
NERSC Center-wide Data Collect
Cary Whitney, Thomas Davis and Elizabeth Bautista

As computational facilities prepare for Exascale computing, there is a wider range of data that
can be collected and analyzed but existing infrastructures have not scaled to the magnitude of
the data. Further, as systems grow, there is wider impact of their environmental footprint and
data analysis should include answers to power consumption, a correlation to jobs processed
and power efficiency as well as how jobs can be scheduled to leverage this data. At NERSC, we
have created a new data collection methodology for the Cray system that goes beyond the
system and extends into the computational center. This robust and scalable system can help us
manage the center, the Cray and ultimately help us learn how to scale our system and workload
to the Exascale realm.

——

The NERSC data collected did not start out fully formed, seldom does a project every do, but
grew over time and matured as we learned. This is a story as much as it is a product or a
project and telling a story in many ways helps to portray the thinking and the process used to
come to the conclusions that we did.

We start our adventure with Bill. He is a system administrator with many years of experience
and needs to use that experience to make a solution that works for everyone. The main issue
that Bill faced was most monitoring and performance package that he found would not scale to
the desired size that he needed plus the questions that people started ask him about the
system, where growing in scope and complexity, therefore he needed to find a new way to look
at the problem.

This started with a failed attempt to use a simple Sql solution which after adding over a billion
items started to cause issues. Now there where work-arounds plus buying new and larger
hardware would allow him to grow but he soon realized that as more data was added and more
questions started to be asked, just buying more hardware would not be enough, again a new
solution was needed. About this same time, other administrators wanted to use Ganglia to
display thousands of nodes and did not like the huge page of graphs and limited ability to
compare sets of nodes with each other. Next there was a question from management that
asked about correlating node temperature with a hardware failure. The node temperature
information was collected via Ganglia for the past two years, but upon looking into it, only 12
hours was actually usable since the Round-Robin Database (RRD) that Ganglia uses
summarized all the older data, this basically meant that he had no hardware temperature data
and had to explain to management that the 2 years of data was useless. Another situation was
when the facility people wanted to use the temperature monitoring warn if the computer room
was getting too warm, thus the need to shut down vulnerable systems. This did not happen
since the temperature could only be collected every 15 minutes, thus not providing enough time
in case there happened to be an issue. All of these situations caused Bill to realize that data
was becoming important in more ways and to more people.

So Bill started thinking about who was going to use his data. These consumers would be an
important factor in what and how long he needed to keep it. Also these consumers would have
their own questions of the data and different types of data to collect so he started by talking with
some of consumers. Problems soon arose since the consumers did not know what they really

wanted and he realized that he was in the classic chicken and egg scenario. Either he could
ask all the consumers to submit all the questions they could think of asking about all the
possible data that the systems could generate or he could just start collecting data in a fashion
that would allow him to add new data sources as the consumers desired. He looked at each
option, the second one looked much easier to implement since there could be an infinite number
of questions.

Now that he had decided to forgo asking all the question, he did need to get a few seed
questions to allow him a base set of data to collected, thus giving a starting point. This was
fairly easy since he was a system administrator and he always needed system and filesystem
performance numbers, so the initial data would be system performance information. After
getting a bit of data, he needed to think more about the consumers since they are the ones the
data collect will ultimately benefit.

First he thought of Molly. Her data needs are immediate. She interacts with the research
community and that community likes to know how things operate and what they can do to tweak
the systems to get a little better performance. To the research community, time is research
dollar but also time to solution can be critical. Molly wants any data that could be useful for
debugging or performance tuning the research application. This includes things like memory
usage, network communication, filesystem access and read/writing speeds and application load
time. All variables that they may have some influence over.

Next there is Jerry. Jerry’s needs tend to be similar to Molly’s but he is looking at things from a
system point of view. Jerry also wants to know what is happening on the system and needing to
fix any issues preferably before they cause problems. He also needs to have a better
understanding about how each subsystem can affect other subsystems. Right now, he does
most of this by intuition but that is getting harder and how do you teach intuition? He especially
would like data to answer one of his hardest questions: The filesystem is slow, why?

Janet is a new breed of researcher. She is asking tougher questions and wanting to know how
different workloads affect other workloads on the system. She is also concerned about how
workloads on one system can affect other workload on a different system via shared resources
like the network or filesystem. Not only workload affect, she is also concerned with the power
usage of the different jobs and now wants to create power and cooling efficiency factors for
these jobs. The systems are getting bigger and saving a few cycles could actually mean real
money. She needs to have the data located in a common location so she can make correlations
between the different datasets.

Last there is Mick. He is the big picture guy. He is only interested in data over the periods of
years since he tries to plan the next systems. Mick needs to know workload trends and how the
next generation hardware can be used for that workload. He also needs to predict how efficient
the workload will be at using the new hardware. Thus with these unknowns, he would like to
have as few unknowns as possible. His desire is to understand how the network and filesystem
works. How the interconnect handles events and just a better understanding of the whole
framework of the system then when the unknown parts are added, he can subtract off what is
known allowing him to focus on the unknown. Mick’s just wants to keep the data as long as
possible and this means the solution would have be handle a very large amount of data.

Now Bill has his requirements, he needs a framework for collecting data from different sources
into a common destination. This data needs to stay in the highest resolution possible since
summarized data means lost data. He needs something that is not focused on one system but
be independent from all the systems. He will be adding in power, cooling and other
environmental data into the mix. Now who makes such a product? Or how can he create one?
He also added on one requirement of his own, the solution must be compostable, meaning that
any piece of the infrastructure could be replaced if something better came along.

First he needed to see if there was such a package. Ganglia, Nagios, Cacti, LibraNMS, LMT,
various spinoffs, they all seem to address certain questions and some of them addressed their
questions very well but non really allowed for much expansion and none allowed the central
data collection and archiving that he really needed. Thus he needed to expand his scope and
look to other more innovative opportunities.

Here is where the Internet comes in with one solution that promises to be very handy. Twitter. A
company who deals with moving short messages around from many locations to many locations
in realtime. He though, what is a data collect but getting many short messages from the points
of collection and sending them to different storage locations and/or applications. Thus
RabbitMQ was picked as the first key component. At the time this looked the most mature with
the most add-on features.

Next he started to look at what he could use for storing the data. He did not like the Sql solution
because of the earlier experience but he realized with RabbitMQ routing the data he could send
that data to multiple destinations, he could find a solution that worked well as an archiver and
also find a second solution that would work well with his other consumers. The epiphany is that
he did not have to find a single solution to satisfy all his consumers. He just had to come up
with data routes to solutions that worked for each consumer and it was researchers like Janet
who would really benefit from this new combined approach.

The storage solution finally fell to Elasticsearch. Elastic offered several advantages. It had a
integrated ingestion engine (Logstash) and a display part (Kibana). This meant that simple
dashboards could be created in short order. Another advantage Elastic offered was a free-form
index store. New data could be added to the index without rebuilding or doing any special
commands. A further benefit of these index was their flexibility; new indexes could be created
on a daily basis, move automatically from fast storage to slower storage allowing the new data
being collected on SSD drives and the previous day data which is now basically read only to be
stored on spinning disk. The indexes can also be closed, optimized and moved off the long
term storage. From there anyone can download one or more of the indexes and bring up an
Elasticsearch DB even on their laptop, the only requirement is the system has to run Java.

The actual data collection used on the nodes and the environment ended up being collectd.
Collectd has a module structure and has modules for many of the desired data types being
collected which includes the modbus . This then lead to the high-level structure of the data
collect as in figure below.

One of the main advantages of this infrastructure was the ability to swap components out. The
system is considered compostable meaning that when different or new applications where
created that better solved his problem, he could change them out without sacrificing existing
functionality, this should help the solution from going stagnate. Now with the data collection

structure determined, the host structure needed to be addressed. Again Bill wanted to make
sure that hosts where as flexible as the data side. Here he settled on Ovirt as the VM engine.
With a 10G backend, migrating VM’s was very easy but when Ovirt was linked with Docker
things really got easy, instead of moving VM’s only containers needed moving or creating/
destroying. He used RancherOS which manages many Docker images in an easy to use GUI,
thus enabling him to create and migrate Docker images with a click. This flexibility became
useful when the data collection from the Cray systems started coming in. The performance
metric data started
coming in so fast
and there was so
much of it that more
workers needed to
be added to the
RabbitMQ queue to
process it and move
it into Elasticsearch.
All that was needed
was a simple click of
a button to start a
new Docker
container running a
new worker and
three clicks added
three more workers

to the data stream.

Now with the data
collect built, what type
of data, how much
and how fast will the
data be collected.
First off the
environmental data,
with about 3000
temperature sensors
collected at 5 second
intervals. Since there
is no mechanical
cooling in the
computer room, these
sensors provides the
temperature feedback
needed so we can
take other corrective
actions when the
temperature gets out of range. The 500 power points are collected at 1 second interval. This
power data includes data from the host all the way up to the building substation. Also being
monitored is the UPS and all the power quality delivered at each stage. This Nagios map shows
the PDU strips and their status.

The system data so far are several
login, queue, service nodes: sdb,
dvs, lnet, net, SLURM control, rsip,
burst buffer; syslog, console and
other text based log messages.
Most of this data is being collected
at 5 second interval and has
reached about 10,000 data points
per second. This is just from one
system and there are 2 more
systems plus the filesystems. But
Bill is confident that the data collect
can keep up because of the
observation that when Elasticsearch
creates the next day’s indexes, it
pauses the ingestion of new data.
Here is where RabbitMQ shows
another of its qualities. RabbitMQ
will queue the incoming data and
will even spool it to disk if need be.
Bill noticed that it takes about 45
minutes to recreate all the indexes,
about 35 indexes each with 4

redundant shards (8 shards
in total). RabbitMQ will
backlog about 2 million data
points during this process.
Once Elasticsearch starts
ingesting again, that backlog
is consumed in about 5
minutes. All this time the
graphic front-end is still
feeding out data, just not the
backlogged data. The overall
database size is about 40
billion items at this point. The
activity for the data ingest,
data indexing and other
activities is handled by a

private 10G network which actually shows a bit of traffic.

Now using Kibana lets look at a couple of things that Bill was able to create for the facility
people in dealing with some power issues. The first graph shows the average temperature of
each rack in Row C. The next 3 panels show the temperature of each rack in three different

rows. The racks are sorted from hottest to coolest. The next panel shows the hottest racks that
are being monitored. While the last two panels are showing the power quality of one of the sub-
panels in the center. This is a example of some of the simpler graphs. (More results coming.)

Bill ends this segment of the story with a call for participation, the data collection part can be
easy and many people have worked on doing this and other solutions at different labs and
organizations. All of these data collects have their strengths and weaknesses. The strengths of
this data collect method is that is uses basic off the shelf components. There is no real custom
software that needs to be maintained since all the software is Open Source and supported by
the community. It will easily scale and easily incorporate new data and data sources. This
infrastructure should also be able to adapt to other centers and environments and is not a
custom fit for one center. The weakness of this setup is that it is more complex. There are
more moving parts to it, it is not a single application like some data collects. It does take more
system administrative knowledge than computer programming knowledge. So it is a trade off in
what one needs or desires to collect.

Now for the participation. As explained in the conclusion, the data collection process can be
done many ways and is being done differently by many centers. There is no correct way to
collect the data and every system is different. But when it comes to understanding and
visualizing the data, here is where we can all come together. Understanding what the data
says, the Data 2.0 project, developing common methods to visualize high density information,
example, hundreds of OSS servers and network connections to see what is happening on the
filesystem, energy usage and efficiency factors to allow more computing to be more wisely, this
all can be done by the community even though our data collects are different. We just have to
work to make sure our data is easily and uniformly accessible.

The last area of participation is in getting vendors to give us this data. Bill is hoping that this
data collect method will show vendors that he has a method that can accept the large volumes
of data that some of these compute systems can generate, this is in response to vendors saying
that ‘We do not want to send the data out because no one would be able to use it.’ But we as a
community should also settle on a standard method to request this information from vendors, no
vendor wants to see ten different data requests methods and having to try and pick.

The few collectd modules that we have written will soon be released. The other software is
already out there. I would like more people using this method but that is not the main point of
this presentation. What I would like to for people to think about and act on the last two items.

