRC, built by Cray (> 9,300 nodes, mid-2016)

• Trinity @ NNSA, also built by Cray

• >100 Petaflops of deals to date

17

Form factors

• Bootable, standalone processor

• Up to 384GB DD4 using 6 channels

• 3 or more KNL in 1U

• PCIe coprocessor

• Both native and offload programming models

18

Single-threaded performance

• 3x single-thread performance compared to current generation

• ‘Silvermont’-based core with modifications

• 2 VPUs/core

• Advanced branch prediction

• 2x ROB depth

• 32 kb Icache, 32 kbDcache

• 1MB L2 per tile

• 2 64B load ports

• First processor that supports AVX-512

• AVX-512F, CDI, ERI, & PFI

19

AVX-512 in Knights Landing

ISAISAISAISA AVXAVXAVXAVX----512F512F512F512F AVXAVXAVXAVX----512 CDI512 CDI512 CDI512 CDI AVXAVXAVXAVX----512512512512 ERIERIERIERI AVXAVXAVXAVX----512 PFI512 PFI512 PFI512 PFI

Features ‘Foundation’:
double, float,
int32, int64
arithmetic,
load/store,
with masks

vector confict
detection, lzcnt

Transcendentals Prefetches

20

Many-core performance

• 2D mesh of tiles

• 30+ tiles

• 2 cores/tile

• 1MB shared L2/tile

21

Near memory

• AKA ‘on-package memory’, ‘high-bandwidth memory’, MCDRAM

• Partnership with Micron Technology

• > 400 GB/s

• Up 16GB (at launch)

• NUMA support

• Over 5x energy efficiency, 3x density vs. GDDR5

• Multiple usage models, including ‘L3 cache’ and ‘flat’

22

Intel® Omni Path fabric integration

• See more from Intel’s Barry Davis tomorrow @ 3pm (Technical Session 8B)

“A Storm (Lake) is Coming to Fast Fabrics: The Next-Generation Intel® Omni-Path
Architecture”

23

Q & A

How do I get good performance on Knights
Landing?

24

25

Efficiency on Knights Landing

• 1st Knights Landing systems appearing by end of year

• How do we prepare for this new processor without it at hand?

• Let’s review the main performance-enabling features:

• 60+ cores

• 2x VPU, AVX-512

• High-bandwidth MCDRAM

• Plenty of parallelism needed for best performance.

26

MPI needs help

• Many codes are already parallel (MPI)

• May scale well, but…

• What is single-node efficiency?

• MPI isn’t vectorizing your code…

• It has trouble scaling on large shared-memory chips.

• Process overheads

• Handling of IPC

• Lack of aggregation off-die

• Threads are most effective for many cores on a chip

• Adopt a hybrid thread-MPI model for clusters of many-core

27

OpenMP 4

• OpenMP helps express thread- and vector-level parallelism via directives

(like #pragma omp parallel, #pragma omp simd)

• Portable, and powerful

• Don’t let simplicity fool you!

• It doesn’t make parallel programming easy

• There is no silver bullet

• Developer still must expose parallelism & test performance

28

The “Evolutionary” Approach

Identify
Hotspots

#pragma omp
parallel for

Read Compiler
Report

#pragma omp
simd

Arithmetic
Optimizations

Start

29

Case Study: European Options Pricing

� European Options Pricing kernel

� Longstanding HPC proxy for
financial workloads

� Simulation phase only

� 1D Monte Carlo integration

� Many (1e5-1e7+) options considered

� Long (256k) paths

� Uses normally-distributed random numbers

� Pre-generated and streamed

� �, � � � �
 �	 � � �� ���������

�
 �
1

� � � �
ln

�

�
� � �

��

2
�� � ��

�� � �
 � � � � �

S :: Spot price
K :: Strike price
C(S,t) :: Price of call option with price S at time t
N(x) :: CDF of normal dist. with variance x
σ :: volatility of returns
T :: expiration date

30

Baseline Implementation

� Performance is O((c0 + c1*npath)*nopt)

� Since we do ~218 paths per option, path
computation (c1) dominates runtime

� > 99% of work in 3 lines of code

� Conventionally viewed as compute
bound

� Exponentiation, lots of arithmetic

� Small working set (1 RNG per path
step, reduction on output)

for(int o = 0; o < nopt; o++) {
const REAL_T v_rt_t = sqrt(T[o]) * vol;
const REAL_T mu_t = T[o] * mu;
REAL_T v0 = 0, v1 = 0, res;
for(int p = 0; p < npath; ++p) {
res = max(0, S[o]*exp(v_rt_t*m_r[p]

+ mu_t)-X[o]);
v0 += res;
v1 += res*res;

}
result [o] += v0;
confidence[o] += v1;

}

31

Optimized & Modernized Implementation

� Loop Unrolling (#pragma unroll)

� Short loop hurts instruction scheduling.

� Threading (#pragma omp parallel)

� Embarrassingly parallel.

� No write conflicts and small working set.

� Vectorization (#pragma omp simd)

� v0/v1 must be reduced.

� max() call introduces control
divergence.

� m_r[p] should be aligned.

� Arithmetic

� Use native exp2() call on coprocessor.

#pragma omp parallel for
for(int o = 0; o < nopt; o++) {
const REAL_T _rt_tLN2=sqrt(T[o])*vol/M_LN2;
const REAL_T mu_tLN2 = T[o]*mu/MLN2;
REAL_T v0 = 0, v1 = 0, res;

#pragma omp simd reduction(+:v0), reduction(+:v1),
aligned(m_r:64)
#pragma unroll(4)
for(int p = 0; p < npath; ++p) {
res = max(0, S[o]*exp2(v_rt_tLN2*m_r[p]

+ mu_tLN2)-X[o]);
v0 += res;
v1 += res*res;

}
result [o] += v0;
confidence[o] += v1;

}

32

Performance Results

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more information go to http://www.intel.com/performance.

1x

10x

100x

1,000x

10,000x

S
p
e
e
d

S
p
e
e
d

S
p
e
e
d

S
p
e
e
d
-- -- u
p
u
p
u
p
u
p

Unrolled Threading Vectorization Arithmetic

60x60x60x60x

16x16x16x16x

33

The “Evolutionary” Approach – Summary

The “evolutionary” approach can get you 1000x if:

� Your baseline is serial and scalar.

� Your code is embarrassingly parallel with no dependencies.

� You have one hotspot – no file I/O, MPI* communication.

If only more codes looked like this… �

Real codes will get somewhere between 0x and 1000x, depending on: code,
compiler ability and the amount of exposed parallelism.

34

The Evolution/Revolution Approach

Identify
Hotspots

#pragma omp
parallel for

Read Compiler
Report

#pragma omp
simd

Arithmetic
Optimizations

Start

Examine
Algorithm

Design New
Algorithm

Implement New
Algorithm

Identify when the existing algorithm
has stopped working, and re-design.

35

Case Study: Cosmic Microwave Background Analysis

Version Decoder:
1: Baseline
2+3: Low-hanging Fruit
4: Flat OpenMP*
5: Nested OpenMP*
6: Blocking

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more information go to http://www.intel.com/performance. System configuration on Slide 62.

36

Case Study: Cosmic Microwave Background Analysis

Version Decoder:
1: Baseline
2+3: Low-hanging Fruit
4: Flat OpenMP*
5: Nested OpenMP*
6: Blocking
7: Trapezium Rule7: Trapezium Rule7: Trapezium Rule7: Trapezium Rule
8: DGEMM
9: Alignment
10: Prefetching

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more information go to http://www.intel.com/performance. System configuration on Slide 62.

Revolutionary change.

Summary

37

� Adding pragmas and crossing fingers rarely solves the problem.

� Consider how hardware should be used before worrying about the
implementation.

� Can’t know if the compiler is doing the “right thing” without first knowing what that is.

� Choosing a programming model/methodology first may restrict algorithmic choice.

� Revisit your algorithms and throw out your assumptions. A parallel
implementation of a “slower” algorithm may be faster at scale.

� Investment in code yields improved performance and better science.

After the break

38

� Getting code built for Knights Landing & testing correctness

� Working with the best proxy for Knights Landing

Q & A

Break

40

What can I do now to get ready for Knights
Landing?

41

Proxies for Knights Landing

42

� Two pronged approach for Knights Landing readiness

� Software support tools

− Intel® Composer Studio XE 2015 compiles for Knights Landing

− Intel® Software Development Emulator functionally emulates; rough perf. analysis.

− Memkind & hbw_malloc harness MCDRAM

� Use the best available real-world proxy for performance testing

− Intel® Xeon PhiTM

memkind & hbw_malloc

43

A Heterogeneous Memory Management Framework

� The memkind library

• Defines a plug-in architecture

• Each plug-in is called a “kind” of memory

• Built on top of jemalloc: the FreeBSD OS
default heap manager

• Partition is defined by functions that
provide inputs for operating system calls

• High level memory management
functions can be over-ridden as well

• Available via github:
https://github.com/memkind

� The hbwmalloc interface

• The high bandwidth memory interface

• Implemented on top of memkind interface

• Simplifies memkind plug-in (kind) selection

• Uses all kinds featuring on package memory
on the Knights Landing architecture

• Provides support for 2MB and 1GB pages

• Select fallback behavior when on package
memory does not exist or is exhausted

• Check for existence of on package memory

Knights Landing Memory Overview

• Large numbers of cores can consume large
amounts of memory bandwidth.

• Knights Landing is equipped with 6
bidirectional DDR4 memory channels and
MCDRAM.

• Memory requests are serviced by a mesh
network maintaining cache coherence.

• MCDRAM can be configured as a third level
cache, as a flat, distinct region of memory,
or somewhere in-between.

� Basic memory features

� MCDRAM is high bandwidth, lower
capacity.

� DDR is high capacity lower bandwidth.

MCDRAM as Cache Flat Mode

� Upside

� No software modifications required.

� Bandwidth benefit.

� Downside

� Latency hit to DDR.

� Limited sustained bandwidth.

� All memory is transferred DDR ->
MCDRAM -> L2.

� Less addressable memory.

� Upside

� Maximum bandwidth and latency
performance.

� Maximum addressable memory.

� Isolate MCDRAM for HPC application use
only.

� Downside

� Software modifications required to use
DDR and MCDRAM in the same
application.

� Which data structures should go where?

� MCDRAM is a limited resource and
tracking it adds complexity.

47

What mode should I pick?

hbwmalloc Interface

memkind Interface

50

End Goal Usage: Code Snippets

float *fv;

fv = (float *)malloc(sizeof(float) * 1000);

Allocate 1000 floats from DDR
float *fv;

fv = (float *)hbw_malloc(sizeof(float) * 1000);

Allocate 1000 floats from MCDRAM

c Declare arrays to be dynamic
REAL, ALLOCATABLE :: A(:), B(:), C(:)

!DIR$ ATTRIBUTES FASTMEM :: A

NSIZE=1024
c
c allocate array ‘A’ from MCDRAM
c

ALLOCATE (A(1:NSIZE))
c
c Allocate arrays that will come from DDR
c

ALLOCATE (B(NSIZE), C(NSIZE))

Allocate arrays from MCDRAM & DDR in Intel FORTRAN

Intel® Software Development Emulator
Functional emulation

51

• Freely available instruction emulator

• Emulates existing ISA as well as ISAs for upcoming processors (including
Knights Landing)

• Record dynamic instruction mix; useful for tuning/assessing vectorization
content

• http://www.intel.com/software/sde

• First step: compile for Knights Landing:

$ icpc –xMIC-AVX512 <compiler args>

52

Intel® Software Development Emulator

• SDE invocation is very simple:

$ sde <sde-opts> -- <binary> <command args>

• By default, SDE will execute the code with the CPUID of the host.

• The code may run more slowly, but will be functionally equivalent to the target
architecture.

• For Knights Landing, you can specify the -knl option.

• In addition to emulation, SDE can summarize the types of instructions that were
executed

$ sde <sde-opts> -omix <output-file> -- <binary> <command args>

• The output file will contain statistics about the instruction mix, with adjustable
granularity

53

Running SDE

� # ==
� # STATS FOR TID 0 EMIT# 1
� # ==
� # EMIT_TOP_BLOCK_STATS FOR TID 0 EMIT # 1 EVENT=ICOUNT
� BLOCK: 00000 PC: 0000000000410c23 ICOUNT: 15983666400 EXECUTIONS: 270909600 #BYTES: 272 %: 15 cumltv%:

15 FN: swUpdatePress2ndTiltedZ_DDz1_8 IMG: swell-TTC2-12x12x8 Source: swUpdatePress2ndTilted-orig.tc 274,273
� XDIS 0000000000410c23: SSE 430F101498 movups xmm2, xmmword ptr [r8+r11*4]
� XDIS 0000000000410c28: SSE 420F101C98 movups xmm3, xmmword ptr [rax+r11*4]
� XDIS 0000000000410c2d: SSE 0F59D1 mulps xmm2, xmm1
� XDIS 0000000000410c30: SSE 410F59DF mulps xmm3, xmm15
� XDIS 0000000000410c34: BASE 4C8BBC2468010000 mov r15, qword ptr [rsp+0x168]
� XDIS 0000000000410c3c: SSE 0F58D3 addps xmm2, xmm3
� XDIS 0000000000410c3f: SSE 430F105C9D00 movups xmm3, xmmword ptr [r13+r11*4]

• ICOUNT: total dynamic instructions executed by this basic block. Basic blocks sorted by ICOUNT from
highest to lowest.

• EXECUTION: number of time is basic block is invoked

• %: percent of total instructions that come from this basic block

• cumltv%: cumulative % of instruction count up to this basic block

54

Basic Block Stats from SDE mix

• Look for unpack *ss or *sd instructions (i.e., scalar instructions) in top basic
blocks

• Are they SSE, AVX, AVX2, AVX512 instructions?

• For KNL, we want as many AVX512 instructions as possible

• Sometimes, non AVX512 instructions come from math libraries and some math functions
are not optimized for AVX512 yet.

• Are there gathers/scatters (non-unit stride)? Can code be transformed to
remove gathers/scatters?

55

Basic Block Stats from SDE mix (cont.)

Xeon PhiTM as proxy for Xeon PhiTM

56

A performance proxy

57

� Functional emulation and advanced APIs are invaluable for testing out new
instructions and features

� Performance testing very important

� How will your code run on Knights Landing?

� Know your code! Is it compute-hungry? Memory bandwidth-hungry?

� How do the performance features of Knights Landing affect those limits?

� Is there an existing processor that is a good proxy for Knights Landing for
your code?

Proxy Matching

58

� Modern Xeon® processors have more
cores and wider SIMD than ever

� Xeon PhiTM is still much closer to
Knights Landing in width

� Compute-bound codes should seek
peak on Xeon PhiTM

� Bandwidth-bound codes will find Xeon
PhiTM closer

� Only high memory-capacity codes
favor Xeon® in this comparison

� May not be throughput codes anyway

� Consider using reduced problem size for
tuning

Intel® Xeon®
E5-2696v3

Intel® Xeon PhiTM

7120
Knights Landing

Cores/threads 14/28 61/244 60+/240+

Nom. Hz 2.6GHz 1.3GHz N/A

STREAM BW ~50 GB/s ~170 GB/s >400 GB/s (MCDRAM)

SIMD width 256 bits 512 bits 512 bits

LLC capacity 35MB 30.5MB 30+MB

DRAM cap. 768GB 16GB 384GB

Using the proxy

59

� The current Xeon PhiTM is almost always the closest proxy to Knights Landing

� Native Xeon Phi corresponds to bootable Knights Landing

� What drives performance on Xeon PhiTM?

� Thread scalability

− Load balancing

− Divergence

− (Inter-core) communication costs

� SIMD vectorization

� High bandwidth GDDR5

� Thread-level parallelism is not easy, but shares similarities with MPI-type

� SIMD is less familiar ground for most…

Opening the Flop floodgates
Efficiency from a SIMD Mindset

60

Motivation

61

• Single-instruction, multiple data
(SIMD) available on most
processors

• 4x-16x ‘on the table’

• Powerful, but more restrictive than
multiple cores

• New tools, better hardware: the
stars are right!

• <TODO> die photo w/blacked out
SIMD

What is SIMD?
Data Level Parallelism

SIMD primer

SIMD and other forms of parallelism

62

Data level Parallelism

63

• “I have lots of data I want to do the same
operation to”

• Very common idiom in HPC

• Classic for loop:

� for(int i=0;i<8;++i)

� A[i] = alpha*B[i] + C[i];

• Lots of iterations

• Independent

• Arithmetic

• Multi-node, multi-core possible

• Overheads

• Is there a more efficient way?

SIMD primer

64

• SIMD execution (Wx)

• Vector registers

• Vector functional units

• Vector instructions

• ~W FLOPs/instruction

• Conceptually: ‘lanes’

W W

W

W

65

SIMD in the Parallel Pantheon

• Modern processors have multiple cores

• SIMD is in each core

• (Mostly) orthogonal to threading

• Modern processors are superscalar

• SIMD can be superscalar

• How is it different than threading?

• SIMD data layout demanding

• Can affect data structures and memory

• Linked control flow

• Branches can be tricky!

• ‘Communication’ fine-grained

How does SIMD work?
Field guide to SIMD

How it helps

SIMD schemes

SIMD considerations

66

67

A field guide to SIMD

• Which scalar instructions should be ‘ported’
to SIMD?

• Which data types? (multiple widths!)

• Always a ‘common core’: arithmetic

• add, sub, mul, div, fma

• Some make no sense

• cpuid?? cli? int?

• Some new instructions only for SIMD

x86_64 SIMD

mov vmov

add vadd

mul vmul

fmadd vfmadd

rdtsc -

jmp -

cli -

cmpxchg -

cpuid -

nop -

- vgather

- vshuff

- hadd

68

“Vanilla” SIMD

• Arithmetic (add, sub, mul, div, fma)

• Conversion

• Bit manip (and, or, xor, not, shift)

• Math (min, max, abs, sqrt, rsqrt, rcp,
exp, sin, cos, etc…)

• Comparison (eq, lt, gt, etc)

69

MOV, writ large

• New problem: how do you fill these
registers?

• Fill with 1 value from a (scalar)
register/memory (broadcast)

• Fill with W values from memory

• Are they packed (contiguous)? (load)

• Are they not? (gather)

• How do you store the result?

• Write W values to memory

• Packed? (store)

• Not? (scatter)

SIMD Exclusives

70

• Concepts in SIMD with no scalar
meaning

• Inter-lane shuffle

• shuffle/permute

• Combining registers

• blend

• Domain-specific

• ‘Horizontal’ add

• Dot product

• Absolute difference

• String search/compare

• Encryption

How it helps

71

• SIMD version of inst. usually same
throughput as serial

• Same flops, less cycles

• Fewer instructions

• Performance gain depends on ratio
of instructions compared to serial

• Overhead from algorithm/ISA causes
slowdown

• Look for most efficient mapping

SIMD schemes

72

• ‘Op’: an (arbitrary) piece of
independent work

• For SIMD of width 4…

• Vertical

• 4 ‘ops’; same time 1 serial

• Horizontal

• 1 ‘op’; 1/4 the time 1 serial

Time

4 wide SIMD working on 1 op at a time

4 wide SIMD working on 4 ops at a time

Time for 1 op in
serial

Example: Particle integration
Serial code

73

struct particle {

double x[2];

double v[2];

};

int N = 2000;

double dt = 2e-3;

particle *p = ….

….

for(int i = 0; i < N; ++i) {

for(int j = 0; j < 2; ++j) {

p[i].x[j] += p[i].v[j]*dt;

}

}

2 fused multiply-adds/particle

Example: Particle integration
‘Horizontal’ approach

74

struct particle {

double x[2];

double v[2];

};

int N = 2000;

double dt = 2e-3;

particle *p = ….

….

for(int i = 0; i < N; ++i) {

for(int j = 0; j < 2; ++j) {

p[i].x[j] += p[i].v[j]*dt;

}

}

• Maximum speedup: 2x

• Independent of N

• Same data layout

• Depends on W

Example: Particle integration
‘Vertical’ approach

75

struct particle {

double x[2];

double v[2];

};

int N = 2000;

double dt = 2e-3;

particle *p = ….

….

for(int i = 0; i < N; ++i) {

for(int j = 0; j < 2; ++j) {

p[i].x[j] += p[i].v[j]*dt;

}

}

• Maximum speedup: N or W

• Data layout ‘wrong’

• Independent of W (< N)

76

Data layout for SIMD

• Array-of-Structure

• For ‘vertical’ methods, lots of movement

• Inputs ‘gathered’ into SIMD, ‘scattered’ back

• Gather/scatter more work

• Serialize for load

• Special gather/scatter hardware speeds it up

• Structure-of-Array

• Data layout changed to make SIMD more efficient

struct particle {

double x[2];

double v[2];

};

particle *p = new particle[200];

struct particle_arrays {

double *x0,*x1;

double *v0,*v1;

};

particle_arrays p = { new double[200],

new double[200],

new double[200],

new double[200] };

How do you use SIMD?
Contemporary ISAs

Low-level

Mid-level

High-level

77

78

SIMD in your code

• Many flavors of SIMD

• MMX, SSE{2,3,4,etc}, AVX{2}, IMCI, AVX-512

• Different widths/types (bytes->doubles, 128-bits->512-bits)

• Common ‘basic’ core

• Different ‘specials’

• For portability, stay as high level as possible

• Horizontal/hybrid schemes necessarily tied to width; operations too

• Think out ‘SIMD version’ of algorithm first!

Elemental Functions

• Write a function for one element and add #pragma omp declare simd

• Call the scalar version:

• Call scalar version via auto-vectorized or SIMD loop:

• Call it with array notations:

79

#pragma omp declare simd

float foo(float a, float b, float c, float d) {

return a * b + c * d;

}

for(i = 0; i < n; i++) {

A[i] = foo(B[i], C[i], D[i], E[i]);

}

A[:] = foo(B[:], C[:], D[:], E[:]);

e = foo(a, b, c, d);

Loop Vectorization

� Auto-Vectorization:

� One of the loop nest optimizations

� Heuristics-driven

� Write optimizable code (with optimization hints) and it just happens

� SIMD Pragma:

� Vector programming construct: “vectorize here”

� Similar to OpenMP*, which is for parallel programming: “parallelize here”.

� Optimizable code (and optimization hints) still helpful for better code
generation

80

SIMD Pragma

• Programmer asserts:

• *p is loop invariant

• A[] not aliased with B[], C[] and sum

• sum not aliased with B[] and C[]

• + operator is associative (compiler can reorder for better vectorization)

• Vectorized code generated even if efficiency heuristic does not
indicate a gain*

81

#pragma omp simd

reduction(+:sum)

for(i = 0; i < *p; i++) {

A[i] = B[i] * C[i];

sum = sum + A[i];

}

*Some things, like intrinsics & assembly can prevent it

SIMD Pragma & OpenMP*

• OpenMP*-like pragma for vector programming

• “Go ahead and generate vector code” model

• Additional semantics (private, reduction, linear,
etc.) given to compiler via clauses

82

#pragma omp simd

for(int ray=0; ray < N; ray++) {

float Color = 0.0f, Opacity = 0.0f;

int len = 0;

int upper = raylen[ray];

while (len < upper) {

int voxel = ray + len;

len++;

if(visible[voxel] == 0) continue;

float O = opacity[voxel];

if(O == 0.0) continue;

float Shading = O + 1.0;

Color += Shading * (1.0f - Opacity);

Opacity += O * (1.0f - Opacity);

if(Opacity > THRESH) break;

}

color_out[ray] = Color;

}

directive hint

vector SIMD IVDEP

thread OpenMP* PARALLEL

Think SIMD

83

• Efficient tool for data-level parallelism

• Several variations, increasing sophistication

• Widely available, many models for use

• Rapidly improving tools

• Understanding what you want to happen is key

• Realization follows

• SIMD rarely works ex post facto

• Build data structures & algorithms that work with it

Intel, the Intel logo, Intel® Xeon Phi™, Intel® Xeon® Processor are trademarks of Intel Corporation
in the U.S. and/or other countries. *Other names and brands may be claimed as the property of
others. See Trademarks on intel.com for full list of Intel trademarks.

From ‘Correct’ To ‘Correct & Efficient’: A Case
Study With Hydro2D

Case study: 2D Shock Hydrodynamics

• Open-source version of production code from CEA

• Port from Fortran with so-so Xeon performance and awful Phi performance

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. Source:intel

Case study: 2D Shock Hydrodynamics

• 2D Euler equations

• Nonlinear system of 4 PDEs

• Equation of state

• ρ		is density

• u,	v		are x- and y- components of
velocity

• E is total energy

• p		is pressure

• γ is adiabatic constant

• In conservation form; each eq. is a
conservation law

Godunov’s scheme

• Classically hyperbolic nonlinear system

• Shocks expected!

• Need integral form

• Solve with Godunov’s method

• Finite Volume representation

• Piecewise-constant (vector) state in ea. cell

• Estimate state for left, right of ea. cell
interface

• Compute fluxes between cells based on
that

• Riemann problem

• Explicitly integrate contributions for each
cell

• “Reconstruct-evolve-average”

Dimensional splitting

• Above scheme is 1-dimensional

• For 2+ spatial dimensions, use
dimensional splitting

• Form of operator splitting

• Solve x-interfaces to
intermediate state, then solve y-
interfaces using that state to next
timestate

• Same kernel, different access
patterns

Riemann solver throughput

� Explicit Euler integration

� Trivial compute

� Flux computation requires that we solve 2(n+1) (independent) Riemann
problems

� The Riemann problem is a “zoom in” of two spatially-constant states

� How do they evolve?

� This gives flux

� Complex structure

� Use Newton-Raphson to solve x

t

x

t

xx

t

Our baseline: The reference code

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. Source: intel

Making it faster: Better threading, less data

Problem I: Bad threading, too much state

• Original code used ‘slabs’ for
compute
• Copy slice of grid to buffer, do all

compute in buffer, copy back
• The good:

• Vectorization/code path for slabs
always the same

• The bad:
• Lots of data movement (transpose

in y!)
• Parallelism restricted by slab size

Problem I: Bad threading, too much state

• Original code does each step across all cells in
slab, synchronizes
• No race conditions
• Ballooning working set

make_boundary();
constoprim();
equation_of_state();
slope();
trace();
qleftright();
riemann();
cmpflx();
updateConservativeVars();

Each applied to all cells
in slab inside function,
sync in between

Problem I: Bad threading, too much state

• Stablity
• Advance by dt in stability region
• dt < dx/maxspeed

• dx constant
• Maxspeed largest wavespeed
among cells

• We must find maximum speed across all cells
• Special, low-intensity pass to compute at
each step

• Bandwidth hog
• Thread control overhead

Optimization I: Tiling decomposition, narrowed
updates

� Decompose domain into
exclusive tiles

− Locality (NUMA)

− Communication control

− Local sync

� Surprisingly simple

− Each tile looks like a whole
domain; boundaries
become communication

Optimization I: Tiling decomposition, narrowed
updates

� Use data flow analysis to reduce
working set

− Compute only what is needed to
update a cell, save what is needed
for next cell

� ‘Rolling updates’; operating on
each 1D section per thread
minimizes redundant compute

� For stability: combine speed
computation with update stage

for(int i = 0; i < n[d]; ++i) {
make_boundary(i);
constoprim(i);
equation_of_state(i);
slope(i);
trace(i);
qleftright(i);
riemann(i);
cmpflx(i);
updateConservativeVars(i);

}

Optimization I results

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. Source: Intel

Making it faster: Less & cheaper math

Problem II: Lots of divisions

• Original code used lots of divisions
and sqrts

• Divisions can take 40+ cycles in DP

• Less throughput in SIMD
for (iter = 0; iter < Hniter_riemann ; iter++) {

if (goon) {
double wwl, wwr;
wwl = sqrt(cl_i * (one + gamma6 * (pstar_i - pl_i) / pl_i));
wwr = sqrt(cr_i * (one + gamma6 * (pstar_i - pr_i) / pr_i));
double ql = two * wwl * Square(wwl) / (Square(wwl) + cl_i);
double qr = two * wwr * Square(wwr) / (Square(wwr) + cr_i);
double usl = ul_i - (pstar_i - pl_i) / wwl;
double usr = ur_i + (pstar_i - pr_i) / wwr;
double delp_i = MAX((qr * ql / (qr + ql) * (usl - usr)), (-

pstar_i));
pstar_i = pstar_i + delp_i;
// Convergence indicator
double uo_i = DABS(delp_i / (pstar_i + smallpp));
goon = uo_i > PRECISION;

}

Optimization II: Cache reciprocals, use algebra

� rcp instruction is much faster than division

− Usually acceptable for accuracy

� Cache reciprocals and square roots (rho and c, in particular)

− Rolling update makes this less memory-intensive (constant storage
overhead)

const REAL_T inv_rho_0 = rcp(rho_0);
const REAL_T c_0 = std::max(my_sqrt(std::abs(GAMMA * p_0 * inv_rho_0)), SMALLC);
const REAL_T ushock = w_0 * inv_rho_0 - sgnm * u_0;

Optimization II: Cache reciprocals, use algebra

� Algebraic tweaking of Riemann terms to reduce divs

Optimization II results

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. Source: Intel

Making it faster: Vectorization

Problem III: Poor vector efficiency

• Vector units allow same work, fewer instructions

• Overhead when data not packed

• Overhead for control divergence

• Placing #pragma simd in existing code might not always work well

• Compiler must be conservative about assumptions

• Some architectures have penalty for un-aligned data

• Vectorization can expose bandwidth (arithmetic intensity drops
precipitously!)

Optimization III: Vector thinking

• First: know how SIMD should be used

• Worry about how to achieve it later

• Here, y-passes are easy (two adjacent
y-rows are packed)

• X-passes are tricky

• We can gather…

• Or do shifting

• C++ SIMD classes unify serial and
vector code

• Two intrinsic-based functions rotate
reused data in SIMD

void rotate_left_wm2(F64vec8 *v0, const F64vec8 v1)
{

static const I32vec16 shift2(11, 10, 9, 8, 7, 6, 5, 4, \
3, 2, 1, 0, 15, 14, 13, 12);

*v0 = _mm512_permutevar_epi32 (shift2,*v0);
*v0 = _mm512_mask_permutevar_epi32(*v0, 0xFFF0U, shift2, v1);

}

void rotate_left_wm1(F64vec8 *v0, const F64vec8 v1)
{

static const I32vec16 shift1(13, 12, 11, 10, 9, 8, 7, 6, \
5, 4, 3, 2, 1, 0, 15, 14);

*v0 = _mm512_permutevar_epi32 (shift1, *v0);
*v0 = _mm512_mask_permutevar_epi32(*v0, 0xFFFCU, shift1, v1);

}

Optimization III results

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. Source: Intel

Summary

Overall progress

• Xeon Phi started out looking bad

• ~0.5x 2-socket Xeon performance

• As it turns out, Xeon wasn’t doing well either…

• With systematic optimization, as much as

• 12x on Xeon Phi

• 5x on Xeon

Learnings

• Adding pragmas, crossing fingers rarely solves the problem

• No silver bullet

• Consider how hardware should be applied

• Then worry about how; the realization is often simple

• PhD in EE not required

• A working model of major components is enough to tap resources

• A rising tide lifts all boats

• Xeon and Xeon Phi benefit from the same optimizations

Summary

� Knights Landing is a high-throughput successor to the first Xeon Phi

� Socketable, bootable processor with access to large amounts of RAM

� Greatly improved single-thread performance

� Very high bandwidth, flexible MCDRAM

� Power-efficient

� Optional on-chip interconnect (Omni Path)

� Much of Knights Landing’s throughput comes from parallelism

� Codes will need to be modernized to fully exploit the features of the chip

� The current generation Xeon Phi has parallelism at similar scales and is the best proxy
for performance on Knights Landing

Summary

� Peak performance is not automatic

� Parallelism of all types requires forethought and careful design

� Design and coding modernization efforts invested now will pay dividends in
future hardware

� Evolving standards like OpenMP help realize modernization

� Numerous tools (Intel®SDE, memkind, Intel® Composer XE) exist today to help
test Knights Landing, in addition to other Intel® performance analysis tools

Q&A

Legal Disclaimers
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING
TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE
INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE
DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF,
DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT
INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to
them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized
errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go
to: http://www.intel.com/design/literature.htm

Knights Landing and other code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers,
licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code
names is at the sole risk of the user

Intel, Look Inside, Xeon, Intel Xeon Phi, Pentium, Cilk, VTune and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014 Intel Corporation

© 2015 Intel Corporation

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for
optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please
refer to the applicable product User and Reference Guides for more information regarding the specific
instruction sets covered by this notice.

Notice revision #20110804

Legal Disclaimers

Optimization NoticeOptimization NoticeOptimization NoticeOptimization Notice

© 2015 Intel Corporation

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark*
and MobileMark*, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause
the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more information go to http://www.intel.com/performance.

Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing
AVX instructions may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any
or maximum turbo frequencies. Performance varies depending on hardware, software, and system configuration and you can learn more
athttp://www.intel.com/go/turbo.

Estimated Results Benchmark Disclaimer:
Results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software
design or configuration may affect actual performance.

Software Source Code Disclaimer:
Any software source code reprinted in this document is furnished under a software license and may only be used or copied in accordance with the terms of that
license.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Legal Disclaimers

© 2015 Intel Corporation

The above statements and any others in this document that refer to plans and expectations for the third quarter, the year and the future are forward-looking
statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “plans,” “believes,” “seeks,” “estimates,” “may,” “will,”
“should” and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain events or assumptions also
identify forward-looking statements. Many factors could affect Intel’s actual results, and variances from Intel’s current expectations regarding such factors could
cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important
factors that could cause actual results to differ materially from the company’s expectations. Demand could be different from Intel's expectations due to factors
including changes in business and economic conditions; customer acceptance of Intel’s and competitors’ products; supply constraints and other disruptions
affecting customers; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Uncertainty in global
economic and financial conditions poses a risk that consumers and businesses may defer purchases in response to negative financial events, which could
negatively affect product demand and other related matters. Intel operates in intensely competitive industries that are characterized by a high percentage of costs
that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage
are affected by the timing of Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors,
including product offerings and introductions, marketing programs and pricing pressures and Intel’s response to such actions; and Intel’s ability to respond quickly
to technological developments and to incorporate new features into its products. The gross margin percentage could vary significantly from expectations based on
capacity utilization; variations in inventory valuation, including variations related to the timing of qualifying products for sale; changes in revenue levels; segment
product mix; the timing and execution of the manufacturing ramp and associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects
or disruptions in the supply of materials or resources; product manufacturing quality/yields; and impairments of long-lived assets, including manufacturing,
assembly/test and intangible assets. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries
where Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns
and fluctuations in currency exchange rates. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment
charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. Intel’s results could be affected by the timing of closing of
acquisitions and divestitures. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published
specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust, disclosure and other issues, such as the
litigation and regulatory matters described in Intel's SEC reports. An unfavorable ruling could include monetary damages or an injunction prohibiting Intel from
manufacturing or selling one or more products, precluding particular business practices, impacting Intel’s ability to design its products, or requiring other remedies
such as compulsory licensing of intellectual property. A detailed discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC
filings, including the company’s most recent reports on Form 10-Q, Form 10-K and earnings release.

Rev. 7/17/13

Legal Disclaimers

© 2015 Intel Corporation

