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Compile 

The Cray Programming Environment Mission 
 Focus on Performance and Programmability 

• It is the role of the Programming Environment to close the gap between observed 
performance and achievable performance 

 Support the application 
development life cycle by providing 
a tightly coupled environment with 
compilers, libraries, and tools that will 
hide the complexity of the system  

 

• Address issues of scale and 
complexity of HPC systems 
 

• Target ease of use with extended 
functionality and increased 
automation 
 

• Close interaction with users  
 For feedback targeting functionality 

enhancements 
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Cray PE for the CS Series 
The Cray Programming Environment Suite for Clusters is a fully integrated programming environment with compilers, tools, and 
libraries designed to maximize programmer productivity, application scalability, and performance. It consists of: 

 

● Cray Compiling Environment (CCE) 

● Fortran, C and C++ compilers supporting OpenMP 4.0 (with OpenMP 4.5 Target) and OpenACC 2.0 

 

● Cray Performance, Measurement, Analysis, and Porting Tools (CPMAT) 

● PerfTools (CrayPAT, CrayPAT-light, & Cray Apprentice2)   

● Reveal 

 

● Cray Scientific Libraries (CSML) 

● Cray LibSci with Autotuned BLAS library, LAPACK, ScaLAPACK, and  Iterative Refinement Toolkit (IRT) 

● Cray LibSci_ACC providing accelerated BLAS and LAPACK routines for  GPUs 

● Cray optimized FFTW 

 

● Cray Comparative Debugger (CCDB / lgdb) 

 

● Cray Environment Setup and Compiling support – CENV 

 

● MPI libraries supported 

● Intel MPI 

● MVAPICH 
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Cray Programming Environment Roadmap 
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Cray Performance Measurement & Analysis Tools 

Cray Scientific & Math Libraries 

Cray Debugging Support Tools 

Cray Message Passing Toolkit 

MPT 

CSML 

CCE 

▼7.2 

▼8.4 

▼15.12 

▼15.4 ▼16.6 

▼15.9 

▼8.5 ▼8.5.5 ▼8.5b 

▼16.6 

CPMAT ▼6.3 ▼6.2.3 ▼6.3.1 ▼6.4 

CDST 

▼15.4 

▼7.3 

▼15.12 ▼15.9 

Cray Compiling Environment 

Chapel 

▼1.11 ▼1.13 Chapel ▼1.14 ▼1.12 

▼6.2.4 

▼8.6 

▼1.15 ▼1.16 

▼6.4.x ▼6.5 

▼7.4 ▼7.5 ▼7.6 ▼7.7 

▼16.11 ▼17.7 

▼7.2.5 

▼6.3.2 

▼7.3.x 

▼16.3 ▼16.11 ▼17.7 

▼16.3 

▼8.5.3 

▼6.4.1 

▼16.9 

▼8.6b 
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(CUDA 8.0) 
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(Athena) 

CCE 8.5 Highlights and Roadmap 
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CCE 8.5 

● Intel KNL support 

● Memory directives 

● OpenMP 4.5 “target” (accelerator) support 

● C11 support 

● Not default with CCE C 

● ‘-hstd=c99’  is the default 

● use ‘-hstd=c11’ to enable  

● Compile time improvements (especially for large codes) 

● Fortran coarray, UPC, and coarray C++ support on CS 

● Full Fortran 2008 support 

● Athena support (CCE 8.5.3) 

CCE 8.6 and beyond 

● NVIDIA Pascal GPU with CUDA 8.0 support 

● C++14 support 

● OpenMP 4.5 full support 

● Fortran 2015 support  

● Fortran coarray teams 
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MPT - Highlights Since Last CUG (MPT 7.2) 
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● Cray MPI now supports the MPI 3.1 standard (based on MPICH 3.2rc1) 

● Added display of high water mark of the memory used by MPI  

● GPU-to-GPU support for MPI-3 RMA 

● Support to the OpenSHMEM Specification Version 1.3 

● Lots of optimizations on MPI and Cray SHMEM 

● Reduced MPI memory footprint optimizations 

MPT ▼7.2 ▼7.3 ▼7.4 ▼7.5 ▼7.6 ▼7.7 ▼7.2.5 ▼7.3.x 



Q2 Q3 Q4 
2015 

Q1 
2016 

Q1 Q2 Q3 Q4 
 2017          

Q1 Q2 Q3 Q4          

 

 

Itasca Hiawatha Up 3 Itasca Up 1  

(Broadwell) 

Jasper LA  

(CUDA 7.5) 

 

Kabetogama Jasper Jasper  Up 2 

(CUDA 8.0) 

 

Jasper Up 1 

(Athena) 

MPT 7.4 Highlights 
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● Initial KNL support/optimizations 

● Cray MPI hugepage support for MCDRAM on KNL  

● (MPI_Alloc_mem and MPI_Win_Allocate) 

● Cray SHMEM support for MCDRAM on KNL 

● Additional MPI_THREAD_MULTIPLE optimizations (“Thread Hot”) 

● Initial MPI-IO optimizations for Cray DataWarp 

● MPI-IO Collective Buffering mode allowing multiple aggregators per OST 

● Requires Lustre 2.7 client and server (Lock Ahead feature) 

 

*Krishna Kandalla’s MPT talk at 10:30 on Thursday will cover some of these items in-depth 

MPT ▼7.2 ▼7.3 ▼7.4 ▼7.5 ▼7.6 ▼7.7 ▼7.2.5 ▼7.3.x 
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CPMAT - Highlights Since Last CUG (CPMAT 6.2.3) 
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● Sampling Over Time (6.2.3) 

● Power over time display (6.2.3) 

● Support to multiple GPUs per node (Cray CS-Storm) (6.2.4) 

● Support for Intel MPI on Cray CS Systems (6.3.0) 

● New perftools modules (6.3.0) 

● SNB / IVB / HSW uncore counter support with privileged access (6.3.0) 

● Apprentice2 new sample data over time plots (6.3.0) 

● Apprentice2 mosaic in runtime summarization mode (6.3.0) 

● Observation for helper threads in reports (6.3.0)  

● Apprentice2 compare (6.3.1) 

 

CPMAT ▼6.3 ▼6.2.3 ▼6.3.1 ▼6.4 ▼6.2.4 ▼6.4.x ▼6.5 ▼6.3.2 ▼6.4.1 
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Roadmap Highlights - CPMAT 6.4 and Beyond 
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● Reveal  
● Include time for loops sorted by compiler messages (e.g., find most time consuming loops that didn’t vectorize) 

● auto-parallelization 

● Client for OS X 

● MCDRAM data allocation assistance 

 

● New trace groups for OpenCL, Lustre API, MemKind, Parallel NetCDF 

 

● MPI insight (communication ‘strategy’ thresholds and advice on environment variables) 

 

● Memory usage information per NUMA domain 

 

● Support for CHARM++ 

CPMAT ▼6.3 ▼6.2.3 ▼6.3.1 ▼6.4 ▼6.2.4 ▼6.4.x ▼6.5 ▼6.3.2 ▼6.4.1 
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CSML Highlights Since Last CUG 

● Added optimized support for Broadwell target 

● Improved BLAS GEMM performance for Haswell and Broadwell CPU targets on XC and CS platforms  

● Expanded set of optimizations for ScaLAPACK eigensolver routines 

● Improved OpenMP threading support for BLAS and LAPACK routines 

● Added FASTPLAN optimizations for Haswell and Broadwell targets 

● Added FFT support  of arbitrary dimension and size for both real and complex data types 

● Added 64-bit integer support for Cray PETSc and Cray TPSL 

● Added support for HDF5 in Cray PETSc 

● Support for latest Kokkos multithreading libraries 

 

CSML ▼15.12 ▼15.9 ▼16.6 ▼15.4 ▼16.3 ▼16.11 ▼17.7 ▼16.9 
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Cray FFTW FASTPLAN Performance 
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FASTPLAN enable with environment variable FFTW_CRAY_FASTPLAN=1 
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CSML Roadmap 

● Support KNL targets on XC and CS systems 

● Small GEMM optimizations for BLAS 

● Athena support 

● Support for Nvidia Pascal GPU targets on XC and CS 

systems running CUDA 8.0 

CSML ▼15.12 ▼15.9 ▼16.6 ▼15.4 ▼16.3 ▼16.11 ▼17.7 ▼16.9 
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CDST Highlights and Roadmap 
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CDST since last CUG 
 
● STAT 2.1 with ALPS DSL tool helper 

 

● ATP, STAT & LGDB SLURM 15 support 

 

● CCDB and LGDB CUDA 7.5 support 

 

● CCDB and LGDB on Cray CS Systems 

 

CDST Roadmap 

● KNL support 

● ATP, STAT & LGDB single release to support 

multiple SLURM versions 

● LGDB Pascal GPU and CUDA 8.0 support  

● LGDB additional improvements for C++  

● LGDB better UPC support 

● CCDB better comparisons for large data structures 

15 

▼15.4 ▼16.6 CDST ▼15.12 ▼15.9 ▼16.11 ▼17.7 ▼16.3 



CCDB Overview 
● What is comparative debugging? 

● Data centric approach instead of the traditional control-centric paradigm 
● Two applications, same data 
● Key idea: The data should match 
● Quickly isolate deviating variables 
 

● Comparative debugging tool 
● NOT a traditional debugger! 
● Assists with comparative debugging 
● CCDB GUI hides the complexity and helps automate process 

● Creates automatic comparisons 
● Based on symbol name and type 
● Allows user to create own comparisons 
● Error and warning epsilon tolerance 
● Scalable 

 

● How does this help me? 
● Algorithm re-writes 
● Language ports 
● Different libraries/compilers 
● New architectures 

 

● Collaboration with University of Queensland 

CUG 2016 Copyright 2016 Cray Inc.  
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Craype/modules Highlights 
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● Module substring feature (PE 16.04) 
● Returns results if the argument is a part of any module name, rather than just modules that 

start with substring argument   
● Example: “module –S avail hdf5” would find all modules with “hdf5” anywhere in the name 

 

● New CDT module for each XC PE release (PE 16.04) 
● Switches currently loaded modules to the version associated with a specific CDT release 

● Subsequently loaded modules also load the version associated with CDT release 

● Started with the April 2016 PE release (cdt.16.04) 

 

*Note unloading the cdt module is not sufficient to restore your loaded modules to the system 
defaults.  A script, restore_system_defaults.sh, can be sourced to restore your currently loaded 
modules to the system defaults 



New cdt module for each PE release on XC 

CUG 2016 Copyright 2016 Cray Inc.  

ldr@cdt-test:~> module load cdt/16.04  

… 

Switching to cce/8.4.5. 

Switching to cray-libsci/16.03.1. 

Switching to craype/2.5.4. 

Switching to modules/3.2.10.4. 

Switching to cray-mpich/7.3.3. 

… 

ldr@cdt-test:~> module avail cce 

------------------------------ /opt/modulefiles -------------------------- 

cce/8.4.3          cce/8.4.5(default) 

 

ldr@cdt-test:~> module avail cray-mpich 

---------------------------- /opt/cray/modulefiles --------------------- 

cray-mpich/7.3.1                   cray-mpich-abi/7.3.1 

cray-mpich/7.3.3(default)   cray-mpich-abi/7.3.3(default) 

 

 

ldr@cdt-test:~> module list 

Currently Loaded Modulefiles: 

   1) modules/3.2.10.3 

   2) cce/8.4.3 

   3) craype-network-aries 

   4) craype/2.5.1 

   5) cray-libsci/13.3.0 

   6) cray-mpich/7.3.1 

… 

ldr@cdt-test:~> module avail cce 

------------------------------ /opt/modulefiles ------------------------- 

cce/8.4.3(default)                cce/8.4.5 

 

ldr@cdt-test:~> module avail cray-mpich 

---------------------------- /opt/cray/modulefiles ------------------- 

cray-mpich/7.3.1(default)  cray-mpich-abi/7.3.1(default) 

cray-mpich/7.3.3    cray-mpich-abi/7.3.3 
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Chapel Highlights and Roadmap 
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Chapel Highlights since 1.11 

● Improved string and record implementation 

● dramatically improved string performance 

● greatly reduced memory leaks 

● standard string library routines supported 

● New module namespace control features 

● Improved compiler stability 

● Improved library support 

● Parallelize large numeric array initialization 

● improved first touch with NUMA domains 

● Performance improvement highlights 

● reduction operations 

● convert RMA to local access as permitted 

● significant performance improvements for 'ugni' comm on Crays 

● bulk communication optimization for improved scaling 

 

Chapel Roadmap 

● Continuously improving performance and 
scalability 

● UTF8 string and library support 

● Eliminate memory leaks 

● Improved Error handling 

● Task Teams 

● Improved Object Oriented Story 

● Additional general purpose libraries 

● Additional platform support  

● KNL, ARM, GPUS, etc. 

19 

▼1.11 ▼1.13 Chapel ▼1.14 ▼1.12 ▼1.15 ▼1.16 



CCE Directives Update (OpenMP / OpenACC / Memory) 

CCE 8.4 CCE 8.5 (June 2016) CCE 8.6 (tentative) 

OpenMP 4.0 OpenMP 4.5 (target) OpenMP 4.5 (complete) 

OpenACC 2.0 OpenACC 2.5 (no planned support) 

KNL “memory” directive 

● Cray will continue to support OpenACC 2.0 
● No plans to support OpenACC 2.5 

 
● Recommendation: migrate to OpenMP “target” 

● OpenMP 4.0 provides constructs for base functionality 

● OpenMP 4.5 provides constructs for competitive performance 
● Asynchronous data transfers and kernel execution 

● Default scoping behavior of scalars as firstprivate 

● Unstructured data regions, “host data” regions, device pointers 

● Device memory API 

CUG 2016 Copyright 2016 Cray Inc.  
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KNL Memory from CCE Perspective 

● Node has two different types of memory 
● DDR: high-capacity, low-bandwidth 

● MCDRAM: high-bandwidth, low-capacity 

● Typical memory footprints exceed MCDRAM 
● Best performance requires MCDRAM 

● Users must allocate specific variables in MCDRAM 
● Not everything will fit at once 

● Latency-sensitive variables should probably go in DDR 

 

● CCE solution: provide mechanisms for developers to 
place specific variables and allocations in MCDRAM 

CUG 2016 Copyright 2016 Cray Inc.  
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CCE Support for MCDRAM 

● Cray Directive (pragma) to support data allocation in MCDRAM 

● Provide a directive-only solution 

● Cover more use cases 

● Support for Fortran, C, and C++ 

● The directive can be used on both local and global variables  

● to place the variables in high bandwidth memory 

● The directive can also be used on a statement  

● to change any allocation routines on that statement (allocate, malloc, etc.) to use HBM 

● If Clause for dynamic control of directive 

● Fallback Clause to control behavior if allocation fails 

● Future direction for memory hierarchy control 

● Ideally will become part of a standard, possibly OpenMP 

CUG 2016 Copyright 2016 Cray Inc.  
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CCE Proposed API for KNL HBM 

● Directive (pragma) to control placement for high bandwidth memory  
● Support for Fortran, C and C++ 

● Proposed directive 
● !dir$ memory(attributes) [list of variables] 

● #pragma memory(attributes) [list of variables or allocatable members] 
● Attributes – list of desired memory attributes (bandwidth, capacity, nonvolatile, etc.) 

● Initially “bandwidth” is the only allowed attribute  

● Other attributes may be added in the future 

 

● Statements 
● Appears prior to an allocation/deallocation statement 

● Changes explicit allocation routines in the next statement to use HBM 
● Fortran: allocate 

● C/C++: malloc, calloc, realloc, posix_memalign, free 

● C++: new, delete, new[], delete[] 
● Directive on deallocation must match (C/C++ only) 

 

 

 
 

CUG 2016 Copyright 2016 Cray Inc.  
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CCE Directive for Variable Declarations 

!dir$ memory(attributes) list-of-vars 

#pragma memory(attributes) list-of-vars 

 
● Specified at declaration of variable 

● For global variables, directive must be visible for every use of global 

● Within type for allocatable members 

● Allowed on: 
● Local and global variables 

● Scalars, structs and arrays (fixed size and variable length) 

● Fortran allocatables (including members of derived types) 
● Memory allocated will use high bandwidth memory 

● Not allowed on: 
● Dummy arguments 

● Common blocks or variables within a common block 

● Fortran pointers 

● Variables involved in equivalences 

● Coarray or UPC shared variables 

CUG 2016 Copyright 2016 Cray Inc.  
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Cray Memory Directive – Current Status 

● Initial implementation and basic testing of the Cray memory directive 
is complete for CCE 8.5  

● Target June 2016 release 

● Support for Intel’s FASTMEM attribute is deferred to a future CCE release 

 

● Internal users are starting to use the feature and providing feedback 

 

● Cray is working with OpenMP to incorporate this feature into the 
OpenMP 5.0 specification (2017/2018) 

● Cray presented to the OpenMP accelerator subcommittee in April 

● Intent is to initially include the feature in the annual OpenMP TR by SC’2016 

 

 
CUG 2016 Copyright 2016 Cray Inc.  
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Summary 

● Application developers need a programming environment that can 
address and hide the issues of scale and complexity of 
supercomputers 
 

● Cray’s advanced programming environment continue to focus on 
Performance and Programmability 
● Cray Compiling Environment (CCE) focused on application performance 

● Fully automatic loop vectorization 
● Directives for accelerators and multiple levels of the memory hierarchy 

● Cray Performance Analysis Tools  
● Focus on automation, scaling, and ease of use 

● Reveal 
● Scoping analysis and parallelization assistant 

● Parallel debugger support 
● Auto-tuned Scientific Libraries support 

● Getting performance from the system … no assembly required  

CUG 2016 Copyright 2016 Cray Inc.  
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Thank You 


