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Abstract—Trinity is NNSA’s first ASC Advanced Technology 

System (ATS) targeted to support the largest, most demanding 

nuclear weapon simulations. Trinity Phase-1 (the focus of this 

paper) has 9436 dual-socket Haswell nodes while Phase-2 will have 

close to 9500 KNL nodes. This paper documents the performance of 

applications and benchmarks used for Trinity acceptance.  It 

discusses the early experiences of the Tri-Lab (LANL, SNL and 

LLNL) and Cray teams to meet the challenges for optimal 

performance on this new architecture by taking advantage of the 

large number of cores on the node, wider SIMD/vector units and 

the Cray Aries network.  Application performance comparisons to 

our previous generation large Cray capability systems show 

excellent scalability. The overall architecture is facilitating easy 

migration of our production simulations to this 11 PFLOPS system, 

while improved work flow through the use of Burst-Buffer nodes is 

still under investigation.  

Keywords-component; Cray XC40, AVX2, MPI, OpenMP, 

performance optimization 

I. INTRODUCTION 

Trinity is architected to meet the capability simulation needs 
of NNSA’s ASC program.  It is anticipated that due to its 
improvements in compute, memory and storage capabilities, it 
will enable larger model geometries and support higher fidelity 
physics, while meeting programmatic time-to-solution needs.  
Acceptance of the Phase-1 of the Trinity procurement was 
concluded in December of 2015. Phase-2 of the Trinity 
procurement is currently in progress, as volume shipments of 
Intel’s KNL processors facilitate installation and acceptance in 
July 2016.  Trinity architecture introduces new challenges to the 
code developers and analysts. These include the transition from 
multi-core to many-core, deeper memory hierarchies and wider 
SIMD/vector units.  Additionally, we will have for the first time 
on a large production capability system, high-speed solid-state 
storage Burst-Buffer nodes, which promise to improve check 
point/restart reading and writing efficiencies and enable improved 
work flow through optimal movement of data in an analysis 
cycle.   An overview of the Trinity and NERSC-8 procurement 
considerations can be found at Reference [1]. 

II. TRINITY ARCHITECTURE 

The Trinity architecture is shown in Figure 1. The Phase-1 
Haswell partition has 9,436 nodes with dual-socket Intel Xeon 
ES-2698 v3 running at 2.3GHz. Each processor has 16 cores and 
4 memory channels connected to four 16GB DDR4 DIMMS 
clocked at 2.133GHz.     The processors are set up to support 

Intel® Hyper-Threads and Intel® Turbo Boost and the operating 
clock frequency varies with the thermal load.   

 

  
Figure 1. Trinity Architecture Diagram 
 

Assuming a nominal 2.3GHz operation, the peak node double 
precision performance is:  32cores*16FLOPs/cycle*2.3GHz = 
1,177.6 GFLOPS/node.  Each core is capable of 16 DP FLOPs 
per cycle from the two 256 bit AVX2 units with FMA.  Trinity is 
listed at 8,101 TFLOPS on top500.org and 182.6 TFLOPS on 
hpcg-benchmark.org.      

III. ACCEPTANCE TESTS PERFORMANCE RESULTS 

A. ASC Capability Improvement (CI) Application Performance 

ACES management recognized the importance of good 

application performance at scale and made it a key Trinity 

acceptance requirement by specifying a set of metrics to quantify 

and measure the performance.   A key figure used to gauge 

performance at near full scale is the Capability Improvement 

(CI) metric, which is computed as an average improvement in 

performance over Cielo (Cray XE6) [2], of three ASC 

applications: PARTISN (from LANL), Nalu (from SNL)  and 

Qbox (from LLNL).  The baseline performance data was 

collected on our previous generation ASC ACES platform Cielo, 
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using more than 2/3 of its compute partition.  The CI metric is 

defined as: 

 

CI Metric = problem-size-increase * run-time-speedup 

 

The target performance for the CI metric is 8X over the baseline 

Cielo performance, but split into 4X for the Phase-1 Haswell 

partition (the focus of this paper) and 4X for the Phase-2 KNL 

partition.  Such a metric was also used in the acceptance 

benchmarks of our previous generation ASC ACES capability 

platform, Cielo [2][3].  Table 1 provides side-by-side 

comparison of a few performance related architectural 

parameters of Cielo and Trinity. 

 

Table 1.  Cielo, Trinity Architectural Parameters 

System Cielo Trinity 

Total Nodes 8,894 9,436 

Total Cores 142,304 301,952 

Processor AMD MagnyCours Intel Haswell 

Processor ISA SSE4a AVX2 

Clock Speed(GHz) 2.40 2.30 

Cores/node 16 32 

Memory-per-

core(GB) 

2 4 

Memory DDR3 1,333 MHz DDR4 2,133 MHz 

Peak node 

GFLOPS 

153.6 1,177.6 

Channels/socket 4 4 

Processor Cache 

L1(KB) 

L2(KB) 

L3(MB) 

8 x 64 

8 x 512 

10 

16 x 32 

16 x 256 

40 

Interconnect 

Topology 

Gemini 

3D Torus 

18x12x24 

Aries 

Dragonfly 

 

The following sections describe the three applications picked 

for the CI benchmark, their performance characteristics and 

specific efforts that were undertaken to meet the target 

performance set for Phase-1.  These applications are 

representative of the production simulations planned for Trinity 

and should suggest possible approaches for tuning other 

production applications. 

 

1) SIERRA/Nalu:  

 

The SIERRA/Nalu is a low Mach CFD code that solves a wide 

variety of variable density acoustically incompressible flows 

spanning from laminar to turbulent flow regimes. SIERRA 

Mechanics [4] simulation code suite is the principal mechanics 

code used by SNL in support of the U.S. Stockpile Stewardship 

program.  Open source versions of Nalu (version 1.0.0) along 

with the Trilinos solver (version 12.0.0) were used for this 

benchmark.  Nalu is fairly representative of implicit codes that 

have been developed as part of Sandia mechanics simulation 

code, SIERRA. Open source Nalu can be downloaded from 

Github [5].  This generalized unstructured code base supports 

both elemental (control volume finite element) and edge (edge-

based, vertex-centered) discretizations in the context of an 

approximate pressure projection algorithm (equal order 

interpolation using residual based pressure stabilization). The 

generalized unstructured algorithm is second order accurate in 

space and time. A variety of turbulence models are supported, 

however, all are classified under the class of modeling known as 

Large Eddy Simulation (LES). The chosen coupling approach 

(pressure projection, operator split) results in a set of fully 

implicit sparse matrix systems. Linear solves are supported by 

the Trilinos Tpetra interface.   

 

Nalu’s code base has been demonstrated to be 64-bit 

compliant and represents the path towards advanced 

architectures and can support mesh and degree-of-freedom 

counts well above the 2.14 billion count.  The calculations are 

computationally intensive and require good cache usage. In 

typical applications, hundreds of thousands of time steps must be 

used.  Communication patterns include both point-to-point 

exchanges typical of sparse graphs, consistent with assembly of 

partial sums, and collective reduction operations including 

global minimums, maximums, and summations. This code base 

is fairly representative of a wide range of implicit codes that 

have been developed in support of the Advanced Simulation and 

Computing (ASC) Integrated Codes (IC) project.  

 

a) Problem Description:  

The test problem of interest is a turbulent open jet 

(Reynolds number of ~6,000) with passive mixture fraction 

transport using the one equation Ksgs LES model. The problem 

is discretized on an unstructured mesh with hexahedral elements. 

The baseline problem R6 mesh consists of nine billion elements, 

with the total degree-of-freedom count approaching 60 billion. 

Given the pressure projection scheme in the context of a 

monolithic momentum solve, the maximum matrix size is ~27 

billion rows (momentum) followed by a series of smaller 9 

billion row systems, i.e., for the continuity system (elliptic 

Pressure Poisson), mixture fraction and turbulent kinetic energy.  

 

b) Figure of Merit (FOM)Description:  

Two FOMs were used; both involve the solution of the 

momentum equations. The speedups of the two metrics are 

weighted to produce a single speedup factor for Nalu. The first 

FOM is the average solve time per linear iteration. The second is 

the average matrix assemble time per nonlinear step.  Speedup is 

defined as:  

 

Speedup = Speedup-solve*0.67 + Speedup-assemble*0.33.  

 

c) Capability Improvement Metric Run:  

During a short window in December 2015, the focus was on 

running Nalu at near full scale of Trinity using as many nodes as 

available for the purposes of acceptance.  The best performance 

was measured in a run using 9420 nodes (301,440 cores or MPI 

tasks) using the 9 Billion element R6 mesh.  Therefore the 

complexity increase used in the CI computation was 1, i.e., the 

same mesh was used as for the Cielo baseline run.    The 
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capability improvement as defined previously was measured at 

4.009.  All of that improvement accrues from the faster run time 

measured for momentum equation average assemble time 

(measured value was 31.8274 secs) and the moementum 

equation average solve time (measured value was 83.0502 secs).   

The improvement in this run time attests to the superior strong 

scaling characteristics of Trinity.  It is useful to compare weak 

scaling of Nalu between Cielo and Trinity to supplement the 

single data point used for the CI metric.   Figure 2 provides a 

weak scaling plot for the Assemble and Solve times.   

The excellent scaling of the Nalu assembly computations 

resulted in a run time performance gain of 4.26X, at 9,420 nodes 

of Trinity, over the Cielo run at 8,192 nodes.  This, combined 

with a performance gain of 3.89X for the matrix solve, resulted 

in the CI metric value of 4.009.  

 

Figure 2. Trinity, Cielo Nalu weak scaling performance  

  

2) PARTISN 

 

LANL’s PARTISN particle transport code [6] provides 

neutron transport solutions on orthogonal meshes in one, two, 

and three dimensions. A multi-group energy treatment is used in 

conjunction with the Sn angular approximation. Much effort has 

been devoted to making PARTISN efficient on massively 

parallel computers. The package can be used for time-dependent 

calculations where even one simulation can run for weeks on 

thousands of processors. The primary components of the 

computation involve KBA sweeps and associated zero-

dimensional physics. The KBA sweep is a wave-front algorithm 

that provides 2-D parallelism for 3-D geometries, and is tightly 

coupled by dependent communications.  

 

PARTISN relies heavily on MPI_Isend/MPI_Recv, while the 

most frequent collective is MPI_Allreduce. For a 1,024 rank run, 

the code executed around 6M sends, 6M recvs, and 

approximately 4k Allreduces.  

 

a) Problem Description:  

The test problem used is MIC_SN (MIC with group-

dependent Sn quadrature). This problem is weak-scaled in the Y 

and Z dimensions so as to maintain a constant block shape per 

processor. A small set of parameters in the input file (jt, kt, yints, 

zints) are scaled to set up inputs for the weak scaling study 

determining the number of zones/core.  These parameters are 

doubled when the core count/MPI task count is quadrupled.  The 

number of OpenMP threads for each MPI task is also specified 

in the input file.   The Cielo baseline runs with 2,880 zones/core 

were collected with four OpenMP threads per MPI rank.  For 

runs on Trinity input parameters that led to 2,880, 5,760 and 

11,520 zones/core were used to generate control files for runs up 

to 9,418 nodes (301,376 cores).  PARTISN builds with both the 

Intel and the Cray CCE compilers, with and without OpenMP 

threading, were investigated for performance.  Since the CCE 

compiler had slightly lower (1-2%) performance than the Intel 

compiler, the latter was used for the CI benchmark.  A study of 

the hot-spots and MPI communications was conducted. The 

dominant routine, opt_sweep3d(), which actually performs the 

KBA sweep that comprises the wave-front algorithm, took 85% 

of the run time.  As the code team had already ensured excellent 

vectorization of this function, no improvements were found or 

needed for the CI benchmark effort.   

 

MPI profiling showed that MPI Isend/MPI_Recv 

communications were frequent on the 2D processor mesh.  

About 60% of the messages were 64 KB or smaller.  In 

applications with significant time spent in point-to-point 

communications, optimal MPI rank mapping can lead to good 

gains in performance.  On Cray systems like Trinity, one may 

experiment with a simple environment variable setting 

 

 MPICH_RANK_ORDER_METHOD=n 

 

to study the impact of round-robin rank placement (n=0), SMP 

rank placement (n=1; default) or folded rank placement (n=2).  

For PARTISN a custom rank order placement obtained with the 

use of the Cray utility grid_order was very beneficial. An 

example of a remap with grid_order for a run on Trinity with 

301,376 MPI ranks is provided  below. 

 

grid_order -R -Z -m 301376 -n 32 -g 554x544 \ 

                  -c 4x8 >MPICH_RANK_ORDER 

The parameters specify: 

-R is row-major ordering of ranks 

-Z option (default) lists successive rows of cells in the 

same order 

-m max rank count 

-c is the desired node MPI grid 

-g is the global MPI grid 

 

At run time setting the environment variable: 

   

MPICH_RANK_REORDER_METHOD=3  

 

uses the MPICH_RANK_ORDER file to map MPI ranks to 

cores and nodes to ensure most of the communication exchanges 

are within a node, thereby lowering the overall MPI 

communication time.  The utility grid_order does not take 

system topology into account: it simply “repacks” MPI ranks so 

that Cartesian mesh communication neighbors are more often on 

a node.  An experiment with PARTISN using grid_order on a 
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run using 16,384 PEs showed a 42% improvement in the MPI 

time and an 18% improvement in overall run time.  Figure 3 

shows the speedup resulting from the use of grid_order at 

various scales for PARTISN on Trinity. 

 

 
 

Figure 3.  Performance gain with grid_order for PARTISN 

 

b) Figure of Merit (FOM) Description:  

For PARTISN the FOM used is the Solver Iteration Time.  

Ideally this should stay constant for weak scaling.  When the 

baseline performance data was measured on Cielo, optimal 

scaling and performance were observed with 4 MPI tasks per 

node and 4 OpenMP threads per MPI task.  The results of an 

investigation to find the optimal MPI Task/OpenMP thread 

mapping on Trinity, with 2,880 zones/core ( labeled “1X”)  is 

shown in Figure 4.  One thread/MPI rank gave the best 

performance on Trinity. 

 
Figure 4.  PARTISN MPI task and threading performance 

 

A number of runs on Trinity were attempted to obtain the best 

possible performance for calculation of the CI metric.  Figure 5 

compares the scaling plots against the baseline Cielo 

measurements.  For the all the runs on Trinity in this figure one 

OpenMP thread per MPI task was used.  2,880 zones/core and 

11,520 zones/core are the two input cases shown.  The label 

‘asis’ refers to default MPI grid mapping and the label ‘grid’ 

refers to a run with grid_order mapping as previously described. 

 

 
Figure 5. Weak scaling for Cielo and Trinity, with two 

problem sizes comparing default and grid_order rank 

reordering 

 

c) Capability Improvement Metric Run:  

For the CI computation, a run on Trinity using 9,418 nodes 

(301,376 cores) and an input of 11,520 zones/core, produces a 

FOM solver iteration time of 397.71 secs.  The baseline Cielo 

run was on 8,192 nodes (131,072 cores) with an input of 2,880 

zones/core, and produced a solver iteration time of 209.4 secs.   

This results in a complexity scale factor of 9.19 and a run time 

ratio of 0.526, which yields a CI value for PARTISN of 4.83.   

 

3) Qbox 

 

Qbox is a first-principles molecular dynamics code used to 

compute the properties of materials at the atomistic scale [7]. 

The main algorithm uses a Born-Oppenheimer description of 

atomic cores and electrons, with valence electrons treated 

quantum mechanically using Density Functional Theory and a 

plane wave basis. Nonlocal pseudopotentials are used to describe 

the core electrons and nuclei, and derived to match all-electron 

single atom calculations outside of a given cutoff radius. The 

computational profile consists primarily of parallel dense linear 

algebra and parallel 3D complex-to-complex Fast Fourier 

Transforms.  Efficient single-node kernels have been found to be 

necessary to achieve good peak performance.  The 

communication patterns are complex, with nonlocal 

communication occurring both within the parallel linear algebra 

library (ScaLAPACK) and in sub-communicator collectives 

within Qbox, which are primarily MPI_Allreduce and 

MPI_Alltoallv operations. Threading is currently implemented 

as a mix of OpenMP and threaded single-node linear algebra 

kernels supplied by the hardware/compiler vendor.  All results 

presented here were carried out using the qb@LL-r205 branch of 

the Qbox code. 

a) Problem Description:  

The Qbox benchmark problem is the initial self-consistent 

wavefunction convergence of a large crystalline gold system 

(FCC, a0 = 7.71 a.u). This problem is computationally identical 

to typical capability simulations of high-Z materials, but easier 
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to describe and generalize to arbitrary numbers of atoms. A Perl 

script is used to generate input files for weak scaling study.  On 

Cielo, N=1,600 gold atoms were simulated with a norm-

conserving pseudopotential and 17 valence electrons per atom, 

resulting in 13,600 occupied electronic orbitals. A planewave 

cutoff of 130 Rydbergs was used, and 2,784 additional 

unoccupied orbitals was included (approximately 20% of the 

number of occupied states) to allow finite temperature smearing 

of the occupation at the Fermi level. The computational 

complexity of the calculation scales as O(N3) where N is the 

number of electronic orbitals.  The number of atoms was 

increased accordingly to generate scaled problems for Trinity 

capability improvement metric simulations. For example, 2,880 

gold atoms would require approximately six times more 

computations than the Cielo benchmark problem with 1,600 

atoms.  

 

b) Figure of Merit (FOM) Description:  

The run time metric for this benchmark is the maximum 

total wall time, to run a single self-consistent iteration, with 

three non-self-consistent inner iterations (corresponding to an 

input command of ‘run 0 1 3’).  Qbox prints formatted XML 

tags for the timing of each part of the code at the end of the run, 

with the self-consistent iteration time marked as follows:  

 
<timing where="run" name=" iteration" min="1234.5 " max="1234.5 "/>  
 

The FOM is the timing in the max field.   

 

Qbox CI performance was investigated extensively so 

as to improve the performance metric on Trinity.  The primary 

factors impacting the CI metric at various scales were: input 

parameter nrowmax, hybrid coarse/fine-grain parallelism; i.e. 

number of OpenMP threads per MPI task, optimal MPI task 

mapping, and the number of atoms on input.   Early 

investigations also showed that the Cray CCE compiler was 

slightly faster (by a few percent) than the Intel compiler.  Use of 

craype-hugePages at 8MB also led to 5% performance gain 

(tested on small problem size) over the default 4KB page size.  

Cray Libsci OpenMP parallel linear algebra functions found 

heavy use in Qbox. The importance of the Cray Libsci usage 

strongly depends on the size of the problem and the number of 

nodes available for that run; typically, a problem with 2,400 gold 

atoms running on 2,048 nodes would spend about half the total 

time inside the ScaLAPACK BI_Srecv/BI_Ssend routines, with 

an extra 10% in the BLAS routine ZGEMM, and a few percent 

in MPI_Alltoallv and FFTW3. Larger problems will see an 

increase in the time spent in the ScaLAPACK routines. However  

more time will be spent inside ZGEMM and MPI_Alltoallv as 

the problem size gets smaller and smaller. 

The nrowmax variable is used to determine the shape of 

the rectangular process grid used by Qbox. This process grid is 

the one used by the ScaLAPACK library. When Qbox starts, the 

ntasks, MPI tasks are assigned to processes arranged in a 

rectangular array of dimensions nprow * npcol. The default 

value of nrowmax is 32. The plane-wave basis is divided among 

nprow blocks, and the electronic states are divided among npcol 

blocks. At the program start up a simple algorithm coded in 

Qbox determines the values of nprow and npcol. Note that Cray 

Perftools includes an MPI Grid Detection algorithm that 

determines the shape of the numerical grid and offers optimum 

grid orderings, as further discussed below.  Values 512, 1,024, 

2,048 and 4,096 for nrowmax were investigated for their 

performance impact.  At lower scales (< 512 nodes) nowmax of 

512 was optimal.  However as the problem size (number of 

atoms) and the number of nodes were increased it was found that 

up to 2,000 nodes the optimal nrowmax was 1,024 and at very 

large scales it was 2,048.  This is the result of balancing the 

communication traffic across different ScaLAPACK functions 

and parallel FFTs, and is consistent with previous studies. 

 

Performance investigation varying the number of 

OpenMP threads per MPI task showed variation based on scale.  

For less than 880 atoms, 2 OpenMP threads/task was optimal.  

For 2,400 atoms and above and at larger number of nodes 8 

OpenMP threads/task gave the best performance.   Runs on 

Trinity with a 5,600 atom Qbox simulation showed 2X 

performance gain for 8 OpenMP threads/task when compared to 

2.  The need for ASC applications to improve fine-grained node 

parallelism is illustrated by this application. The benefit in 

performance comes from the high parallel efficiency linear 

algebra OpenMP kernels and from reduced MPI inter-node 

communication overhead.  

 

Figure 6 compares the weak scaling performance of 

Qbox measured on Cielo and Trinity.  The 1600 gold atoms 

baseline data collected on Cielo and repeated on Trinity using 

the same number of 98,304 processing elements showed a nice 

performance gain of 5.3X on Trinity.   The improved weak 

scaling on Trinity seen in Figure 6 is a consequence of the 

tuning steps outlined previously.   

 

   Figure 6.  Qbox weak scaling performance; 1600 atoms 

 

c) Capability Improvement Metric Run:  

 The number of nodes and memory per node on Trinity 

(4X that of Cielo) permitted runs of Qbox with up to 8,800 

atoms.  Figure 7 shows the capability scaling characteristics 

of Qbox on 9,418 nodes of Trinity using 8 OpenMP threads 

per rank for the various models (except for the 4,000 gold 

atoms model that used 2 OpenMP threads). 
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Figure 7.  Qbox capability scaling performance, without 

MPI grid ordering, and hyperthreading. 

 

The FOM, self-consistent iteration time, increases from 426 secs 

to 9,776 secs as the input complexity is varied from 2,880 atoms 

to 8,800 atoms.  As mentioned previously the computation 

complexity grows as the cube of the number of atoms.  The run 

used for the final CI computation for Qbox is the same 8,800 

atoms case as shown in Figure 7 with additional improvement in 

performance obtained through MPICH_RANK_REORDER 

using the Cray grid_order utility: 

 

grid_order -R -P -c 4,2 -g 68,1108 > MPICH_RANK_ORDER 

 

The parameters specify: 

-R is row-major ordering of ranks 

-P is a Peano space filling curve (optimal for FFT-style 

communication) 

-c is the desired node MPI grid 

-g is the global MPI grid 

 

 

This reduced the FOM Iteration Time from 9,776 secs to 7,974 

secs.  The problem size/complexity factor for the CI 

computation with the 8,800 atoms run on Trinity and 1,600 

atoms run on Cielo is 166.375 and the run time ratio (with the 

Cielo baseline Iteration Time of 1,663 secs) is 0.208 giving a 

final CI value of 34.7. The grid_order definition shown above 

includes hyperthreading: there are 8 MPI ranks (i.e., defining the 

grid_order flags: “-c 4,2”) and 8 OpenMP threads per rank, for a 

total of 64 cores per node. The grid order flags “-g 68,1108” are 

thus matched to the optimized Qbox parameter nrowmax. The 

positive effect of MPI grid ordering is shown in Table 2. 

Hyperthreading also benefitted performance. 
 
Table 2.  Qbox FOM using MPI Grid ordering  

“grid_order -R -P -c 2,2 -g 34,1108” (without hyperthreading)  
“grid_order -R -P -c 4,2 -g 68,1108” (with hyperthreading) 

 2400 gold atoms 8800 gold atoms 

Without grid order 456 9776 

With grid order 315 8834 

With grid order and 
hyperthreading 

--- 7974 

 

 

4) Phase-1 CI performance summary: 

 

Figure 8 summarizes the measured CI performance for each of 

the Tri-Lab applications and the average of the three 

applications. The achieved average CI performance of 14.517 

exceeds the target of 4.0 set for Phase-1.  

 

 
 

Figure 8. Trinity Capability Improvement performance 
    

B. SSP Results 

The System Sustained Performance (SSP) benchmark 
developed by NERSC [8] is useful as a way of measuring, 
reporting, and projecting the performance of a given system using 
a set of benchmark programs that represent a workload.  SSP is 
computed as a geometric mean of the performance of eight Tri-
Lab and NERSC benchmarks [8]:  miniFE, miniGhost, AMG, 
UMT, SNAP, miniDFT, GTC and MILC.  A second performance 
goal for Trinity Phase-1 was a target SSP of 400.  This is roughly 
8X throughput improvement in performance over the reference 
baseline measured on NERSC’s Hopper (a Cray XE6). Table 3 
shows the baseline SSP performance and calculations on Hopper.  

 
Table 3. SSP baseline performance on Hopper 

Hopper Nodes 6384

Hopper SSP

Application Name MPI Tasks Threads Nodes Used Reference Tflops Time (seconds) Pi

miniFE 49152 1 2048 1065.151 92.4299 0.0056

miniGhost 49152 1 2048 3350.20032 95.97 0.0170

AMG 49152 1 2048 1364.51 151.187 0.0044

UMT 49152 1 2048 18409.4 1514.28 0.0059

SNAP 49152 1 2048 4729.66 1013.1 0.0023

miniDFT 10000 1 417 9180.11 906.24 0.0243

GTC 19200 1 800 19911.348 2286.822 0.0109

MILC 24576 1 1024 15036.5 1124.802 0.0131

Geom. Mean= 0.0082

SSP= 52.1212  
 
The Reference Tflops in Table 3, measured on Hopper is to be 
used for the calculation of SSP on Trinity.  The other specified 
factor in the SSP runs on Trinity is the input problem size for 
each of the benchmarks, provided with the benchmark tar file and 
labelled “large” [8].   However the benchmark dos not specify the 
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number of MPI tasks, the threads per task, nor the number of 
nodes used, which is a potential shortcoming.   The SSP 
performance measured on Trinity is shown in Table 4.  The last 
column (pi), a measure of throughput per node 
(Teraflops/second-per-node) is measured by dividing the 
reference TFLOPS by the product of the run time and number of 
nodes used.  The geometric mean of the eight benchmarks is 
calculated as shown and the SSP metric is obtained as a product 
of this number and the number of nodes on Trinity, 9436.   
NERSC and ACES are improving the usefulness of this metric to 
better capture the true intent to gauge architectural improvement 
of proposed future systems by eliminating few shortcomings such 
as lower incentive to achieve good strong scaling and difficulty in 
measuring accurate FLOP counts.  The achieved performance on 
Trinity was 500 and it exceeded the target of 400 set for phase-1. 
 

    Table 4. SSP performance on Trinity 

Trinity Nodes 9436

Trinity SSP

pi: Rate(TF/s 

per Node)

Application Name

MPI 

Tasks Threads

Nodes 

Used

Reference 

Tflops

Time 

(seconds) Pi

miniFE 49152 1 1536 1065.151 49.5116 0.0140

miniGhost 49152 1 1536 3350.20032 1.77E+01 0.1229

AMG 49152 1 1536 1364.51 66.233779 0.0134

UMT 49184 1 1537 18409.4 454.057 0.0264

SNAP 12288 2 768 4729.66 1.77E+02 0.0348

miniDFT 2016 1 63 9180.11 377.77 0.3857

GTC 19200 1 300 19911.348 868.439 0.0764

MILC 12288 1 384 15036.5 393.597 0.0995

Geom. Mean= 0.0530

SSP= 500.0177  
 
  

C. Extra-Large mini app performance 

An additional requirement for Trinity in the SOW, was to 

measure and document the scaling and performance of five of the 

eight mini-apps used in the SSP benchmark (miniFE, miniGhost, 

AMG, UMT and SNAP )  using approriate scaled inputs, at near 

full scale of 9436 nodes.    These were added to the acceptance 

tests to help identify any potential hurdles to applications scaling 

to the full size of Trinity.  All the benchmarks completed 

successfully.    

D. Micro-benhcmark results 

As part of this effort to gather performance characteristics of 
Trinity, a number of micro-benchmarks [9] were run.  Benchmark 
performance data from Pynamic, Ziatest, OMB, SMB, mdtest, 
IOR, PSNAP and mpimemu have been very useful in providing a 
deeper understanding of the system and factors affecting 
performance of applications.  This section provides a short 
summary of a few of the benchmarks run during Trinity 
acceptance.  

 

1)  HPCG 
The HPCG benchmark was run on Trinity in the fall of 2015.  

The Intel version 2.4 of the benchmark was used, and no changes 
were made to the code.  The runs were scaled up to 9,419 nodes, 

using 2 MPI ranks per node and 16 OpenMP threads per rank.  
Local domain dimensions of 80x160x160 were set using the 
HPCG command line options --nx, --ny, --nz, and the execution 
time was set to 4,000 seconds using the HPCG command line 
option --t.  To ensure optimal placement of ranks and threads on 
the cores, the environment variable KMP_AFFINITY was set to 
‘compact’ and the aprun option ‘-cc depth’ was used.  The best 
GFLOP/s rating reported was 182,562. 
 

2) Ziatest 

This test executes a new proposed standard benchmark 

method for MPI startup that is intended to provide a realistic 

assessment of both launch and wireup requirements. 

Accordingly, it exercises both the launch system of the 

environment and the interconnect subsystem in a specified 

pattern.  Details on how the test is designed and tar file with the 

benchmark can be obtained from [9].  Ziatest was run on Trinity 

on 9,334 nodes and it measured a launch time of 12 seconds with 

32 MPI tasks per node.   

 

3) Mpimemu 

Benchmark mpimemu helps measure approximate MPI library 

memory usage as a function of scale.  It takes samples of 

/proc/meminfo (node level) and /proc/self/status (process level) 

and outputs the min, max and avg values for a specified period 

of time. More information is provided by NERSC [9].  

mpimemu was run on Trinity and Table 5 shows the MPI 

library memory used with 64 MPI tasks-per-node (using the -j 2 

option of aprun)  as a function of scale.  For smaller scales the 

memory used was found to be less than 2% of the available 128 

GB per node. 

 

Table 5. mpimemu benchmark results 

Trinity number of nodes 1024 2048 4096 9344 

Avg. node memory used (GB) 2.6 3.5 5.2 8.9 

 

4) PSNAP 

PSNAP is a System Noise Activity Program from 

the Performance and Architecture Laboratory at Los Alamos 

National Laboratory.  It consists of a spin loop that is calibrated 

to take a given amount of time (typically 1 ms). This loop is 

repeated for a number of iterations. The actual time each 

iteration takes is recorded.  Analysis of those times allows one 

to quantify operating system interference or noise.   Details on 

how the test is designed and tar file with the benchmark can be 

obtained from NERSC [9]. 

PSNAP was intended to run on the entire system and was 

executed on all the available Trinity nodes on a run using 9,436 

nodes, with 32 MPI tasks per node.  It was run after the module 

‘atp’ was unloaded and the environment variable 

ATP_ENABLED was unset. The output was processed using the 

script psnap_reduce provided with the benchmark to obtain a 

histogram of the actual time taken to run the timing loop for 

each MPI task.  The resulting histogram showed acceptable 

results of OS jitter.   A summary of the noise characteristics 

obtained from the run output with the provided “psnap_reduce” 

script showed: 
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 NR:  9436 

 Average Slowdown:  0.148236 

 Min Slowdown:  0.131174 

 Max Slowdown:  0.178586 

   

To summarize, the maximum percentage slowdown at a core 

was measured to be 0.178586%. 

 

5) STREAM 

STREAM is a simple, synthetic benchmark designed to 

measure sustainable memory bandwidth (in MB/s) and a 

corresponding computation rate for four simple vector kernels.  

The version used for the Trinity benchmark is the OpenMP 

enabled version of STREAM and can be downloaded from [9].  

It was built with the Intel compiler options: 

-O2 –xAVX -static -openmp -opt-streaming-stores always 

 

The Array size was set to 3,435,973 which correspond to 78 GB 

of total memory required.  It was run on a Trinity node with: 

aprun -j 1 -n1 -cc none -d 32 ../stream_c.exe 

The measured STREAM performance is shown in Table 6. 

 

        Table 6.  STREAM benchmark results 

 

Function Copy Scale Add Triad 

Rate (MB/s) 108,014 108,653 118,850 119,077 

 

6) OSU MPI Message Benchmarks 

The OSU MicroBenchmark suite is a collection of 

independent MPI message passing performance 

microbenchmarks developed and written at the Ohio State 

University.  It includes traditional benchmarks and performance 

measures such as latency, bandwidth and message rate.   

 

 
     Figure 9. OMB node-to-node MPI bandwidth 

 

Pont-to-point bandwidth, latency and message rate benchmarks 

were run.  Figure 9 shows the uni-directional and bi-directional 

bandwidth between a pair of tasks on two nodes (node numbers: 

2,336 and 2,464) and Figure 10 shows the MPI collective 

Allreduce latency as function of message size on a run using 

300,480 MPI tasks on 9,390 nodes.   This shows that on the full 

system frequently used 8 byte MPI_Allreduce completes in 28 

microseconds.   

 

 
Figure 10. MPI_Allreduce Latency on 9,390 nodes  

 

The OSU multi-latency benchmark showed that inter-node 

latency for small messages was less than 2 microseconds. 

 

The omb_mbw_mr, message rate benchmark performance 

between two nodes has been of interest to us because, small 

message size messaging-rate impacts scalability and 

performance of our implicit codes with multi-level solvers.   

Figure 11 helps explain the better scaling seen on many of our 

applications on Trinity when compared to our commodity 

InfiniBand clusters. 

 
Figure 11.  omb_mbw_mr  message rate performance    

  

IV. CONCLUSIONS 

A wealth of data on the performance of a large Cray XC40 
has been collected as part of the Trinity procurement and 
acceptance tests.  This paper documents the many man-months of 
effort to run and optimize the benchmarks.  Many of these runs 
are the first time that these benchmarks have been run at scales 
using in excess of 300,000 cores.  We also compared Trinity 
performance to our current capability system Cielo.  Our 
investigation confirms that Cray XC40 has good scalability and 
as expected should give us the needed performance and 
throughput gain for the Tri-Lab’s growing simulation needs.  
Based on benchmark results we anticipate production Trinity 
applications would see a performance gain of 2x to 6x over Cielo 
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depending upon potential gains from AVX2, use of threads and 
optimal MPI task mapping.  The use of Cray’s grid_order utility 
and hugepages should be explored as codes are ported to Trinity.  
We are hopeful that the lessons learned from this exercise are 
helpful to our users as Trinity begins to fully support production 
applications in early 2016. 
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