
Computational Efficiency of the Aerosol Scheme in the Met Office Unified Model

Mark Richardson, Graham Mann,

NCAS, School of Earth and Environment

University of Leeds

Leeds, United Kingdom

earmgr@leeds.ac.uk

Fiona O’Connor, Paul Selwood

UK Met. Office

Exeter, United Kingdom

fiona.oconnor@metoffice.gov.uk

Abstract - A new data structuring has been implemented in the

Met Office Unified Model (MetUM) which improves the

performance of the aerosol subsystem. Smaller amounts of

atmospheric data, in the arrangement of segments of

atmospheric columns, are passed to the aerosol sub-processes.

The number of columns that are in a segment can be changed at

runtime and thus can be tuned to the hardware and science in

operation. This revision alone has halved the time spent in some

of the aerosol sections for the case under investigation. The new

arrangement allows simpler implementation of OpenMP

around the whole of the aerosol subsystem and is shown to give

close to ideal speed up. Applying a dynamic schedule or

retaining a simpler static schedule for the OpenMP parallel loop

are shown to differ related to the number of threads. The

percentage of the run spent in the UKCA sections has been

reduced from 30% to 24% with a corresponding reduction in

runtime by 11% for a single threaded run. When the reference

version is using 4 threads the percentage of time spent in UKCA

is higher at 40% but with the OpenMP and segmenting

modifications this is now reduced to 20% with a corresponding

reduction in run time of 17%. For 4 threads the parallel speed-

up for the reference code was 1.78 and after the modifications it

is 1.91. Both these values indicate that there is still a significant

amount of the run that is serial (within an MPI task) which is

continually being addressed by the software development teams

involved in MetUM.

Keywords- OpenMP; cache-blocking; climate modelling,

aerosol

I. INTRODUCTION

A. Climate simulations

The United Kingdom Met. Office (UKMO) develop,
produce, use and distribute versions of a numerical weather
simulation software known as the “Unified Model” (MetUM).
It is used by several agencies worldwide for weather
forecasting, climate modelling and several other atmospheric
situations.

For the climate modelling work there is a requirement for
higher detailed calculation of the aerosol and chemistry
processes than for production forecasting. Previously this has
been done using “CLASSIC” but this work is focused on the
replacement tool, UKCA, which incorporates GLOMAP and
ASAD. Specifically we will be reporting work with a
configuration of GLOMAP that uses offline oxidants. In this

configuration there is limited chemical processing so the work
can demonstrate performance improvements purely
associated with GLOMAP. This approach will help to get the
developments into production more quickly than trying to deal
with the complexity of all UKCA at once.

The configuration being used for an international
assessment of climate modelling is as follows: N96L85 (i.e.
192 cells East to West by 144 cells North to South and 85
levels.) this will be run in two modes one with atmosphere
only and the second by coupling it to an ocean model (1 degree
resolution by 75 levels). On a high priority queue, the model
is achieving 15 months per day using 1 month per chained job.
The MPI decomposition is 16x14 2D topology with 2
OpenMP threads. Also this configuration calls the aerosol and
chemistry every 3rd dynamical time step which is 20 minutes.

B. Further detail about GLOMAP

The GLObal Model of Aerosol Processes (GLOMAP) is a
size-resolved microphysical aerosol model which has been
developed at Leeds [1,2] and is an extension to the TOMCAT
chemical transport model. The aerosol scheme developed for
UKCA is a simplified version of GLOMAP-bin, using a 2-
moment modal approach rather than a 2-moment sectional
approach to reduce CPU cost, and has been named GLOMAP-
mode when used in the TOMCAT environment.

There are four soluble modes — nucleation, Aitken,
accumulation and coarse — and three insoluble modes —
Aitken, accumulation and coarse. The nucleation mode
consists purely of sulfate aerosol and the insoluble
accumulation and coarse modes consist purely of (fresh) dust
aerosol. The insoluble Aitken mode consists of an external
mixture of black carbon and organic carbon aerosol. All other
modes consist of internally mixed particles each with identical
composition given by the partial component masses (which
does not vary with size).

It is clear that this level of sophistication brings with it
additional computational load. The notable aspect is that all
this processing occurs within a single computational cell
(grid-box), which can be processed in any order.

II. WORK PROGRAMME APPROACH

The work is being done in two stages: segmentation of
data for cache-blocking and implementation of high level
OpenMP to encompass the aerosol calculation. The
segmentation method itself gives rise to performance

improvement and subsequent application of OpenMP around
those cache blocks allows MetUM to utilise cores that would
be usually idle while the aerosol calculations happen.

A. Test case

Test case represents the global atmosphere
with192x144x85 grid-boxes. For this work only one
configuration was used and that is representative of general
use: 128 MPI tasks and 2 OpenMP threads. However, we will
show that this development version is less wasteful of
resource and provides an overall speed improvement of the
simulation. The development work has set the test case to run
for only 3 days that is a restart from a “spun-up” atmosphere
i.e. the standard UM was used with standard GLOMAP to
generate an atmosphere after 14 months of simulated time.
With an atmospheric time step of 20 minutes there are 216
steps for the subsequent 3-day development simulation.

B. Performance timing

There are already two timing mechanisms within MetUM
that were extensively used during this work, one is a basic
timer that summarises the time spent in code sections at the
end of the simulation. In recent versions the DrHook system
[2] has been implemented and gives a finer grained time
information. After each run a set of files (one per MPI task)
are processed to provide tables organised by the average time
spent in traced functions.

There are some limitations found for the analysis with Dr.
Hook. When post processing the log files one selects the
number of routines to include but adding extra OMP threads
adds as many more timing entries for the functions. Some of
the functions that appear for a run with, e.g. two threads, do
not necessarily appear in the results for a run with eight
threads. One reason for function times disappearing from the
list is that the function time may have reduced and moved the
function out of the range of functions selected for post
processing.

III. ANALYSIS AND RESULTS

A. Timing analysis

Figure 1 shows two examples of the DrHook output for
runs with two OpenMP threads active. In figure 1(a) for the
reference code, it is clear that UKCA functions make a
significant contribution to the runtime. In figure 1(b) for the
code where UKCA has been modified for cache-blocking and
OpenMP, ukca_cond_coff_v() has simply halved but the
ukca_coagwithnucl function as quartered. The latter is due to
the effect of reducing the size of the arrays being processed.

B. Cache blocking

1) Implementation of the segmenting method
Early plans for this work considered examining each high-

workload subroutine and restructuring the do-loops for cache
blocking. Some experiments were done and to get
improvements into production quickly one particular solution
has been adopted separate to this work. However, in general
the amount of effort to make changes to all the possible loops
would be very time consuming. The approach detailed in this
paper is seen as a better general solution without impacting
the GLOMAP source code other than at the interface with
whichever general circulation model it is incorporated.

There is a section of MetUM where the code enters an
interface that sets up the data for the aerosol calculations. This
is named “ukca_aero_ctl()” and it is here where some data
restructuring already occurs to map from three-dimensional
arrays of the whole atmosphere into the one-dimensional
vectors used by GLOMAP. The adoption of a segmenting
approach replaces those transformations with “segment
extraction” so that only a small amount of atmosphere is
passed to GLOMAP making those one-dimensional vectors
smaller. This requires a further two nested loops around the
aerosol calculations: the outer loop for the rows in the sub-
domain and a second immediately nested inside the first for
iterating over the number of segments on a row.

This implementation limits the segments to be a factor of
the number of columns in a row of computational space. In the

Figure 1 DrHook timing information for (a) reference code (b) the development code

case under investigation the row length is 12 and thus a value
of 4 for the number of columns per segment will result in 3
segments per row and is the same for all rows. It is expected
that the optimum segment size will be less than the row length
as the resolution of simulations increases. This
implementation makes it straightforward to activate an
OpenMP region as discussed later in this report.

2) Segment size
The whole simulation HPC job is configured with the

UMUI (or Rose depending on the version of MetUM) where
the number of columns per segment are set. This is read from
a name list during the run and it is used to size the segments
during the transformations within ukca_aero_ctl(). The
inclusion of this new parameter required modification of those
configuration tools.

For this experiment the case was repeatedly run for
variations in the choice of number of columns per segment i.e.
12, 6, 4, 3, 2 and 1. The most notable effect is that the time
spent in UKCA_COAGWITHNUCL, the highest workload
that was identified in the reference runs, is halved as shown in
figure 2. Some of the functions demonstrate very little
variation of the time for execution due to the dominant
processes not being directly related to the number of grid-
boxes being processed. Only 12 functions are shown and these
occur below the aerosol interface and contribute a significant
amount to the runtime. Many of the other (approximately 70)
subroutines account for less than a second each, some are too
short to register a time and assigned “zero”. There are two
other subroutines outside the segmenting region that are

significant, of the order of 25seconds each for the reference
run. They are not modified by this work but appear in the
overall results.

C. OpenMP Investigation

The investigation of the OpenMP implementation is
focused on the optimal 4 columns per segment i.e. only 3
segments per row, which equates to 54 segments. The fact that
there are two do loops to count those segments is slightly
inhibiting as the parallel loop is applied to the outer loop only
(over rows) so there are only 18 levels of potential parallelism.
The work presented here is for applying OpenMP to only the
outer loop over rows.

1) Number of threads
There is already a certain amount of MetUM within

OpenMP parallel regions and it is seen to run faster with more
threads. Some of the speed-up will also come from under
populating the nodes as was seen in previous work with
GLOMAP in TOMCAT [5, 6]. The under population refers to
the spreading out of the MPI tasks to allow CPUs for the
OpenMP threads to be “close” to the MPI task that spawns
them.

The four groupings in Figure 3 have been collated to
demonstrate the benefits from the development. Within each
group is the effect of varying the number of threads with the
first column of each group being for the reference run with a
single thread. The first group is all of the MetUM including
the UKCA work, i.e. the total wall time for the run and is
likely of most interest to the scientist using the software. The

TABLE I. EFFECT OF OPENMP ON UKCA DATA FOR FIGURE 3

 Ref 1 thread Dev 1 thread Dev 2 thread Dev 3 thread Dev 4 thread Dev 8 thread

Wall time 584.66 518.15 345.88 287.45 271.90 233.60

All UKCA 193.61 124.99 76.61 59.62 53.50 45.08

Parallel UKCA 149.18 82.63 41.25 27.68 20.81 13.72

Serial UKCA 43.17 42.29 35.36 31.94 32.69 31.36

Percentage in UKCA 33.11 24.12 22.15 20.74 19.67 19.29

Figure 3: Reducing segment size for top 12 UKCA functions
Figure 2 Effect of OpenMP on UKCA highlighting

contributions from parallel and serial regions

second group is for all of the UKCA functions within a
simulation – this group is active for a climate run and
constitutes an “overhead” for the aerosol calculations. The
third group is the components of UKCA that are within
OpenMP parallel regions. The fourth group is the parts of
UKCA that are not in any OpenMP region. The original
sentiment from users that there is a large overhead for using
UKCA is demonstrated as even with the choice of hourly
aerosol processing it accounts for 33% of the run (Table 1).
Now that segmenting and OpenMP have been implemented it
can be seen that even for single threaded operation the data
restructuring has reduced this to be only 24% of the run.

It is clear from Figure 3 that there is still some
development needed to improve the performance of UKCA
by locating the remaining serial parts of UKCA and
implementing an OpenMP region around them. A few of the
UKCA routines are separate from the OpenMP parallel region
that was introduced by this work but they lay within a parallel
region elsewhere in MetUM. Their times have been
accumulated with the UKCA functions in the newly
implemented parallel region.

2) Choice of scheduling
When implementing an OpenMP parallel region the first

approach is to determine which do-loops will be parallel
enabled. Within the OpenMP standard there is a specification
of the options that can be applied to a do-loop. Apart from
which data are shared and which data are private, the manner
in which the iterations are distributed can be assigned to be
static or dynamic [3]. For a static schedule the iterations are
divided equally among the threads in “chunks”. For example,
a 3 thread run for this case would assign the first 6 rows to
thread 0, the next 6 rows to thread 1 and then the final 6 rows
to thread 2. This is indiscriminate and does not account for
any difference in the time required for each iteration (row).

A dynamic schedule will assign the first (number of
threads x OpenMP chunk size) iterations as one segment to
each thread and then when a thread becomes available the next
chunk of iterations are handed to it. If any chunk of work takes
more time then it will not hold up the other threads (except
possibly one of the final “number of threads” chunks is the
difficult one.)

Again an optimal segment size of 4 columns per segment
was chosen the chunk size was left as the default of 1. The
case was run several times varying the number of threads i.e.
2, 4 and 8. One set of runs was performed using the
SCHEDULE (STATIC) clause and the second series ran with
SCHEDULE (DYNAMIC) clause.

In figure 4 the DYNAMIC schedule is seen to have a
detrimental effect on the low thread (2) count compared to the
STATIC clause. It appears that the higher thread count (8)
benefits from the dynamic scheduling. This is likely due to the
fact that the 18 rows are not a multiple of 8. In practice, the
static scheduler decided to use only 6 threads and divide the
work evenly. This was confirmed during examination of the
log files where each thread reports the iteration with which it
is working. It is also likely that some of the rows require
different amounts of work so that the dynamic method has the
opportunity to assign a new tranche of work to the next
available thread. The impact of this indirect load balancing is

beneficial for the case where there are more threads than tasks,
it was confirmed that all threads did some work when
DYNAMIC scheduling was active for the 8-thread run.

As normal working practice is to use a small number of
threads it is recommended that in this parallel region STATIC
scheduling is applied until more of MetUM is OpenMP
parallel enabled.

3) COLLAPSE clause to merge nested do loops
The methodology as explained above was the most

straightforward to implement of several possible methods.
The inherent limitation to segments being a factor of the row
length could be alleviated by merging the inner loop over
segments with the outer loop over rows such that the OpenMP
scheduler sees the total number of segments. A simple way of
achieving this is to add the COLLAPSE clause to the OpenMP
loop directive. Unfortunately the version of compiler (8.3.4)
cannot merge the loops where the limits are set during the run.
This work will be done as a new compiler becomes available.

An alternative is to implement the more complex coding
solution of choosing a segment size and extracting the 3D data
into these arbitrary segments within a single loop structure
that iterates over all segments rather than restricting it to
segments per rows. This is a possible development direction
but brings with it further maintenance and clarity issues.

IV. SUMMARY

The well-known cache-blocking concept has been applied
to the MetUM around the calculations for aerosol. Benefits
were seen in the form of reduced time for calculation of the
aerosols. In turn the “block” loop was used as the level of
parallelism for OpenMP. This is not a traditional tiling of
nested do loops as the loop is applied at such a high level as
to encompass many subroutines (almost all) that do the
aerosol calculations.

The scaling for the aerosol section is close to ideal. The
overall scaling effect of OpenMP on the reference code and
the development code can be seen in figure 5. The
improvement of the development code over the reference code
for 1, 2 and 4 threads is 11%, 14% and 17% and is a
combination of segmented approach and introducing OpenMP
around the aerosol calculations.

Figure 4 Comparison of STATIC and DYNAMIC

OpenMP schedules for 2, 4 and 8 threads.

TABLE 2: DATA FOR FIGURE 5: OVERALL EFFECT OF CACHE-BLOCKING

AND OPENMP

 1 thread 2 threads 4 threads

Ref Code wall time 584.89 401.47 328.33

Dev Code wall time 518.15 345.88 271.90

An additional benefit is that it has also made better use of

reserved resource when using OpenMP. Current working
practice is to select a small number of OpenMP threads as
those additional cores are idle during the aerosol calculation.
Activating OpenMP around the aerosol at the high level
interface results in further reduction in the cost of the aerosol
calculations. This complements other work elsewhere in the
MetUM where OpenMP is being extended to apply to more of
the atmosphere calculations.

V. PLANNING FURTHER WORK

Currently work is in progress to take the successful branch
development and merge it with the trunk core MetUM. This is

a significant software engineering exercise because the quality
assurance criteria have to be maintained. After a development
has been validated, a test suite is run and any errors
investigated and corrected.

At the outset of this project the whole of UKCA has been
identified as needing performance enhancement. The aerosol
processes were chosen as a starting point with the chemistry
to follow over the next 12 months. There exist structures in
the chemistry calculations where the atmosphere is treated in
a layer by layer fashion. These are arbitrary as the solver will
work on individual computational boxes in a similar fashion
to the aerosol processes. The longer view is to deal with
chemistry in a column fashion and that work will examine the
feasibility of introducing columns at the outset or to focus on
applying OpenMP to the existing layering.

ACKNOWLEDGMENTS

Joint Weather and Climate Research Programme
(http://www.jwcrp.org.uk/) for funding this work.

National Centre for Atmospheric Science
(https://www.ncas.ac.uk/) for hosting the research at the
University of Leeds.

The UK Met Office for guiding the research and providing
the collaborative resource (MONSooN) which is a Cray XC40
that complements their internal systems.

REFERENCES

[1] Spracklen, D. V., Pringle, K. J., Carslaw, K. S., et al.: A global off-line
model of size-resolved aerosol microphysics: I. Model development
and prediction of aerosol properties, Atmos. Chem. Phys., 5, 2227–
2252, doi:10.5194/acp-5-2227-2005, 2005

[2] G. W. Mann, K. S. Carslaw, D. V. Spracklen, D. A. Ridley, P. T.
Manktelow, M. P. Chipperfield, S. J. Pickering, and C. E. Johnson ,
“Description and evaluation of GLOMAP-mode: a modal global
aerosol microphysics model for the UKCA composition-climate
model” Geosci. Model Dev. , 2010, 3, pp519–551

[3] Chandra R, Dagum L, Kohr D, Mayden D, McDonald J, Menon R,
Parallel Programming in OpenMP, Academic Press, 2001, ISBN-
13:978-1-55860-671-5

[4] DrHook, time measurement system, ECMWF (www.ecmwf.int)

[5] M.Richardson, M.Chipperfield, Cray User Group 2013 (Nappa,
California, USA) "Improvement of TOMCAT-GLOMAP File Access
with User Defined MPI Datatypes"

[6] M.Richardson, G.W.Mann, Cray User Group 2010 (Edinburgh,
Scotland, UK) “Combining OpenMP and MPI within GLOMAP
Mode: An Example of Legacy Software Keeping Pace with Hardware
Developments”.

584.89

401.47

328.33

518.15

345.88

271.90

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

1 thread 2 threads 4 threads

Ref wall time Dev wall time

Figure 5 Overall effect of this work comparing reference

and development runs

http://www.ecmwf.int/

