
Exploiting Thread Parallelism for Ocean Modeling
on Cray XC Supercomputers

Abhinav Sarje
asarje @ lbl.gov

Cray Users Group Meeting (CUG)
May 2016

Abhinav Sarje Lawrence Berkeley National Laboratory

Douglas Jacobsen Los Alamos National Laboratory

Samuel Williams Lawrence Berkeley National Laboratory

Todd Ringler Los Alamos National Laboratory

Leonid Oliker Lawrence Berkeley National Laboratory

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Ocean Modeling with MPAS-Ocean

• MPAS = Model for Prediction
Across Scales. [LANL/NCAR]

• A multiscale method for
simulating Earth’s oceans.

• 2D Voronoi tessellation-based
variable resolution mesh
(SCVT).

• Structured vertical columns in
third dimension represent
ocean depths.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Ocean Modeling with MPAS-Ocean

Variable Resolution Mesh Mesh Elements

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Ocean Modeling with MPAS-Ocean: Why Unstructured Meshes?

• Variable resolutions with any given density function.

• Straightforward mapping to flat 2D with effectively no distortions.

• Quasi-uniform (locally homogeneous) coverage of spherical surfaces.

• Smooth resolution transition regions.

• Preserve symmetry/isotropic nature of a spherical surface.

• Naturally allows unstructured discontinuities.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Background & Motivations

• Unstructured meshes in parallel
environment.

• Challenging to achieve uniform
partitioning unlike structured grids.

• Load balance depends on
partitioning quality and element
distributions.

• Data exchange between processes
through deep halo regions.

• Threading motivated by increasing
on-node core counts, with limited
available memory per core.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Background & Motivations

• Unstructured meshes in parallel
environment.

• Challenging to achieve uniform
partitioning unlike structured grids.

• Load balance depends on
partitioning quality and element
distributions.

• Data exchange between processes
through deep halo regions.

• Threading motivated by increasing
on-node core counts, with limited
available memory per core.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Background & Motivations

• Unstructured meshes in parallel
environment.

• Challenging to achieve uniform
partitioning unlike structured grids.

• Load balance depends on
partitioning quality and element
distributions.

• Data exchange between processes
through deep halo regions.

• Threading motivated by increasing
on-node core counts, with limited
available memory per core.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Background & Motivations

• Unstructured meshes in parallel
environment.

• Challenging to achieve uniform
partitioning unlike structured grids.

• Load balance depends on
partitioning quality and element
distributions.

• Data exchange between processes
through deep halo regions.

• Threading motivated by increasing
on-node core counts, with limited
available memory per core.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Background & Motivations

• Unstructured meshes in parallel
environment.

• Challenging to achieve uniform
partitioning unlike structured grids.

• Load balance depends on
partitioning quality and element
distributions.

• Data exchange between processes
through deep halo regions.

• Threading motivated by increasing
on-node core counts, with limited
available memory per core.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Background & Motivations

• Unstructured meshes in parallel
environment.

• Challenging to achieve uniform
partitioning unlike structured grids.

• Load balance depends on
partitioning quality and element
distributions.

• Data exchange between processes
through deep halo regions.

• Threading motivated by increasing
on-node core counts, with limited
available memory per core.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Background & Motivations

• Unstructured meshes in parallel
environment.

• Challenging to achieve uniform
partitioning unlike structured grids.

• Load balance depends on
partitioning quality and element
distributions.

• Data exchange between processes
through deep halo regions.

• Threading motivated by increasing
on-node core counts, with limited
available memory per core.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Background & Motivations

• Unstructured meshes in parallel
environment.

• Challenging to achieve uniform
partitioning unlike structured grids.

• Load balance depends on
partitioning quality and element
distributions.

• Data exchange between processes
through deep halo regions.

• Threading motivated by increasing
on-node core counts, with limited
available memory per core.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Background & Motivations

• Unstructured meshes in parallel
environment.

• Challenging to achieve uniform
partitioning unlike structured grids.

• Load balance depends on
partitioning quality and element
distributions.

• Data exchange between processes
through deep halo regions.

• Threading motivated by increasing
on-node core counts, with limited
available memory per core.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Background & Motivations

• Structured vertical dimension for ocean depth.

• Variable depth but constant sized buffers with maximum depth!

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Developing a Hybrid MPI + OpenMP Implementation

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Computational Environment

• Cray XC40: Cori Phase 1
• 1,630 dual-socket compute nodes with Cray Aries interconnect
• 16 core Intel Haswell processors
• 32 cores per node
• 128 GB DRAM per node

• Meshes:
1 60 kms uniform resolution:

114,539 cells, maximum vertical depth of 40.
2 60 kms to 30 kms variable resolution:

234,095 cells, maximum vertical depth of 60.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Performance Plots and Keys

MPI-o
nly

32x1
16x2

8x4
4x8

2x16

MPI Procs. × # OMP Threads

0

2

4

6

8

10
P
e
rf

o
rm

a
n
ce

 M
e
tr

ic

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Performance Plots and Keys

Configurations = MPI procs. per node × OMP threads per MPI

Configuration Decreasing Increasing

1 32 × 1

2 16 × 2

3 8 × 4

4 4 × 8

5 2 × 16

6 1 × 32

• Number of MPI processes
per node

• Total halo region volume

• Communication (number
and volume)

• Extra computations

• Memory requirements

• Inter-process load imbalance

• Number of threads per
process

• Amount of data sharing

• Threading overhead

• Inter-thread load imbalance

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Threading Granularity: Block-Level

• Minimal implementation
disruption to the code

• Simple intra-node
halo-exchanges across threads
without need for explicit
communication

• Possibly insufficient parallelism

• Intra-block halo regions
consume memory and require
additional computations

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Threading Granularity: Block-Level

• Minimal implementation
disruption to the code

• Simple intra-node
halo-exchanges across threads
without need for explicit
communication

• Possibly insufficient parallelism

• Intra-block halo regions
consume memory and require
additional computations

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Threading Granularity: Block-Level

• Minimal implementation
disruption to the code

• Simple intra-node
halo-exchanges across threads
without need for explicit
communication

• Possibly insufficient parallelism

• Intra-block halo regions
consume memory and require
additional computations

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Threading Granularity: Element-Level

• Significant implementation
disruption to the code

• Eliminates intra-process
halo-exchanges and halo regions

• Computation and
communication efficient

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Threading Granularity: Element-Level

• Significant implementation
disruption to the code

• Eliminates intra-process
halo-exchanges and halo regions

• Computation and
communication efficient

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Threading Granularity: Element-Level

• Significant implementation
disruption to the code

• Eliminates intra-process
halo-exchanges and halo regions

• Computation and
communication efficient

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Element Distributions across Threads

Goal: What is the best approach to distribute mesh elements among threads?

1 Runtime distribution with explicit OpenMP loop directives.

2 Precomputed distributions.
• Naive/Static.
• Depth-Aware.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Element Distributions across Threads

Goal: What is the best approach to distribute mesh elements among threads?

1 Runtime distribution with explicit OpenMP loop directives.

2 Precomputed distributions.
• Naive/Static.
• Depth-Aware.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Element Distributions across Threads

Goal: What is the best approach to distribute mesh elements among threads?

1 Runtime distribution with explicit OpenMP loop directives.

2 Precomputed distributions.
• Naive/Static.
• Depth-Aware.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Element Distributions across Threads

32x1 16x2 8x4 4x8 2x16

MPI Procs. × # OMP Threads

0

20

40

60

80

100

120

140

T
im

e
 [

s]
OpenMP Static Scheduling

Pre-computed Static

Pre-computed Depth-aware

Result: Explicit OpenMP loop directives.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Element Distributions across Threads

32x1 16x2 8x4 4x8 2x16

MPI Procs. × # OMP Threads

0

20

40

60

80

100

120

140

T
im

e
 [

s]
OpenMP Static Scheduling

Pre-computed Static

Pre-computed Depth-aware

Result: Explicit OpenMP loop directives.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Thread Scaling Bottlenecks

MPI-only 32x1 16x2 8x4 4x8 2x16

MPI Procs. × # OMP Threads

10-1

100

101

102
T
im

e
 [

s]
btr_se_subcycle_vel_pred

btr_se_subcycle_acc

btr_se_subcycle_ssh_pred

btr_se_subcycle_vel_corr

btr se subcycle loop

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Memory Allocation and Initialization

Goal: Can the Amdahl bottlenecks be minimized?

1 Baseline code: Single thread for memory allocation and initialization.

2 Optimized code: All available threads for initialization.

3 Plus, reordered allocation and initialization events.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Memory Allocation and Initialization

32x1 16x2 8x4 4x8 2x16

MPI Procs. × # OMP Threads

0

20

40

60

80

100

120

140

S
im

u
la

ti
o
n
 T

im
e
 [

s]

Original

Threaded Initialization

32x1 16x2 8x4 4x8 2x16

MPI Procs. × # OMP Threads

1.0

1.5

2.0

2.5

S
p
e
e
d
u
p
 o

v
e
r

O
ri

g
in

a
l

Original

Threaded Initialization

Result: Multi-threaded memory management.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

OpenMP Scheduling Policies

MPI-o
nly

32x1
16x2

8x4
4x8

2x16

MPI Procs. × # OMP Threads

101

102

103

104

S
im

u
la

ti
o
n
 T

im
e
 [

s]
static

static,100

static,10

static,1

dynamic

dynamic,10

guided

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

OpenMP Scheduling Policies

32x1 16x2 8x4 4x8 2x16

MPI Procs. × # OMP Threads

101

102

103

104

C
o
m

p
u
te

 T
im

e
 [

s]

static

static,100

static,10

static,1

dynamic

dynamic,10

guided

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

OpenMP Scheduling Policies

32x1 16x2 8x4 4x8 2x16

MPI Procs. × # OMP Threads

101

102

103

104

C
o
m

p
u
te

 T
im

e
 [

s]

static

static,100

static,10

static,1

dynamic

dynamic,10

guided

32x1 16x2 8x4 4x8 2x16

MPI Procs. × # OMP Threads

10-1

100

101

M
P
I
T
im

e
 [

s]

static

static,100

static,10

static,1

dynamic

dynamic,10

guided

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

OpenMP Scheduling Policies

MPI-only32x1 16x2 8x4 4x8 2x16

static

static,100

static,10

static,1

dynamic

dynamic,10

guided

Nodes = 1

MPI-only32x1 16x2 8x4 4x8 2x16

Nodes = 2

MPI-only32x1 16x2 8x4 4x8 2x16

Nodes = 4

MPI-only32x1 16x2 8x4 4x8 2x16

Nodes = 8

101

102

103

S
im

u
la

ti
o
n
 T

im
e
 [

s]

Result: Select static or guided scheduling.

Avoid small chunk sizes.

Balance number of MPI processes and threads: 16 × 2 or 8 × 4.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Vectorization?

Goal: Can we take advantage of the vector units?

1 None
−no − vec, −no − simd

2 Compiler auto
−vec, −simd

3 OpenMP SIMD only
−no − vec, −simd

4 Full
−vec, −simd

5 Full with aligned memory
−align, −vec, −simd

Result: Highly memory-bound, making vectorization unnecessary.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Vectorization?

Goal: Can we take advantage of the vector units?

1 None
−no − vec, −no − simd

2 Compiler auto
−vec, −simd

3 OpenMP SIMD only
−no − vec, −simd

4 Full
−vec, −simd

5 Full with aligned memory
−align, −vec, −simd

32x1
0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

S
p
e
e
d
u
p
 o

v
e
r

N
o
 V

e
ct

o
ri

za
ti

o
n Compiler Auto-vectorization

OpenMP SIMD Directives

Compiler Auto and OpenMP SIMD vectorization

Full Vectorization + Aligned Memory

Result: Highly memory-bound, making vectorization unnecessary.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Roofline Performance Model

10-3 10-2 10-1 100 101 102 103

Arithemetic Intensity (FLOPs/Byte)

100

101

102

103

G
FL

O
P
s/

se
c

L1
 C

ac
he

D
RA

M

Theoretical Peak

No Vectorization

Empirical Peak

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Roofline Performance Model

10-3 10-2 10-1 100 101 102 103

Arithemetic Intensity (FLOPs/Byte)

100

101

102

103

G
FL

O
P
s/

se
c

L1
 C

ac
he

D
RA

M

Theoretical Peak

No Vectorization

Empirical Peak

MPAS-O Simulation/L1

MPAS-O Simulation/DRAM

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Strong Scaling: Performance
Goal: What is the optimal concurrency?

32 64
128

256
512

1024
2048

4096
8192

16384

Number of Cores

101

102

103

S
im

u
la

ti
o
n
 T

im
e
 [

s]
MPI-only

32x1

Result: 3× speedup for best hybrid (n = 64, 8 × 4) w.r.t. best MPI-only (n = 16) runs.
2× speedup for best hybrid (8 × 4) w.r.t. best MPI-only runs at n = 16.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Strong Scaling: Performance
Goal: What is the optimal concurrency?

32 64
128

256
512

1024
2048

4096
8192

16384

Number of Cores

101

102

103

S
im

u
la

ti
o
n
 T

im
e
 [

s]
MPI-only

32x1

16x2

Result: 3× speedup for best hybrid (n = 64, 8 × 4) w.r.t. best MPI-only (n = 16) runs.
2× speedup for best hybrid (8 × 4) w.r.t. best MPI-only runs at n = 16.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Strong Scaling: Performance
Goal: What is the optimal concurrency?

32 64
128

256
512

1024
2048

4096
8192

16384

Number of Cores

101

102

103

S
im

u
la

ti
o
n
 T

im
e
 [

s]
MPI-only

32x1

16x2

8x4

Result: 3× speedup for best hybrid (n = 64, 8 × 4) w.r.t. best MPI-only (n = 16) runs.
2× speedup for best hybrid (8 × 4) w.r.t. best MPI-only runs at n = 16.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Strong Scaling: Performance
Goal: What is the optimal concurrency?

32 64
128

256
512

1024
2048

4096
8192

16384

Number of Cores

101

102

103

S
im

u
la

ti
o
n
 T

im
e
 [

s]
MPI-only

32x1

16x2

8x4

4x8

Result: 3× speedup for best hybrid (n = 64, 8 × 4) w.r.t. best MPI-only (n = 16) runs.
2× speedup for best hybrid (8 × 4) w.r.t. best MPI-only runs at n = 16.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Strong Scaling: Performance
Goal: What is the optimal concurrency?

32 64
128

256
512

1024
2048

4096
8192

16384

Number of Cores

101

102

103

S
im

u
la

ti
o
n
 T

im
e
 [

s]
MPI-only

32x1

16x2

8x4

4x8

2x16

Result: 3× speedup for best hybrid (n = 64, 8 × 4) w.r.t. best MPI-only (n = 16) runs.
2× speedup for best hybrid (8 × 4) w.r.t. best MPI-only runs at n = 16.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Strong Scaling: Memory Footprint

32 64
128

256
512

1024
2048

4096
8192

16384

Number of Cores

102

103

104

105

V
m

R
S
S
 P

e
r

N
o
d
e
 [

M
B

]

MPI-only

32x1

16x2

8x4

4x8

2x16

Minimum memory footprint per process ≈ 250 MB

The working set can possibly completely fit in the HBM on KNL.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

End Notes

• Threaded buffer initialization necessary. Observed up to 2.5× speedup on a
single node.

• Thread scheduling with larger chunk sizes, such as default static and guided
policies, perform best with MPAS-Ocean. Single element chunk size degrades
performance by up to an order of magnitude.

• Well balanced number of MPI processes and OpenMP threads (e.g. 8×4) showed
best performance.

• Highly irregular memory accesses make depth-awareness redundant.

• Also, being memory bound, vectorization has no benefit.

• Hybrid MPI+OpenMP implementation improves strong scaling at high
concurrencies w.r.t. MPI-only implementation. Up to 3× improvement observed
for best runs.

• A minimum memory of 250 MB per process needed. Can take advantage of any
available HBW memories in upcoming architectures, potentially providing
significant performance improvement.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

End Notes

• Threaded buffer initialization necessary. Observed up to 2.5× speedup on a
single node.

• Thread scheduling with larger chunk sizes, such as default static and guided
policies, perform best with MPAS-Ocean. Single element chunk size degrades
performance by up to an order of magnitude.

• Well balanced number of MPI processes and OpenMP threads (e.g. 8×4) showed
best performance.

• Highly irregular memory accesses make depth-awareness redundant.

• Also, being memory bound, vectorization has no benefit.

• Hybrid MPI+OpenMP implementation improves strong scaling at high
concurrencies w.r.t. MPI-only implementation. Up to 3× improvement observed
for best runs.

• A minimum memory of 250 MB per process needed. Can take advantage of any
available HBW memories in upcoming architectures, potentially providing
significant performance improvement.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

End Notes

• Threaded buffer initialization necessary. Observed up to 2.5× speedup on a
single node.

• Thread scheduling with larger chunk sizes, such as default static and guided
policies, perform best with MPAS-Ocean. Single element chunk size degrades
performance by up to an order of magnitude.

• Well balanced number of MPI processes and OpenMP threads (e.g. 8×4) showed
best performance.

• Highly irregular memory accesses make depth-awareness redundant.

• Also, being memory bound, vectorization has no benefit.

• Hybrid MPI+OpenMP implementation improves strong scaling at high
concurrencies w.r.t. MPI-only implementation. Up to 3× improvement observed
for best runs.

• A minimum memory of 250 MB per process needed. Can take advantage of any
available HBW memories in upcoming architectures, potentially providing
significant performance improvement.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

End Notes

• Threaded buffer initialization necessary. Observed up to 2.5× speedup on a
single node.

• Thread scheduling with larger chunk sizes, such as default static and guided
policies, perform best with MPAS-Ocean. Single element chunk size degrades
performance by up to an order of magnitude.

• Well balanced number of MPI processes and OpenMP threads (e.g. 8×4) showed
best performance.

• Highly irregular memory accesses make depth-awareness redundant.

• Also, being memory bound, vectorization has no benefit.

• Hybrid MPI+OpenMP implementation improves strong scaling at high
concurrencies w.r.t. MPI-only implementation. Up to 3× improvement observed
for best runs.

• A minimum memory of 250 MB per process needed. Can take advantage of any
available HBW memories in upcoming architectures, potentially providing
significant performance improvement.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

End Notes

• Threaded buffer initialization necessary. Observed up to 2.5× speedup on a
single node.

• Thread scheduling with larger chunk sizes, such as default static and guided
policies, perform best with MPAS-Ocean. Single element chunk size degrades
performance by up to an order of magnitude.

• Well balanced number of MPI processes and OpenMP threads (e.g. 8×4) showed
best performance.

• Highly irregular memory accesses make depth-awareness redundant.

• Also, being memory bound, vectorization has no benefit.

• Hybrid MPI+OpenMP implementation improves strong scaling at high
concurrencies w.r.t. MPI-only implementation. Up to 3× improvement observed
for best runs.

• A minimum memory of 250 MB per process needed. Can take advantage of any
available HBW memories in upcoming architectures, potentially providing
significant performance improvement.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

End Notes

• Threaded buffer initialization necessary. Observed up to 2.5× speedup on a
single node.

• Thread scheduling with larger chunk sizes, such as default static and guided
policies, perform best with MPAS-Ocean. Single element chunk size degrades
performance by up to an order of magnitude.

• Well balanced number of MPI processes and OpenMP threads (e.g. 8×4) showed
best performance.

• Highly irregular memory accesses make depth-awareness redundant.

• Also, being memory bound, vectorization has no benefit.

• Hybrid MPI+OpenMP implementation improves strong scaling at high
concurrencies w.r.t. MPI-only implementation. Up to 3× improvement observed
for best runs.

• A minimum memory of 250 MB per process needed. Can take advantage of any
available HBW memories in upcoming architectures, potentially providing
significant performance improvement.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

End Notes

• Threaded buffer initialization necessary. Observed up to 2.5× speedup on a
single node.

• Thread scheduling with larger chunk sizes, such as default static and guided
policies, perform best with MPAS-Ocean. Single element chunk size degrades
performance by up to an order of magnitude.

• Well balanced number of MPI processes and OpenMP threads (e.g. 8×4) showed
best performance.

• Highly irregular memory accesses make depth-awareness redundant.

• Also, being memory bound, vectorization has no benefit.

• Hybrid MPI+OpenMP implementation improves strong scaling at high
concurrencies w.r.t. MPI-only implementation. Up to 3× improvement observed
for best runs.

• A minimum memory of 250 MB per process needed. Can take advantage of any
available HBW memories in upcoming architectures, potentially providing
significant performance improvement.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Acknowledgements

• Authors from LBNL were supported by U.S. Department of Energy
Office of Science’s Advanced Scientific Computing Research program
under contract number DE-AC02-05CH11231.

• Authors from LANL were supported by U.S. Department of Energy
Office of Science’s Biological and Environmental Research program.

• Resources at NERSC were used, supported by DOE Office of Science
under Contract No. DE-AC02-05CH11231.

Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Thank you!

	Introduction
	Author List
	Introduction

	Threading
	System and Data
	Performance Plots and Keys

	Distributions
	Threading Granularity
	Element Distributions

	Initialization
	Threading Memory Initialization
	Performance with Threaded Initializations

	Scheduling
	OpenMP Scheduling Policies
	Summary

	Vectorization
	Vectorization

	Performance Model
	Roofline Modeling

	Scaling
	Strong Scaling
	Memory Usage

	End Notes
	Conclusions and Discussions
	Acknowledgements
	Thanks

