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Abstract - A new data structuring has been implemented in the 

Met Office Unified Model (MetUM) which improves the 

performance of the aerosol subsystem. Smaller amounts of 

atmospheric data, in the arrangement of segments of 

atmospheric columns, are passed to the aerosol sub-processes. 

The number of columns that are in a segment can be changed at 

runtime and thus can be tuned to the hardware and science in 

operation. This revision alone has halved the time spent in some 

of the aerosol sections for the case under investigation. The new 

arrangement allows simpler implementation of OpenMP 

around the whole of the aerosol subsystem and is shown to give 

close to ideal speed up. Applying a dynamic schedule or 

retaining a simpler static schedule for the OpenMP parallel loop 

are shown to differ related to the number of threads. The 

percentage of the run spent in the UKCA sections has been 

reduced from 30% to 24% with a corresponding reduction in 

runtime by 11% for a single threaded run. When the reference 

version is using 4 threads the percentage of time spent in UKCA 

is higher at 40% but with the OpenMP and segmenting 

modifications this is now reduced to 20% with a corresponding 

reduction in run time of 17%. For 4 threads the parallel speed-

up for the reference code was 1.78 and after the modifications it 

is 1.91. Both these values indicate that there is still a significant 

amount of the run that is serial (within an MPI task) which is 

continually being addressed by the software development teams 

involved in MetUM.  
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I. INTRODUCTION 

A. Climate simulations 

The United Kingdom Met. Office (UKMO) develop, 
produce, use and distribute versions of a numerical weather 
simulation software known as the “Unified Model” (MetUM). 
It is used by several agencies worldwide for weather 
forecasting, climate modelling and several other atmospheric 
situations. 

For the climate modelling work there is a requirement for 
higher detailed calculation of the aerosol and chemistry 
processes than for production forecasting. Previously this has 
been done using “CLASSIC” but this work is focused on the 
replacement tool, UKCA, which incorporates GLOMAP and 
ASAD. Specifically we will be reporting work with a 
configuration of GLOMAP that uses offline oxidants. In this 

configuration there is limited chemical processing so the work 
can demonstrate performance improvements purely 
associated with GLOMAP. This approach will help to get the 
developments into production more quickly than trying to deal 
with the complexity of all UKCA at once. 

The configuration being used for an international 
assessment of climate modelling is as follows: N96L85 (i.e. 
192 cells East to West by 144 cells North to South and 85 
levels.) this will be run in two modes one with atmosphere 
only and the second by coupling it to an ocean model (1 degree 
resolution by 75 levels). On a high priority queue, the model 
is achieving 15 months per day using 1 month per chained job. 
The MPI decomposition is 16x14 2D topology with 2 
OpenMP threads. Also this configuration calls the aerosol and 
chemistry every 3rd dynamical time step which is 20 minutes. 

B. Further detail about GLOMAP 

The GLObal Model of Aerosol Processes (GLOMAP) is a 
size-resolved microphysical aerosol model which has been 
developed at Leeds [1,2] and is an extension to the TOMCAT 
chemical transport model. The aerosol scheme developed for 
UKCA is a simplified version of GLOMAP-bin, using a 2-
moment modal approach rather than a 2-moment sectional 
approach to reduce CPU cost, and has been named GLOMAP-
mode when used in the TOMCAT environment.  

There are four soluble modes — nucleation, Aitken, 
accumulation and coarse — and three insoluble modes — 
Aitken, accumulation and coarse. The nucleation mode 
consists purely of sulfate aerosol and the insoluble 
accumulation and coarse modes consist purely of (fresh) dust 
aerosol. The insoluble Aitken mode consists of an external 
mixture of black carbon and organic carbon aerosol. All other 
modes consist of internally mixed particles each with identical 
composition given by the partial component masses (which 
does not vary with size). 

It is clear that this level of sophistication brings with it 
additional computational load. The notable aspect is that all 
this processing occurs within a single computational cell 
(grid-box), which can be processed in any order. 

II. WORK PROGRAMME APPROACH 

The work is being done in two stages: segmentation of 
data for cache-blocking and implementation of high level 
OpenMP to encompass the aerosol calculation. The 
segmentation method itself gives rise to performance 



improvement and subsequent application of OpenMP around 
those cache blocks allows MetUM to utilise cores that would 
be usually idle while the aerosol calculations happen. 

A. Test case 

Test case represents the global atmosphere 
with192x144x85 grid-boxes. For this work only one 
configuration was used and that is representative of general 
use: 128 MPI tasks and 2 OpenMP threads. However, we will 
show that this development version is less wasteful of 
resource and provides an overall speed improvement of the 
simulation. The development work has set the test case to run 
for only 3 days that is a restart from a “spun-up” atmosphere 
i.e. the standard UM was used with standard GLOMAP to 
generate an atmosphere after 14 months of simulated time. 
With an atmospheric time step of 20 minutes there are 216 
steps for the subsequent 3-day development simulation. 

B. Performance timing  

There are already two timing mechanisms within MetUM 
that were extensively used during this work, one is a basic 
timer that summarises the time spent in code sections at the 
end of the simulation. In recent versions the DrHook system 
[2] has been implemented and gives a finer grained time 
information. After each run a set of files (one per MPI task) 
are processed to provide tables organised by the average time 
spent in traced functions.  

There are some limitations found for the analysis with Dr. 
Hook. When post processing the log files one selects the 
number of routines to include but adding extra OMP threads 
adds as many more timing entries for the functions. Some of 
the functions that appear for a run with, e.g. two threads, do 
not necessarily appear in the results for a run with eight 
threads. One reason for function times disappearing from the 
list is that the function time may have reduced and moved the 
function out of the range of functions selected for post 
processing. 

 

III. ANALYSIS AND RESULTS 

A. Timing analysis 

Figure 1 shows two examples of the DrHook output for 
runs with two OpenMP threads active. In figure 1(a) for the 
reference code, it is clear that UKCA functions make a 
significant contribution to the runtime. In figure 1(b) for the 
code where UKCA has been modified for cache-blocking and 
OpenMP, ukca_cond_coff_v() has simply halved but the 
ukca_coagwithnucl function as quartered. The latter is due to 
the effect of reducing the size of the arrays being processed. 

B. Cache blocking 

1) Implementation of the segmenting method 
Early plans for this work considered examining each high-

workload subroutine and restructuring the do-loops for cache 
blocking. Some experiments were done and to get 
improvements into production quickly one particular solution 
has been adopted separate to this work. However, in general 
the amount of effort to make changes to all the possible loops 
would be very time consuming. The approach detailed in this 
paper is seen as a better general solution without impacting 
the GLOMAP source code other than at the interface with 
whichever general circulation model it is incorporated.  

There is a section of MetUM where the code enters an 
interface that sets up the data for the aerosol calculations. This 
is named “ukca_aero_ctl()” and it is here where some data 
restructuring already occurs to map from three-dimensional 
arrays of the whole atmosphere into the one-dimensional 
vectors used by GLOMAP. The adoption of a segmenting 
approach replaces those transformations with “segment 
extraction” so that only a small amount of atmosphere is 
passed to GLOMAP making those one-dimensional vectors 
smaller. This requires a further two nested loops around the 
aerosol calculations: the outer loop for the rows in the sub-
domain and a second immediately nested inside the first for 
iterating over the number of segments on a row. 

This implementation limits the segments to be a factor of 
the number of columns in a row of computational space. In the 

 

               
Figure 1 DrHook timing information for (a) reference code (b) the development code 

 



case under investigation the row length is 12 and thus a value 
of 4 for the number of columns per segment will result in 3 
segments per row and is the same for all rows. It is expected 
that the optimum segment size will be less than the row length 
as the resolution of simulations increases. This 
implementation makes it straightforward to activate an 
OpenMP region as discussed later in this report. 

2) Segment size 
The whole simulation HPC job is configured with the 

UMUI (or Rose depending on the version of MetUM) where 
the number of columns per segment are set. This is read from 
a name list during the run and it is used to size the segments 
during the transformations within ukca_aero_ctl(). The 
inclusion of this new parameter required modification of those 
configuration tools. 

For this experiment the case was repeatedly run for 
variations in the choice of number of columns per segment i.e. 
12, 6, 4, 3, 2 and 1. The most notable effect is that the time 
spent in UKCA_COAGWITHNUCL, the highest workload 
that was identified in the reference runs, is halved as shown in 
figure 2. Some of the functions demonstrate very little 
variation of the time for execution due to the dominant 
processes not being directly related to the number of grid-
boxes being processed. Only 12 functions are shown and these 
occur below the aerosol interface and contribute a significant 
amount to the runtime. Many of the other (approximately 70) 
subroutines account for less than a second each, some are too 
short to register a time and assigned “zero”. There are two 
other subroutines outside the segmenting region that are 

significant, of the order of 25seconds each for the reference 
run. They are not modified by this work but appear in the 
overall results. 

C. OpenMP Investigation 

The investigation of the OpenMP implementation is 
focused on the optimal 4 columns per segment i.e. only 3 
segments per row, which equates to 54 segments. The fact that 
there are two do loops to count those segments is slightly 
inhibiting as the parallel loop is applied to the outer loop only 
(over rows) so there are only 18 levels of potential parallelism. 
The work presented here is for applying OpenMP to only the 
outer loop over rows.  

1) Number of threads 
There is already a certain amount of MetUM within 

OpenMP parallel regions and it is seen to run faster with more 
threads. Some of the speed-up will also come from under 
populating the nodes as was seen in previous work with 
GLOMAP in TOMCAT [5, 6]. The under population refers to 
the spreading out of the MPI tasks to allow CPUs for the 
OpenMP threads to be “close” to the MPI task that spawns 
them.  

The four groupings in Figure 3 have been collated to 
demonstrate the benefits from the development. Within each 
group is the effect of varying the number of threads with the 
first column of each group being for the reference run with a 
single thread. The first group is all of the MetUM including 
the UKCA work, i.e. the total wall time for the run and is 
likely of most interest to the scientist using the software. The 

TABLE I.  EFFECT OF OPENMP ON UKCA DATA FOR FIGURE 3  

 Ref 1 thread Dev 1 thread Dev 2 thread Dev 3 thread Dev 4 thread Dev 8 thread 

Wall time 584.66 518.15 345.88 287.45 271.90 233.60 

All UKCA 193.61 124.99 76.61 59.62 53.50 45.08 

Parallel UKCA 149.18 82.63 41.25 27.68 20.81 13.72 

Serial UKCA 43.17 42.29 35.36 31.94 32.69 31.36 

Percentage in UKCA 33.11 24.12 22.15 20.74 19.67 19.29 

 

Figure 3: Reducing segment size for top 12 UKCA functions 
Figure 2 Effect of OpenMP on UKCA highlighting 

contributions from parallel and serial regions 



second group is for all of the UKCA functions within a 
simulation – this group is active for a climate run and 
constitutes an “overhead” for the aerosol calculations. The 
third group is the components of UKCA that are within 
OpenMP parallel regions. The fourth group is the parts of 
UKCA that are not in any OpenMP region. The original 
sentiment from users that there is a large overhead for using 
UKCA is demonstrated as even with the choice of hourly 
aerosol processing it accounts for 33% of the run (Table 1). 
Now that segmenting and OpenMP have been implemented it 
can be seen that even for single threaded operation the data 
restructuring has reduced this to be only 24% of the run. 

It is clear from Figure 3 that there is still some 
development needed to improve the performance of UKCA 
by locating the remaining serial parts of UKCA and 
implementing an OpenMP region around them. A few of the 
UKCA routines are separate from the OpenMP parallel region 
that was introduced by this work but they lay within a parallel 
region elsewhere in MetUM. Their times have been 
accumulated with the UKCA functions in the newly 
implemented parallel region. 

2) Choice of scheduling 
When implementing an OpenMP parallel region the first 

approach is to determine which do-loops will be parallel 
enabled. Within the OpenMP standard there is a specification 
of the options that can be applied to a do-loop. Apart from 
which data are shared and which data are private, the manner 
in which the iterations are distributed can be assigned to be 
static or dynamic [3]. For a static schedule the iterations are 
divided equally among the threads in “chunks”. For example, 
a 3 thread run for this case would assign the first 6 rows to 
thread 0, the next 6 rows to thread 1 and then the final 6 rows 
to thread 2. This is indiscriminate and does not account for 
any difference in the time required for each iteration (row).  

A dynamic schedule will assign the first (number of 
threads x OpenMP chunk size) iterations as one segment to 
each thread and then when a thread becomes available the next 
chunk of iterations are handed to it. If any chunk of work takes 
more time then it will not hold up the other threads (except 
possibly one of the final “number of threads” chunks is the 
difficult one.) 

Again an optimal segment size of 4 columns per segment 
was chosen the chunk size was left as the default of 1. The 
case was run several times varying the number of threads i.e. 
2, 4 and 8. One set of runs was performed using the 
SCHEDULE (STATIC) clause and the second series ran with 
SCHEDULE (DYNAMIC) clause.  

In figure 4 the DYNAMIC schedule is seen to have a 
detrimental effect on the low thread (2) count compared to the 
STATIC clause. It appears that the higher thread count (8) 
benefits from the dynamic scheduling. This is likely due to the 
fact that the 18 rows are not a multiple of 8. In practice, the 
static scheduler decided to use only 6 threads and divide the 
work evenly. This was confirmed during examination of the 
log files where each thread reports the iteration with which it 
is working. It is also likely that some of the rows require 
different amounts of work so that the dynamic method has the 
opportunity to assign a new tranche of work to the next 
available thread. The impact of this indirect load balancing is 

beneficial for the case where there are more threads than tasks, 
it was confirmed that all threads did some work when 
DYNAMIC scheduling was active for the 8-thread run. 

As normal working practice is to use a small number of 
threads it is recommended that in this parallel region STATIC 
scheduling is applied until more of MetUM is OpenMP 
parallel enabled. 

3) COLLAPSE clause to merge nested do loops  
The methodology as explained above was the most 

straightforward to implement of several possible methods. 
The inherent limitation to segments being a factor of the row 
length could be alleviated by merging the inner loop over 
segments with the outer loop over rows such that the OpenMP 
scheduler sees the total number of segments. A simple way of 
achieving this is to add the COLLAPSE clause to the OpenMP 
loop directive. Unfortunately the version of compiler (8.3.4) 
cannot merge the loops where the limits are set during the run. 
This work will be done as a new compiler becomes available. 

An alternative is to implement the more complex coding 
solution of choosing a segment size and extracting the 3D data 
into these arbitrary segments within a single loop structure 
that iterates over all segments rather than restricting it to 
segments per rows. This is a possible development direction 
but brings with it further maintenance and clarity issues.  

IV. SUMMARY 

The well-known cache-blocking concept has been applied 
to the MetUM around the calculations for aerosol. Benefits 
were seen in the form of reduced time for calculation of the 
aerosols. In turn the “block” loop was used as the level of 
parallelism for OpenMP. This is not a traditional tiling of 
nested do loops as the loop is applied at such a high level as 
to encompass many subroutines (almost all) that do the 
aerosol calculations. 

The scaling for the aerosol section is close to ideal. The 
overall scaling effect of OpenMP on the reference code and 
the development code can be seen in figure 5. The 
improvement of the development code over the reference code 
for 1, 2 and 4 threads is 11%, 14% and 17% and is a 
combination of segmented approach and introducing OpenMP 
around the aerosol calculations.  

Figure 4 Comparison of STATIC and DYNAMIC 

OpenMP schedules for 2, 4 and 8 threads. 



 
TABLE 2: DATA FOR FIGURE 5: OVERALL EFFECT OF CACHE-BLOCKING 

AND OPENMP 

 1 thread 2 threads 4 threads 

Ref Code wall time 584.89 401.47 328.33 

Dev Code wall time 518.15 345.88 271.90 

 
An additional benefit is that it has also made better use of 

reserved resource when using OpenMP. Current working 
practice is to select a small number of OpenMP threads as 
those additional cores are idle during the aerosol calculation. 
Activating OpenMP around the aerosol at the high level 
interface results in further reduction in the cost of the aerosol 
calculations. This complements other work elsewhere in the 
MetUM where OpenMP is being extended to apply to more of 
the atmosphere calculations. 

V. PLANNING FURTHER WORK 

Currently work is in progress to take the successful branch 
development and merge it with the trunk core MetUM. This is 

a significant software engineering exercise because the quality 
assurance criteria have to be maintained. After a development 
has been validated, a test suite is run and any errors 
investigated and corrected. 

At the outset of this project the whole of UKCA has been 
identified as needing performance enhancement. The aerosol 
processes were chosen as a starting point with the chemistry 
to follow over the next 12 months. There exist structures in 
the chemistry calculations where the atmosphere is treated in 
a layer by layer fashion. These are arbitrary as the solver will 
work on individual computational boxes in a similar fashion 
to the aerosol processes. The longer view is to deal with 
chemistry in a column fashion and that work will examine the 
feasibility of introducing columns at the outset or to focus on 
applying OpenMP to the existing layering. 
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