
The Cray Programming Environment:

Current Status and Future Directions

Luiz DeRose

Cray Programming Environments Director

Legal Disclaimer

Copyright 2016 Cray Inc.
2

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property

rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and

other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal

codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.

products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and

URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,

ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are

trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI,

the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of

their respective owners.

CUG 2016

Agenda

● Cray PE Overview

● Highlights since last CUG and roadmap overview
● CCE

● MPT

● CPMAT

● CDST

● CSML

● CrayPE & Modules

● Chapel

● Cray Directives
● Accelerators

● Memory directives

● Summary

CUG 2016 Copyright 2016 Cray Inc.
3

Compile

The Cray Programming Environment Mission
 Focus on Performance and Programmability

• It is the role of the Programming Environment to close the gap between observed
performance and achievable performance

 Support the application
development life cycle by providing
a tightly coupled environment with
compilers, libraries, and tools that will
hide the complexity of the system

• Address issues of scale and
complexity of HPC systems

• Target ease of use with extended
functionality and increased
automation

• Close interaction with users
 For feedback targeting functionality

enhancements

application

information

Debug

information

Export/Import

Program

Analyses Performance

Analysis

Queries for

Application

Optimization

Compiler

information

Port

Application

Debug

Analyze

CUG 2016 Copyright 2016 Cray Inc.
4

Cray PE for the CS Series
The Cray Programming Environment Suite for Clusters is a fully integrated programming environment with compilers, tools, and
libraries designed to maximize programmer productivity, application scalability, and performance. It consists of:

● Cray Compiling Environment (CCE)

● Fortran, C and C++ compilers supporting OpenMP 4.0 (with OpenMP 4.5 Target) and OpenACC 2.0

● Cray Performance, Measurement, Analysis, and Porting Tools (CPMAT)

● PerfTools (CrayPAT, CrayPAT-light, & Cray Apprentice2)

● Reveal

● Cray Scientific Libraries (CSML)

● Cray LibSci with Autotuned BLAS library, LAPACK, ScaLAPACK, and Iterative Refinement Toolkit (IRT)

● Cray LibSci_ACC providing accelerated BLAS and LAPACK routines for GPUs

● Cray optimized FFTW

● Cray Comparative Debugger (CCDB / lgdb)

● Cray Environment Setup and Compiling support – CENV

● MPI libraries supported

● Intel MPI

● MVAPICH

CUG 2016 Copyright 2016 Cray Inc.
5

Q2 Q3 Q4
2015

Q1
2016

Q1 Q2 Q3 Q4
 2017

Q1 Q2 Q3 Q4

Itasca Hiawatha Up 3 Itasca Up 1

(Broadwell)

Jasper LA

(CUDA 7.5)

Kabetogama Jasper Jasper Up 2

(CUDA 8.0)

Jasper Up 1

(Athena)

Cray Programming Environment Roadmap

Copyright 2016 Cray Inc.
6 CUG 2016

Cray Performance Measurement & Analysis Tools

Cray Scientific & Math Libraries

Cray Debugging Support Tools

Cray Message Passing Toolkit

MPT

CSML

CCE

▼7.2

▼8.4

▼15.12

▼15.4 ▼16.6

▼15.9

▼8.5 ▼8.5.5 ▼8.5b

▼16.6

CPMAT ▼6.3 ▼6.2.3 ▼6.3.1 ▼6.4

CDST

▼15.4

▼7.3

▼15.12 ▼15.9

Cray Compiling Environment

Chapel

▼1.11 ▼1.13 Chapel ▼1.14 ▼1.12

▼6.2.4

▼8.6

▼1.15 ▼1.16

▼6.4.x ▼6.5

▼7.4 ▼7.5 ▼7.6 ▼7.7

▼16.11 ▼17.7

▼7.2.5

▼6.3.2

▼7.3.x

▼16.3 ▼16.11 ▼17.7

▼16.3

▼8.5.3

▼6.4.1

▼16.9

▼8.6b

Q2 Q3 Q4
2015

Q1
2016

Q1 Q2 Q3 Q4
2017

Q1 Q2 Q3 Q4

Itasca Hiawatha Up 3 Itasca Up 1

(Broadwell)

Jasper LA

(CUDA 7.5)

Kabetogama Jasper Jasper Up 2

(CUDA 8.0)

Jasper Up 1

(Athena)

CCE 8.5 Highlights and Roadmap

Copyright 2016 Cray Inc. CUG 2016

CCE 8.5

● Intel KNL support

● Memory directives

● OpenMP 4.5 “target” (accelerator) support

● C11 support

● Not default with CCE C

● ‘-hstd=c99’ is the default

● use ‘-hstd=c11’ to enable

● Compile time improvements (especially for large codes)

● Fortran coarray, UPC, and coarray C++ support on CS

● Full Fortran 2008 support

● Athena support (CCE 8.5.3)

CCE 8.6 and beyond

● NVIDIA Pascal GPU with CUDA 8.0 support

● C++14 support

● OpenMP 4.5 full support

● Fortran 2015 support

● Fortran coarray teams

7

CCE ▼8.4 ▼8.5 ▼8.6p ▼8.5b ▼8.6 ▼8.5.3 ▼8.6b

Q2 Q3 Q4
2015

Q1
2016

Q1 Q2 Q3 Q4
 2017

Q1 Q2 Q3 Q4

Itasca Hiawatha Up 3 Itasca Up 1

(Broadwell)

Jasper LA

(CUDA 7.5)

Kabetogama Jasper Jasper Up 2

(CUDA 8.0)

Jasper Up 1

(Athena)

MPT - Highlights Since Last CUG (MPT 7.2)

CUG 2016 Copyright 2016 Cray Inc.
8

● Cray MPI now supports the MPI 3.1 standard (based on MPICH 3.2rc1)

● Added display of high water mark of the memory used by MPI

● GPU-to-GPU support for MPI-3 RMA

● Support to the OpenSHMEM Specification Version 1.3

● Lots of optimizations on MPI and Cray SHMEM

● Reduced MPI memory footprint optimizations

MPT ▼7.2 ▼7.3 ▼7.4 ▼7.5 ▼7.6 ▼7.7 ▼7.2.5 ▼7.3.x

Q2 Q3 Q4
2015

Q1
2016

Q1 Q2 Q3 Q4
 2017

Q1 Q2 Q3 Q4

Itasca Hiawatha Up 3 Itasca Up 1

(Broadwell)

Jasper LA

(CUDA 7.5)

Kabetogama Jasper Jasper Up 2

(CUDA 8.0)

Jasper Up 1

(Athena)

MPT 7.4 Highlights

CUG 2016 Copyright 2016 Cray Inc.
9

● Initial KNL support/optimizations

● Cray MPI hugepage support for MCDRAM on KNL

● (MPI_Alloc_mem and MPI_Win_Allocate)

● Cray SHMEM support for MCDRAM on KNL

● Additional MPI_THREAD_MULTIPLE optimizations (“Thread Hot”)

● Initial MPI-IO optimizations for Cray DataWarp

● MPI-IO Collective Buffering mode allowing multiple aggregators per OST

● Requires Lustre 2.7 client and server (Lock Ahead feature)

*Krishna Kandalla’s MPT talk at 10:30 on Thursday will cover some of these items in-depth

MPT ▼7.2 ▼7.3 ▼7.4 ▼7.5 ▼7.6 ▼7.7 ▼7.2.5 ▼7.3.x

Q2 Q3 Q4
2015

Q1
2016

Q1 Q2 Q3 Q4
 2017

Q1 Q2 Q3 Q4

Itasca Hiawatha Up 3 Itasca Up 1

(Broadwell)

Jasper LA

(CUDA 7.5)

Kabetogama Jasper Jasper Up 2

(CUDA 8.0)

Jasper Up 1

(Athena)

CPMAT - Highlights Since Last CUG (CPMAT 6.2.3)

CUG 2016 Copyright 2016 Cray Inc.
10

● Sampling Over Time (6.2.3)

● Power over time display (6.2.3)

● Support to multiple GPUs per node (Cray CS-Storm) (6.2.4)

● Support for Intel MPI on Cray CS Systems (6.3.0)

● New perftools modules (6.3.0)

● SNB / IVB / HSW uncore counter support with privileged access (6.3.0)

● Apprentice2 new sample data over time plots (6.3.0)

● Apprentice2 mosaic in runtime summarization mode (6.3.0)

● Observation for helper threads in reports (6.3.0)

● Apprentice2 compare (6.3.1)

CPMAT ▼6.3 ▼6.2.3 ▼6.3.1 ▼6.4 ▼6.2.4 ▼6.4.x ▼6.5 ▼6.3.2 ▼6.4.1

Q2 Q3 Q4
2015

Q1
2016

Q1 Q2 Q3 Q4
 2017

Q1 Q2 Q3 Q4

Itasca Hiawatha Up 3 Itasca Up 1

(Broadwell)

Jasper LA

(CUDA 7.5)

Kabetogama Jasper Jasper Up 2

(CUDA 8.0)

Jasper Up 1

(Athena)

Roadmap Highlights - CPMAT 6.4 and Beyond

CUG 2016 Copyright 2016 Cray Inc.
11

● Reveal
● Include time for loops sorted by compiler messages (e.g., find most time consuming loops that didn’t vectorize)

● auto-parallelization

● Client for OS X

● MCDRAM data allocation assistance

● New trace groups for OpenCL, Lustre API, MemKind, Parallel NetCDF

● MPI insight (communication ‘strategy’ thresholds and advice on environment variables)

● Memory usage information per NUMA domain

● Support for CHARM++

CPMAT ▼6.3 ▼6.2.3 ▼6.3.1 ▼6.4 ▼6.2.4 ▼6.4.x ▼6.5 ▼6.3.2 ▼6.4.1

Q2 Q3 Q4
2015

Q1
2016

Q1 Q2 Q3 Q4
 2017

Q1 Q2 Q3 Q4

Itasca Hiawatha Up 3 Itasca Up 1

(Broadwell)

Jasper LA

(CUDA 7.5)

Kabetogama Jasper Jasper Up 2

(CUDA 8.0)

Jasper Up 1

(Athena)

CSML Highlights Since Last CUG

● Added optimized support for Broadwell target

● Improved BLAS GEMM performance for Haswell and Broadwell CPU targets on XC and CS platforms

● Expanded set of optimizations for ScaLAPACK eigensolver routines

● Improved OpenMP threading support for BLAS and LAPACK routines

● Added FASTPLAN optimizations for Haswell and Broadwell targets

● Added FFT support of arbitrary dimension and size for both real and complex data types

● Added 64-bit integer support for Cray PETSc and Cray TPSL

● Added support for HDF5 in Cray PETSc

● Support for latest Kokkos multithreading libraries

CSML ▼15.12 ▼15.9 ▼16.6 ▼15.4 ▼16.3 ▼16.11 ▼17.7 ▼16.9

CUG 2016 Copyright 2016 Cray Inc.
12

Cray FFTW FASTPLAN Performance

0

1

2

3

4

5

6

7

8

9

2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

…

3
2

…

6
5

…

1
3

…

2
6

…

5
2

…

1
0

…

2
0

…

4
1

…

8
3

…
N

1D Complex-to-Real
 Haswell (Single thread)

Cray-FFTW
(FASTPLAN
Enabled)

Cray-FFTW
(FASTPLAN
Disabled)

H
ig

h
e

r
G

F
L

O
P

S
 E

q
u

a
ls

 B
e

tt
e

r
P

e
rf

o
rm

a
n

c
e

G

F
L

O
P

S

0

5

10

15

20

25

30

35

40

45

FFT Portion of Walltime

Custom 3D-FFT Application
 (Real-to-Complex 1024^3)

Haswell, 16 MPI Ranks

Cray-FFTW (FASTPLAN
Disabled)
Cray-FFTW (FASTPLAN
Enabled)
Alternate FFT Library

L
o

w
e

r
E

la
p

s
e

d
 T

im
e

E

q
u

a
ls

 B
e

tt
e

r
P

e
rf

o
rm

a
n

c
e

T
o

ta
l

P
ro

g
ra

m
 E

x
e

c
u

ti
o

n
 T

im
e

FASTPLAN enable with environment variable FFTW_CRAY_FASTPLAN=1

CUG 2016 Copyright 2016 Cray Inc.
13

Q2 Q3 Q4
2015

Q1
2016

Q1 Q2 Q3 Q4
 2017

Q1 Q2 Q3 Q4

Itasca Hiawatha Up 3 Itasca Up 1

(Broadwell)

Jasper LA

(CUDA 7.5)

Kabetogama Jasper Jasper Up 2

(CUDA 8.0)

Jasper Up 1

(Athena)

CSML Roadmap

● Support KNL targets on XC and CS systems

● Small GEMM optimizations for BLAS

● Athena support

● Support for Nvidia Pascal GPU targets on XC and CS

systems running CUDA 8.0

CSML ▼15.12 ▼15.9 ▼16.6 ▼15.4 ▼16.3 ▼16.11 ▼17.7 ▼16.9

CUG 2016 Copyright 2016 Cray Inc.
14

Q2 Q3 Q4
2015

Q1
2016

Q1 Q2 Q3 Q4
2017

Q1 Q2 Q3 Q4

Itasca Hiawatha Up 3 Itasca Up 1

(Broadwell)

Jasper LA

(CUDA 7.5)

Kabetogama Jasper Jasper Up 2

(CUDA 8.0)

Jasper Up 1

(Athena)

CDST Highlights and Roadmap

Copyright 2016 Cray Inc. CUG 2016

CDST since last CUG

● STAT 2.1 with ALPS DSL tool helper

● ATP, STAT & LGDB SLURM 15 support

● CCDB and LGDB CUDA 7.5 support

● CCDB and LGDB on Cray CS Systems

CDST Roadmap

● KNL support

● ATP, STAT & LGDB single release to support

multiple SLURM versions

● LGDB Pascal GPU and CUDA 8.0 support

● LGDB additional improvements for C++

● LGDB better UPC support

● CCDB better comparisons for large data structures

15

▼15.4 ▼16.6 CDST ▼15.12 ▼15.9 ▼16.11 ▼17.7 ▼16.3

CCDB Overview
● What is comparative debugging?

● Data centric approach instead of the traditional control-centric paradigm
● Two applications, same data
● Key idea: The data should match
● Quickly isolate deviating variables

● Comparative debugging tool
● NOT a traditional debugger!
● Assists with comparative debugging
● CCDB GUI hides the complexity and helps automate process

● Creates automatic comparisons
● Based on symbol name and type
● Allows user to create own comparisons
● Error and warning epsilon tolerance
● Scalable

● How does this help me?
● Algorithm re-writes
● Language ports
● Different libraries/compilers
● New architectures

● Collaboration with University of Queensland

CUG 2016 Copyright 2016 Cray Inc.
16

Q2 Q3 Q4
2015

Q1
2016

Q1 Q2 Q3 Q4
 2017

Q1 Q2 Q3 Q4

Itasca Hiawatha Up 3 Itasca Up 1

(Broadwell)

Jasper LA

(CUDA 7.5)

Kabetogama Jasper Jasper Up 2

(CUDA 8.0)

Jasper Up 1

(Athena)

Craype/modules Highlights

CUG 2016 Copyright 2016 Cray Inc.
17

● Module substring feature (PE 16.04)
● Returns results if the argument is a part of any module name, rather than just modules that

start with substring argument
● Example: “module –S avail hdf5” would find all modules with “hdf5” anywhere in the name

● New CDT module for each XC PE release (PE 16.04)
● Switches currently loaded modules to the version associated with a specific CDT release

● Subsequently loaded modules also load the version associated with CDT release

● Started with the April 2016 PE release (cdt.16.04)

*Note unloading the cdt module is not sufficient to restore your loaded modules to the system
defaults. A script, restore_system_defaults.sh, can be sourced to restore your currently loaded
modules to the system defaults

New cdt module for each PE release on XC

CUG 2016 Copyright 2016 Cray Inc.

ldr@cdt-test:~> module load cdt/16.04

…

Switching to cce/8.4.5.

Switching to cray-libsci/16.03.1.

Switching to craype/2.5.4.

Switching to modules/3.2.10.4.

Switching to cray-mpich/7.3.3.

…

ldr@cdt-test:~> module avail cce

------------------------------ /opt/modulefiles --------------------------

cce/8.4.3 cce/8.4.5(default)

ldr@cdt-test:~> module avail cray-mpich

---------------------------- /opt/cray/modulefiles ---------------------

cray-mpich/7.3.1 cray-mpich-abi/7.3.1

cray-mpich/7.3.3(default) cray-mpich-abi/7.3.3(default)

ldr@cdt-test:~> module list

Currently Loaded Modulefiles:

 1) modules/3.2.10.3

 2) cce/8.4.3

 3) craype-network-aries

 4) craype/2.5.1

 5) cray-libsci/13.3.0

 6) cray-mpich/7.3.1

…

ldr@cdt-test:~> module avail cce

------------------------------ /opt/modulefiles -------------------------

cce/8.4.3(default) cce/8.4.5

ldr@cdt-test:~> module avail cray-mpich

---------------------------- /opt/cray/modulefiles -------------------

cray-mpich/7.3.1(default) cray-mpich-abi/7.3.1(default)

cray-mpich/7.3.3 cray-mpich-abi/7.3.3

18

Q2 Q3 Q4
2015

Q1
2016

Q1 Q2 Q3 Q4
2017

Q1 Q2 Q3 Q4

Itasca Hiawatha Up 3 Itasca Up 1

(Broadwell)

Jasper LA

(CUDA 7.5)

Kabetogama Jasper Jasper Up 2

(CUDA 8.0)

Jasper Up 1

(Athena)

Chapel Highlights and Roadmap

Copyright 2016 Cray Inc. CUG 2016

Chapel Highlights since 1.11

● Improved string and record implementation

● dramatically improved string performance

● greatly reduced memory leaks

● standard string library routines supported

● New module namespace control features

● Improved compiler stability

● Improved library support

● Parallelize large numeric array initialization

● improved first touch with NUMA domains

● Performance improvement highlights

● reduction operations

● convert RMA to local access as permitted

● significant performance improvements for 'ugni' comm on Crays

● bulk communication optimization for improved scaling

Chapel Roadmap

● Continuously improving performance and
scalability

● UTF8 string and library support

● Eliminate memory leaks

● Improved Error handling

● Task Teams

● Improved Object Oriented Story

● Additional general purpose libraries

● Additional platform support

● KNL, ARM, GPUS, etc.

19

▼1.11 ▼1.13 Chapel ▼1.14 ▼1.12 ▼1.15 ▼1.16

CCE Directives Update (OpenMP / OpenACC / Memory)

CCE 8.4 CCE 8.5 (June 2016) CCE 8.6 (tentative)

OpenMP 4.0 OpenMP 4.5 (target) OpenMP 4.5 (complete)

OpenACC 2.0 OpenACC 2.5 (no planned support)

KNL “memory” directive

● Cray will continue to support OpenACC 2.0
● No plans to support OpenACC 2.5

● Recommendation: migrate to OpenMP “target”

● OpenMP 4.0 provides constructs for base functionality

● OpenMP 4.5 provides constructs for competitive performance
● Asynchronous data transfers and kernel execution

● Default scoping behavior of scalars as firstprivate

● Unstructured data regions, “host data” regions, device pointers

● Device memory API

CUG 2016 Copyright 2016 Cray Inc.
20

KNL Memory from CCE Perspective

● Node has two different types of memory
● DDR: high-capacity, low-bandwidth

● MCDRAM: high-bandwidth, low-capacity

● Typical memory footprints exceed MCDRAM
● Best performance requires MCDRAM

● Users must allocate specific variables in MCDRAM
● Not everything will fit at once

● Latency-sensitive variables should probably go in DDR

● CCE solution: provide mechanisms for developers to
place specific variables and allocations in MCDRAM

CUG 2016 Copyright 2016 Cray Inc.
21

CCE Support for MCDRAM

● Cray Directive (pragma) to support data allocation in MCDRAM

● Provide a directive-only solution

● Cover more use cases

● Support for Fortran, C, and C++

● The directive can be used on both local and global variables

● to place the variables in high bandwidth memory

● The directive can also be used on a statement

● to change any allocation routines on that statement (allocate, malloc, etc.) to use HBM

● If Clause for dynamic control of directive

● Fallback Clause to control behavior if allocation fails

● Future direction for memory hierarchy control

● Ideally will become part of a standard, possibly OpenMP

CUG 2016 Copyright 2016 Cray Inc.
22

CCE Proposed API for KNL HBM

● Directive (pragma) to control placement for high bandwidth memory
● Support for Fortran, C and C++

● Proposed directive
● !dir$ memory(attributes) [list of variables]

● #pragma memory(attributes) [list of variables or allocatable members]
● Attributes – list of desired memory attributes (bandwidth, capacity, nonvolatile, etc.)

● Initially “bandwidth” is the only allowed attribute

● Other attributes may be added in the future

● Statements
● Appears prior to an allocation/deallocation statement

● Changes explicit allocation routines in the next statement to use HBM
● Fortran: allocate

● C/C++: malloc, calloc, realloc, posix_memalign, free

● C++: new, delete, new[], delete[]
● Directive on deallocation must match (C/C++ only)

CUG 2016 Copyright 2016 Cray Inc.
23

CCE Directive for Variable Declarations

!dir$ memory(attributes) list-of-vars

#pragma memory(attributes) list-of-vars

● Specified at declaration of variable

● For global variables, directive must be visible for every use of global

● Within type for allocatable members

● Allowed on:
● Local and global variables

● Scalars, structs and arrays (fixed size and variable length)

● Fortran allocatables (including members of derived types)
● Memory allocated will use high bandwidth memory

● Not allowed on:
● Dummy arguments

● Common blocks or variables within a common block

● Fortran pointers

● Variables involved in equivalences

● Coarray or UPC shared variables

CUG 2016 Copyright 2016 Cray Inc.
24

Cray Memory Directive – Current Status

● Initial implementation and basic testing of the Cray memory directive
is complete for CCE 8.5

● Target June 2016 release

● Support for Intel’s FASTMEM attribute is deferred to a future CCE release

● Internal users are starting to use the feature and providing feedback

● Cray is working with OpenMP to incorporate this feature into the
OpenMP 5.0 specification (2017/2018)

● Cray presented to the OpenMP accelerator subcommittee in April

● Intent is to initially include the feature in the annual OpenMP TR by SC’2016

CUG 2016 Copyright 2016 Cray Inc.

25

Summary

● Application developers need a programming environment that can
address and hide the issues of scale and complexity of
supercomputers

● Cray’s advanced programming environment continue to focus on
Performance and Programmability
● Cray Compiling Environment (CCE) focused on application performance

● Fully automatic loop vectorization
● Directives for accelerators and multiple levels of the memory hierarchy

● Cray Performance Analysis Tools
● Focus on automation, scaling, and ease of use

● Reveal
● Scoping analysis and parallelization assistant

● Parallel debugger support
● Auto-tuned Scientific Libraries support

● Getting performance from the system … no assembly required

CUG 2016 Copyright 2016 Cray Inc.
26

Thank You

