
Collective I/O Optimizations for Adaptive Mesh
Refinement Data Writes on Lustre File System

Dharshi Devendran, Suren Byna, Bin Dong, Brian van Straalen, Hans
Johansen, Noel Keen, Nagiza Samatova*

Lawrence Berkeley National Laboratory
* North Carolina State University

Cray User Group 2016

May 10, 2016

Overview

•  Complex I/O patterns result in poor performance
•  Adaptive Mesh Refinement (AMR) I/O is complex
•  Poor I/O stalls AMR simulations
•  Contributions of this paper
–  Identification of AMR I/O bottleneck in the Chombo library
–  Collective buffering optimizations

•  MPI-IO Collective buffering
•  Novel Aggregated Collective Buffering (ACB) strategy

–  I/O performance improvement with ACB

2

§  Simulations
–  Multi-physics (FLASH) – 10 PB
–  Cosmology (NyX) – 10 PB
–  Plasma physics (VPIC) – 1 PB

§  Experimental and Observational
data
–  High energy physics (LHC) – 100 PB
–  Cosmology (LSST) – 60 PB
–  Genomics – 100 TB to 1 PB

§  Scientific applications rely on
efficient access to data

3

Data-driven science

LHC

LSST

Genomics

Climate
Dycore

NyX

VPIC

Background – Adaptive Mesh Refinement (AMR)
Dynamically adapts the spatial resolution of geometric meshes
•  Improved efficiency of computational resources while meeting

desirable error levels

Block-structured AMR
•  A hierarchy of levels of resolutions
•  Boxes/Patches: non-overlapping, logically-rectangular regions

4

Sample AMR data structure

1015 cells
vs.
130,000 cells

AMR use cases – Ice sheet simulations

5

•  BISICLES is an AMR ice sheet model aimed at large
(continental)-scale ice sheets, and is built on the Chombo
framework

•  Projections of future sea level rise resulting from impacts of
climate change on large ice sheets

Antarctica glacier,
surrounded by ocean
(dark blue).

A rectangular region
of ice (~30km x
26km in real size)
detaches from the
main shelf

AMR use cases – Climate simulations

6

•  The AMR Dycore is a high-accuracy AMR climate model
“dynamical core” based on Chombo

•  Significance: Identify atmospheric features (tropical
cyclones, atmospheric rivers, etc.), and track them in time
and at high resolution

Atmospheric River, fig from ESRL

A brief intro to Chombo

7

•  Software package for solving PDE-based physics models
on AMR grids at large scales

•  Utilities for simulating in domains with complex geometries,
or on mapped grids

Level 0

Level 1

Patches

Hierarchy

(A) (B) (C)

(A) An example of a space-time adaptive mesh refinement
calculation in a cubed sphere geometry, for Climate
applications. (B) The hierarchical levels of mesh refinement are
used to capture moving features (e.g., multiple overlapping
pressure waves). (C) Each level of refinement consists of a
group of patches, each contains multiple data points, and
each point belongs to a single patch. Tracked features can
span patches or multiple levels as they evolve in time.

A brief intro to Chombo, cont.

8

•  Implements block-structured AMR
–  Consists of hierarchy of uniform meshes, with resolution of 2

consecutive levels related by the refinement ratio
–  Each grid level divided into rectangular “boxes”

3 level AMR grid with 3
variables (u, v, p). The
refinement ratio is 2 in
each direction

Distribution of data in Chombo
applications

9

•  Boxes distributed across MPI processes to balance
loads across processes as much as possible
– Load for box is usually proportional to number of

points in a box

•  Typical load balancing procedure:
– Sort by Morton ordering (lists spatially adjacent

boxes together)
– Apply Kernighan-Lim algorithm to distribute boxes

•  Resulting distribution of boxes may appear random

Chombo’s I/O pattern

10

•  Boxes arranged in
lexicographic order in file

–  Lexicographic order: Box B0 <= Box B1
if lower left corner of B0 <= lower left
corner of B1 in grid

•  Processes write independently
to non-contiguous regions in
the file

•  Separate write for each box
•  Results in several small

independent write calls

Boxes distributed across MPI
processes to balance loads

Boxes in lexicographic order in file

Performance bottleneck with current
implementation

11

•  Separate write for each box results in several write calls
overall
– Large scale Chombo simulations can have ~105 boxes
– Large overhead for processing many write calls

•  Each call only writes small amount of data (~1-4 MB per
box)

•  Each call performs new seek to find file location for writing

Experimental Evaluation – Systems
•  NERSC Edison
– Cray XC30 supercomputer with Lustre file system
– The scratch2 file system has 96 OSTs with 72 GB/s

peak I/O bandwidth
•  4 OSTs per I/O server (OSS)

•  NERSC Cori (Phase 1)
–  Cray XC40 supercomputer with Lustre file system
–  248 OSTs with 744 GB/s peak I/O bandwidth

•  1 OST per I/O server (OSS)

12

Experimental Evaluation– Chombo I/O
Benchmark

13

•  Isolates Chombo’s write
functionality

•  Provides control over amount
of data written through a
replication factor parameter.

–  Parameter indicates number of
times to replicate unit grid in each
direction

–  In the experiments, we set this
replication factor to write out 61
GB, 494 GB, and 987 GB data
files

2 views (front and side) of one unit
of AMR grid used in experiments.
Grid has 3 levels. Refinement factor
between levels is 4 (in each
direction).

Darshan stats for existing I/O pattern

14

Darshan Counter Independent I/O

Number of MPI-
IO writes

115268

Number of
POSIX writes

115628

Most common
access size

4 M

Count of most
common access
size

115201

2nd most common
access size

272 bytes

Count of 2nd most
common access
size

15

Number and size of
writes determined by
number and size of
boxes (total number of
boxes = 115628, each
box ~ 4 MB)

Stats for run on Edison with 2304
processes (96 nodes).
File striped across 96 OSTs with stripe
size of 8 MB. 494 GB was written.

Aggregation with MPI-IO collective
buffering

15

•  Idea: aggregate contiguous data into buffers to
reduce number of write calls

•  Subset of MPI processes assigned to perform the
aggregation

•  CB2 mode of MPI-IO collective buffering optimizes
for the Lustre file system

Collective buffering I/O pattern

16

•  Aggregators (A0,…)
collect boxes and
reshuffle them into
buffers

•  Each process only sends
a single box in each
collective call
–  Each process can

contain several boxes,
resulting in many
collective write calls

Darshan stats for MPI-IO Collective
buffering

17

Darshan Counter Independent I/O Collective
buffering

Number of MPI-IO
writes

115268 119808

Number of POSIX
writes

115628 164270

Most common
access size

4 M 4 M

Count of most
common access
size

115201 42689

2nd most common
access size

272 bytes 8 M

Count of 2nd most
common access
size

15 4830

Get some larger
writes with collective
buffering

Number of CB aggregators =
number of OSTs = 96

Darshan stats for MPI-IO Collective
buffering

18

Darshan Counter Independent I/O Collective
buffering

Number of MPI-IO
writes

115268 119808

Number of POSIX
writes

115628 164270

Most common
access size

4 M 4 M

Count of most
common access
size

115201 42689

2nd most common
access size

272 bytes 8 M

Count of 2nd most
common access
size

15 4830

Still have many small
writes

Get some larger
writes with collective
buffering

Number of CB aggregators =
number of OSTs = 96

Aggregated Collective Buffering (ACB)

19

•  Aggregate all boxes
into one buffer on each
process

–  Number of boxes copied
into ACB buffer is a
parameter, which can be
tuned to balance
performance and memory
usage (future direction)

•  MPI-IO aggregators
reshuffle boxes for
large contiguous writes

Darshan stats for ACB

20

Darshan Counter Independent I/O Collective
buffering

ACB

Number of MPI-
IO writes

115268 119808 6912

Number of
POSIX writes

115628 164270 63241

Most common
access size

4 M 4 M 8 M

Count of most
common access
size

115201 42689 63177

2nd most common
access size

272 bytes 8 M 272 bytes

Count of 2nd most
common access
size

15 4830 16

ACB significantly
reduces number
of POSIX writes

Darshan stats for ACB

21

Darshan Counter Independent I/O Collective
buffering

ACB

Number of MPI-
IO writes

115268 119808 6912

Number of
POSIX writes

115628 164270 63241

Most common
access size

4 M 4 M 8 M

Count of most
common access
size

115201 42689 63177

2nd most common
access size

272 bytes 8 M 272 bytes

Count of 2nd most
common access
size

15 4830 16

ACB significantly
reduces number
of POSIX writes

Most writes are
relatively large

Performance on Edison

22

•  61 GB test: 576 procs (24 nodes), striped
across 24 OSTs with 4 MB stripe size

•  494 GB test: 2304 procs (96 nodes), striped
across 96 OSTs with 8 MB stripe size

•  987 GB test: 5760 procs (240 nodes), stripes
across 96 OSTs with 16 MB stripe size

•  ACB is 2.6x to 3.8x
faster than
independent I/O

•  ACB is 2x to 2.6x
faster than collective
buffering

•  Striping affects
performance of
collective buffering
on 987 GB test case

Performance on Cori

23

•  61 GB test: 576 procs (24 nodes), striped across 24
OSTs with 4 MB stripe size

•  494 GB test: 3072 procs (96 nodes), striped across 96
OSTs with 8 MB stripe size

•  987 GB test: 5856 procs (244 nodes), stripes across 244
OSTs with 16 MB stripe size

•  ACB is 5.7x to 9.6x
faster than
independent I/O

•  ACB is 1.6x to 1.8x
faster than collective
buffering

Evaluation with Lustre striping -
Edison

24

ACB is 2x to 3.4x faster than
independent I/O, and 2x to
2.6x faster than collective
buffering

Experiment specifics:
•  2304 procs (96 nodes)
•  494 GB file
•  Striped across 96 OSTs
•  Stripe size = 8 MB

Evaluation with Lustre striping - Cori

25

ACB is 3.9x to 9.1x faster than
independent I/O, and 1.5x to
1.8x faster than collective
buffering

Experiment specifics:
•  3072 procs (96 nodes)
•  494 GB file
•  Striped across 96 OSTs
•  Stripe size = 8 MB

Performance of BISICLES w/ ACB

26

•  Simulates evolution of Antarctic ice sheet over time
•  Solves nonlinear equation for ice velocity and advects the ice
•  Results in many boxes of varying sizes

•  Finest level contains 896 boxes; number of cells in a box ranges between
256 and 4096 cells; each process has at least one box; maximum
number of boxes on a process is 6; average number of boxes is 1.5

Antarctic ice-sheet velocity field. The inset shows the refined
meshes around the Pine Island Glacier in the Amundsen Sea
Embayment. Pine Island Glacier (PIG) is the single greatest
Antarctic contributor to sea level rise at the moment.

Performance of BISICLES w/ ACB, cont

27

Run on 576 procs (24 nodes) on Edison. Files
striped across 24 OSTs with stripe size of 4 MB.

•  For checkpoint files, ACB is
20X faster than independent
I/O, and 13X faster than
collective buffering

•  For plot files, ACB is 13X
faster than independent I/O,
and 6.4x faster than
collective buffering

Darshan analysis of BISICLES I/O w/ ACB

28

Ind I/O Coll I/O ACB

ACCESS SIZE 1 8736 5408 4 M

COUNT 1 4085 3182 477

ACCESS SIZE 2 5408 17920 272

COUNT 2 3229 3059 69

ACCESS SIZE 3 7680 19488 3848

COUNT 3 3080 2646 51

ACCESS SIZE 4 17920 7680 13160

COUNT 4 1333 1281 40

Ind I/O Coll I/O ACB

ACCESS SIZE 1 73440 73440 4 M

COUNT 1 1429 1529 322

ACCESS SIZE 2 204000 38880 272

COUNT 2 1378 1422 23

ACCESS SIZE 3 38880 204000 544

COUNT 3 1372 1298 13

ACCESS SIZE 4 300000 396000 40

COUNT 4 709 604 9

Top four write sizes (ACCESS SIZE) and corresponding counts from Darshan logs

Checkpoint file statistics Plot file statistics

•  Independent I/O and collective I/O perform several small writes,
especially for checkpoint files

•  ACB writes out large chunks of data

Conclusions and Future Work

29

•  ACB issues fewer write calls than collective buffering and
independent I/O
–  Each ACB write call sends relatively large chunks of data

•  ACB speeds up independent I/O implementation by 2x to
9.1x, and collective buffering by 1.5x to 2.6x

•  Apply and analyze ACB performance on EBChombo and
cubed sphere climate application (CAMR)

•  Eliminate extra buffer copy in ACB, and use unions of
hyperslabs to specify locations of boxes in memory

•  Explore ACB performance on burst buffers

Thanks!

Contact:

Suren Byna [SByna@lbl.gov]
Nagiza Samatova [nagiza.samatova@gmail.com]

Projects: In situ AMR Indexing and Querying
 ExaHDF5

Thanks to DOE ASCR Program Manager Dr. Lucy Nowell

30

