
Enhancing scalability of the gyrokinetic code GS2
by using MPI Shared Memory for FFTs

Lucian Anton∗, Ferdinand van Wyk†‡§, Edmund Highcock†, Colin Roach‡ and Joseph T. Parker¶
∗ Cray UK, Bristol, BS1 4DJ, UK

† Rudolph Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3NP, UK
‡ CCFE, Culham Science Centre, Abingdon, OX14 3DB, Oxon, UK

§ STFC, Daresbury Laboratory, Daresbury, WA4 4AD, UK
¶ STFC, Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK

Abstract—GS2 [1] is a 5D initial value parallel code used to
simulate low frequency electromagnetic turbulence in magnet-
ically confined fusion plasmas. Feasible calculations routinely
capture plasma turbulence at length scales close either to the
electron or the ion Larmor radius. Self-consistently capturing
the interaction between turbulence at ion scale and electron scale
requires a huge increase in the scale of computation.

We describe a new algorithm for computing FFTs in GS2 that
reduces MPI communication using MPI 3 shared memory. With
FFT data local to a node, the new algorithm extends perfect
scaling to core-counts higher by almost a factor of 10 (if the load
imbalance is small). For larger FFTs we propose and analyse the
performance of a version of this algorithm that distributes the
FFT data in shared memory over a group of nodes.

I. INTRODUCTION

GS2 is an initial value code which computes the time evo-
lution of the five dimensional perturbed distribution function,
g, by solving the gyrokinetic equation (GKE) for each species,
and it is used to simulate low frequency electromagnetic
turbulence in magnetically confined fusion plasmas. So far
gyrokinetic simulations have routinely only captured plasma
turbulence at length scales (perpendicular to the magnetic
field) that are close either to the electron Larmor radius, or
to the ion Larmor radius (which is approximately 60 times
larger). The turbulence arising at these two length scales are
likely to interact, and therefore a major development objective
for GS2 is to model the turbulence at both scales simultane-
ously. This is considerably more demanding, by a factor of
≈ 603, than independent calculations for the separated scales.

The GKE contains linear, non-linear and collision terms, and
the non-linear term is computed more efficiently at each time
step by exploiting fast Fourier transformations (FFTs). GS2 is
parallelised using MPI, with the data array corresponding to
g partitioned over the MPI ranks. The most computationally
efficient data layout and domain decomposition of g for
the various operators in the GKE differ substantially, and
GS2 exploits these optimal decompositions at the cost of
introducing a number of transpose operations between data
layouts at each time step. In the current version of GS2
different data layouts are used for the computation of the
FFTs, the collision operator, and the linear advance step.
On top of this, when using a large number of MPI ranks
more data communication is needed for a given computation,

e.g. multidimensional FFT. The transforms between layouts
involve all-to-all MPI communications which severely limit
GS2’s parallel scalability.

The FFT algorithm [2] is one of the most useful compu-
tational tools in scientific and engineering numerical codes,
but in order to use its power in distributed-memory parallel
computing models one has to overcome the poor scalability of
parallel multidimensional FFT which results from the all-to-all
communication pattern that it involves. Data traffic needed by
FFTs can be reduced by designing layouts with optimally low
communication requirements, and by using suitable program-
ming models such as OpenMP or shared memory for modern
HPC nodes with multicore processors.

While hybrid programming with MPI and OpenMP is
widely used to extend parallelism and reduce the need for
data movement or replication at the node level, in the last
decade UK HPC community has started to use shared memory
(SHM) and interprocess communication tools (provided by
System V) for the same purpose in several MPI applications
[3], [4]. MPI+SHM has the advantage over MPI+OpenMP that
SHM does not need to be implemented homogeneously across
the whole code in order to achieve the performance required
using a fixed number of cores. At a first glance one can
argue that shared memory data structures should be an efficient
solution for better parallel scalability in codes that use static
global data structures with regular data layouts and with a data
access pattern that requires a low level of synchronisation.
In general, when using SHM it is important to guard against
race conditions and inconsistent views of memory which can
occur in a shared address space. SHM is supported in MPI 3,
which provides a consistent synchronisation mechanism for
one sided remote memory access. It has been shown that
this approach provides a significant performance increase for
several standard parallel algorithms [5].

In this paper we present an algorithm that allows 2D FFT
computations, presently computed in the memory of a single
MPI task running on one core, to be computed in the shared
memory either of one or of a group of compute nodes. In
Section II we describe the single node algorithm and the code
modifications made in GS2 to allow the FFT data to be stored
in the shared memory associated with a single node. We assess
its performance using the FFT benchmark and the scaling tests

provided in the GS2 distribution. In Section III we extend this
algorithm further to allow the 2D data for each FFT to be
distributed across shared memory in a group of nodes, and
present preliminary results of its performance using a stand
alone test code. The performance results reported here were
obtained using the Cray XC30 system ARCHER, the UK HPC
national facility [6]. This system has 2 Ivy Bridge processors
with a total of 24 cores per node running at 2.7 GHz and 64 GB
of memory. The nodes are linked with the Aries interconnect.
Unless otherwise specified the timing presented here were
obtained with codes compiled with the default version of Intel
compiler.

II. ACCELERATING GS2 FFTS WITH SHARED MEMORY

At each time step GS2 uses the FFTW library [7] to compute
≈ 100 2D FFTs in a subspace of the 7 dimensional distributed
global data array. Owing to other algorithmic constraints, the
2D FFT plane is in the subspace spanned by the 3rd and
4th dimension indices of the data array, where (in the Fortran
array convention used here) the first dimension index has the
minimum stride in memory. For this data layout, the most
efficient way to compute the FFTs is to ensure that every 4D
sub-array spanning over dimensions 1 to 4 is contained within
one MPI rank, so that all 2D FFTs can be computed locally. If,
however, the total number of 4D subarrays is not a multiple
of the number of MPI ranks, the domain decomposition in
GS2 splits the 4D subarrays over MPI ranks and requires
MPI communication in the computation of each FFT. This
is generally less efficient than computing the 2D FFT directly
using memory local to a single core, which is referred to,
in GS2 parlance, as “accelerated FFTs”. The downside of
the layout where the FFT data is local to a core is twofold:
reduced parallelism because the largest number of MPI ranks
that can be used in the computation is the product of the last
3 dimensions of the global array; and the set of numbers of
MPI ranks being restricted by the FFT data locality condition.

We propose here an alternative solution to enhance com-
putation parallelism, while avoiding the expensive all-to-all
MPI communications. Using SHM each 4D subarray is placed
inside a shared memory segment on the compute nodes. In
this way, the number of MPI ranks that can compute the
FFT in parallel on every 4D sub-array can be increased by
a factor equal to the number of cores per compute node,
which is typically in the range 20–40 on current HPC systems.
If the node has a non-uniform memory access architecture
(NUMA) it may useful to use SHM segments on each NUMA
domain in order to improve data locality at the cost of reducing
scalability. In the following we define a shared memory node
(SHM-node) as the subset of MPI ranks from a compute
node (CN) that share data in a set of SHM segments. Shared
memory FFTs were implemented in GS2 by making the
following changes to the original code:

• writing API wrappers around MPI 3 subroutines which
map the shared memory segments to GS2 datatypes;

• extending the GS2 data layouts by adding the facility to
distribute the GS2 data as 4D subarrays over nodes in-

stead of MPI ranks, with load imbalance where necessary
(NB load balancing is perfect for runs where the number
of 4D subarrays is a multiple of the number of compute
nodes);

• changing three GS2 array variables to pointers to shared
memory segments. (NB two of these arrays are internal
to the GS2 FFT module);

• defining two new FFTW3 plans.
Now we describe a few more details of the implementation.

A good part of the implementation effort went into a Fortran
module that interfaces GS2 with the MPI 3 shared memory
subroutines. Inspired by the work done in Ref [3], a number
of generalised utility subroutines are provided to help GS2
developers to manage the access to and synchronisation of
shared memory segments (as well their allocation and pointer
mapping) in the complex context of a “real world“ application.
Information about the node MPI communicator used to create
the SHM segment is stored in a public derived data type, and
detailed information on the allocated SHM segments is stored
in a private linked list which can be accessed and modified
using specialised subroutines.

Most modifications to the GS2 source code related to ex-
tending the data layouts descriptors and adding query subrou-
tines to access the 4D sub-arrays allocated in SHM segments.
In a given run the N4 4D sub-arrays are distributed across
the NSHM SHM-nodes as follows. Int(N4/NSHM) 4D sub-
arrays are distributed to each SHM-node, and where there is
a finite remainder r, one additional sub-array is allocated to
each of the SHM-nodes 0, . . . r−1: i.e. if r > 0 we introduce
work imbalance in order to avoid MPI communication. In the
current implementation of GS2 SHM can be turned on at the
build time with a preprocessor flag, thus allowing the code to
be built with earlier versions of the MPI library.

The performance of the MPI+SHM implementation was
tested using the FFT benchmark and scaling test that are
included in the GS2 distribution. The data array has 384 4D
subarrays of dimension 53×2×128×128, which is a typical
grid size used in current GS2 computations. With SHM the
FFTs are computed for NUMA SHM-node and CN SHM-node
versions. Fig 1 shows representative scaling results (a) for the
FFT benchmark, and (b) for the scaling test run of GS2. Fig 1a
shows that NUMA SHM-node version follows the baseline at
low MPI rank counts and performs significantly better above
the point at which baseline switches from accelerated FFTs to
distributed FFTs (384 MPI ranks). The CN SHM-node version
is less efficient than the baseline in the accelerated FFTs range,
it becomes comparable to the baseline up to 3,000 MPI ranks
and it is more efficient beyond this point. We note that the drop
in CN SHM-node efficiency close to 7, 000 MPI ranks is due
to a severe load imbalance where some nodes are allocated
two 4D sub-arrays and other nodes one. The SHM efficiency
fully recovers at the higher core count (≈ 10,000 MPI ranks))
with exactly one sub-array per node, and is not significantly
impaired where the imbalance is more modest, e.g. at 144 MPI
ranks. NUMA SHM-node has a similar behaviour but with the
number of compute nodes scaled be a factor of 1/2.

 0.001

 0.01

 0.1

 1

 100 1000 10000

 1 10 100

ti
m

e

MPI ranks

compute nodes

baseline
Node SHM

NUMA SHM
ideal

(a)

 0.1

 1

 100 1000 10000

 1 10 100

ti
m

e
/s

te
p

MPI ranks

compute nodes

baseline
Node SHM

NUMA SHM
ideal

(b)

Fig. 1. Comparing the performance of the FFT+SHM algorithm vs baseline FFT algorithm, for the typical GS2 FFT benchmark (a) and
the GS2 test run (b). The vertical line marks the point where baseline version switches from the accelerated FFTs to distributed FFTs. Time
is in seconds.

In Fig 1b we show the average time (over 100 steps)
spent to compute a simulation step versus the number of MPI
ranks for a collisionless gyrokinetic test case (i.e. solving
the gyrokinetic equation using GS2 in the limit where the
collision term does not need to be computed). The timings
are for the two SHM versions discussed before (SHM-nodes
sharing one NUMA domain or the whole compute node) and
the baseline. The behaviour at low core counts is similar to the
FFT benchmark, at higher core counts the scaling saturates for
all versions with different plateau values. The NUMA SHM-
node case speeds up this computation by around 25% within
the range ≈ 384 . . . 2000 and higher that 4,000 MPI ranks. The
compute node SHM-node case reaches similar performance
above 4,000 MPI ranks. We have noticed that around 3,000
MPI ranks all version have close timings, this region needs
further investigations.

In summary, as the scaling of GS2 typical computations
saturates long before the average number of 4D sub-array per
compute node is close to one, our performance data suggest
that it is more efficient to use NUMA restricted SHM-nodes
for a wide range on MPI ranks (≈ 400 . . . 4000).

III. DISTRIBUTED SUB-BLOCKS

In this section we investigate an extension of the SHM
FFT algorithm which would allow us to access yet higher
core counts by distributing the 4D sub-arrays across nodes.
We believe that explorations in this direction may facilitate
GS2 simulations that consistently capture turbulence spanning

electron and ion scales, which require spatial grids in the 2D
FFT plane that are at least 100 times larger than those used
currently, with the typical 2D FFT grid size increasing to
O(1000) × O(1000). This is a first step in seeking optimal
layouts for locally distributed arrays that reduce the expense
of and need for global transposes to compute each of the
operators in the GKE.

For simplicity we aggregate the first two dimensions of the
GS2 4D sub-array into a single dimension of length Nt, so
that the distributed arrays can be considered as 3D with global
sizes Nt, Nx, Ny . The 2D FFTs are to be computed for all
2D layers spanning the second and third dimension (x,y). This
3D domain is partitioned into chunks in y that are distributed
equally over Nnodes nodes. Inside the node, the arrays holding
the domain data are allocated to SHM segments, and are
therefore accessible to all nodes’ ranks. Also we investigate the
variation which uses NUMA SHM-nodes. This should improve
the memory access speed in exchange for MPI communication
inside the compute node.

For the 1D domain partition we use, the FFT computation
can be done with the distributed version of the FFTW library.
The main steps of the algorithm are as follows:

1) inside each SHM segment the (x,y) planes are divided
uniformly among MPI ranks,

2) each MPI rank copies its assigned data from the SHM
segment into a local buffer of size required the by
distributed FFTW,

3) the FFT is executed with one call to FFTW library using

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 5 10 15 20 25 30

ti
m

e

Nnodes

total
fftw
buff

(a)

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 5 10 15 20 25 30

ti
m

e

Nnodes

total
fftw
buff

(b)

 0.001

 0.01

 0.1

 1 10 100

ti
m

e

Nnodes

total
fftw
buff

ideal

(c)

 0.001

 0.01

 0.1

 1 10 100

ti
m

e

Nnodes

total
fftw
buff

ideal

(d)

Fig. 2. 2D FFTs average time in seconds vs the number of compute nodes when using one SHM segments per compute node (a,c) or per
NUMA domain (b,d). The top row, (a,b), is for a computation with current grid sizes, 96× 100× 128, the bottom row, (c,d), is for a grid
sizes projected to be used by a multiscale simulation, 96× 1000× 1024. The average was done over 40 runs. A compute node has 24 MPI
ranks.

a 2D distributed plan defined among the corresponding
MPI ranks across the SHM nodes,

4) the FFT result data is copied back to the SHM segment.

We have chosen to transfers the data into a local buffer on
each MPI rank because the distributed FFT may require more
local memory than the size of the local array and also this
allows to use FFTW alloc that guarantees data alignment for
the optimal FFT computational speed. We point here to a
marginal advantage of MPI+SHM over MPI+OpenMP. The
above algorithm can be implemented with OpenMP threads,
but this would require a thread-safe version of the MPI library
(which typically has lower performance) because the MPI
communication would be taking place inside an OpenMP
region.

The performance of the distributed SHM algorithm has been
measured for a typical current grid size, and for a grid that
is ∼100 times larger in the FFT plane, i.e.: 96 × 100 × 128
and 96× 1000× 1024. A small number of tests were carried
out on grids with slightly different sizes in x to check that the
scaling results are not sensitive to this particular grid choice.
For simplicity the y size was kept a power of 2 in order to have
an equal partition over the compute nodes. The test code was
instrumented to collect separated timings for calls to FFTW
and for buffer to sub-array data transfers.

Fig 2 shows the complex FFTs computing time (averaged
over 40 runs on ARCHER) versus the number of nodes for
the small (a,b) and large (c,d) grids and with SHM segments
allocated either across the whole node (a,c) or restricted to a

NUMA domain (b,d). The test code was compiled with Cray
compiler 8.4 with the default optimisation level. Runs with an
Intel compiled version showed differences up to 10%, but we
do not present a detailed compiler comparison here.

Figs 2a, 2b shows that splitting the smaller sized block
over multiple nodes brings no speed up benefit. Fig 2c shows
that the time to execute the large block FFT on one node
is ≈ 190 times longer than for the smaller size block, and
that splitting the larger sub-arrays across nodes increases the
computation speed but with low efficiency. The large block
FFT computation can be accelerated ≈ 10 times by using
64 times more computational power. The distribution over
two nodes is particularly slow, mainly because of the large
buffering time, but above 4 nodes the scaling improves and is
controlled by the scaling of FFTW. Restricting SHM to span
NUMA regions is detrimental for a single compute node and
it has a small impact at higher node counts, see Fig 2d. The
buffer transfer time is negligible except for the 2 compute
nodes case. When the SHM segment is constrained to one
NUMA domain the buffer transfer time decreases at the cost
of slowing down FFTW, as one would intuitively expected.
Although the scaling efficiency of this algorithm is modest
it could be valuable if the locally distributed sub-arrays can
be used to reduce the number of transposition used by GS2
current algorithm.

IV. CONCLUSIONS

In this work we have described an algorithm and an im-
plementation of MPI 3+SHM in GS2 for the computation
of FFTs. We have shown that shared memory allows perfect
scalability for FFTs in GS2 to be extended towards 10,000
MPI ranks on current grid sizes with a small change in
the current data layout. The collisionless GS2 test show an
improvement in performance of approximately 25% when
using SHM restricted to NUMA domain for the FFTs at

moderate and high MPI rank counts (400 < # MPI ranks
< 6000). Using groups of shared memory nodes we have
shown that, for the grid sizes suitable for multiscale plasma
simulation, FFT scaling can be extended by approximately
one order of magnitude but with a low efficiency (≈ 10/64).
This is a first step in exploring new GS2 data layouts that
eliminates the need for all-to-all communication patterns that
limit the scalability of the current version of the code.

ACKNOWLEDGEMENTS

This work was partially supported by the Plasma HEC Con-
sortium [EPSRC grant number EP/L000237/1], CCP Plasma
[EPSRC grant number EP/M022463/1], the UK Engineering
and Physical Sciences Research Council (EPSRC) through
the Software Outlook Programme, and the RCUK Energy
Programme [grant number EP/I501045].

This work used the ARCHER UK National Supercomputing
Service (http://www.archer.ac.uk).

REFERENCES

[1] GS2 website. [Online]. Available: https://sourceforge.net/projects/
gyrokinetics/

[2] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Mathematics of Computation, vol. 19, no. 90,
pp. 297–301, 1965, doi: 10.1090/S0025-5718-1965-0178586-1.

[3] I. J. Bush, “New Fortran Features: The Portable Use of Shared Memory
Segments,” HPCx Consortium, Tech. Rep., 2007. [Online]. Available:
http://www.hpcx.ac.uk/research/hpc/technical reports/HPCxTR0701.pdf

[4] L. Anton, “Improving the parallelisation and adding functionality to the
quantum Monte Carlo code CASINO,” HECToR: UK National Super-
computing Service, Tech. Rep., 2009. [Online]. Available: http://www.
hector.ac.uk/cse/distributedcse/reports/casino/casino final report.pdf

[5] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell,
W. Gropp, V. Kale, and R. Thakur, “MPI + MPI: a new hybrid approach
to parallel programming with MPI plus shared memory,” Journal of
Computing, May 2013, doi: 10.1007/s00607-013-0324-2.

[6] Archer website. [Online]. Available: http:www.archer.ac.uk
[7] M. Frigo and S. G. Johnson, “The Design and Implementation of

FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, Feb
2005, doi: 10.1109/JPROC.2004.840301.

https://sourceforge.net/projects/gyrokinetics/
https://sourceforge.net/projects/gyrokinetics/
http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0701.pdf
http://www.hector.ac.uk/cse/distributedcse/reports/casino/casino_final_report.pdf
http://www.hector.ac.uk/cse/distributedcse/reports/casino/casino_final_report.pdf
http:www.archer.ac.uk

	Introduction
	Accelerating GS2 FFTs with shared memory
	Distributed sub-blocks
	Conclusions
	References

