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Ocean Modeling with MPAS-Ocean

• MPAS = Model for Prediction
Across Scales. [LANL/NCAR]

• A multiscale method for
simulating Earth’s oceans.

• 2D Voronoi tessellation-based
variable resolution mesh
(SCVT).

• Structured vertical columns in
third dimension represent
ocean depths.
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Ocean Modeling with MPAS-Ocean

Variable Resolution Mesh Mesh Elements
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Ocean Modeling with MPAS-Ocean: Why Unstructured Meshes?

• Variable resolutions with any given density function.

• Straightforward mapping to flat 2D with effectively no distortions.

• Quasi-uniform (locally homogeneous) coverage of spherical surfaces.

• Smooth resolution transition regions.

• Preserve symmetry/isotropic nature of a spherical surface.

• Naturally allows unstructured discontinuities.



Introduction Threading Distributions Initialization Scheduling Vectorization Performance Model Scaling End Notes

Background & Motivations

• Unstructured meshes in parallel
environment.

• Challenging to achieve uniform
partitioning unlike structured grids.

• Load balance depends on
partitioning quality and element
distributions.

• Data exchange between processes
through deep halo regions.

• Threading motivated by increasing
on-node core counts, with limited
available memory per core.
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Background & Motivations

• Structured vertical dimension for ocean depth.

• Variable depth but constant sized buffers with maximum depth!
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Developing a Hybrid MPI + OpenMP Implementation
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Computational Environment

• Cray XC40: Cori Phase 1
• 1,630 dual-socket compute nodes with Cray Aries interconnect
• 16 core Intel Haswell processors
• 32 cores per node
• 128 GB DRAM per node

• Meshes:
1 60 kms uniform resolution:

114,539 cells, maximum vertical depth of 40.
2 60 kms to 30 kms variable resolution:

234,095 cells, maximum vertical depth of 60.
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Performance Plots and Keys
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Performance Plots and Keys

Configurations = MPI procs. per node × OMP threads per MPI

Configuration Decreasing Increasing

1 32 × 1

2 16 × 2

3 8 × 4

4 4 × 8

5 2 × 16

6 1 × 32

• Number of MPI processes
per node

• Total halo region volume

• Communication (number
and volume)

• Extra computations

• Memory requirements

• Inter-process load imbalance

• Number of threads per
process

• Amount of data sharing

• Threading overhead

• Inter-thread load imbalance
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Threading Granularity: Block-Level

• Minimal implementation
disruption to the code

• Simple intra-node
halo-exchanges across threads
without need for explicit
communication

• Possibly insufficient parallelism

• Intra-block halo regions
consume memory and require
additional computations
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Threading Granularity: Element-Level

• Significant implementation
disruption to the code

• Eliminates intra-process
halo-exchanges and halo regions

• Computation and
communication efficient
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Element Distributions across Threads

Goal: What is the best approach to distribute mesh elements among threads?

1 Runtime distribution with explicit OpenMP loop directives.

2 Precomputed distributions.
• Naive/Static.
• Depth-Aware.
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Element Distributions across Threads
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Result: Explicit OpenMP loop directives.
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Thread Scaling Bottlenecks
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Memory Allocation and Initialization

Goal: Can the Amdahl bottlenecks be minimized?

1 Baseline code: Single thread for memory allocation and initialization.

2 Optimized code: All available threads for initialization.

3 Plus, reordered allocation and initialization events.
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Memory Allocation and Initialization
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OpenMP Scheduling Policies
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OpenMP Scheduling Policies
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Result: Select static or guided scheduling.

Avoid small chunk sizes.

Balance number of MPI processes and threads: 16 × 2 or 8 × 4.
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Vectorization?

Goal: Can we take advantage of the vector units?

1 None
−no − vec, −no − simd

2 Compiler auto
−vec, −simd

3 OpenMP SIMD only
−no − vec, −simd

4 Full
−vec, −simd

5 Full with aligned memory
−align, −vec, −simd

Result: Highly memory-bound, making vectorization unnecessary.
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Roofline Performance Model
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Strong Scaling: Performance
Goal: What is the optimal concurrency?
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Result: 3× speedup for best hybrid (n = 64, 8 × 4) w.r.t. best MPI-only (n = 16) runs.
2× speedup for best hybrid (8 × 4) w.r.t. best MPI-only runs at n = 16.
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Strong Scaling: Memory Footprint
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Minimum memory footprint per process ≈ 250 MB

The working set can possibly completely fit in the HBM on KNL.
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End Notes

• Threaded buffer initialization necessary. Observed up to 2.5× speedup on a
single node.

• Thread scheduling with larger chunk sizes, such as default static and guided
policies, perform best with MPAS-Ocean. Single element chunk size degrades
performance by up to an order of magnitude.

• Well balanced number of MPI processes and OpenMP threads (e.g. 8×4) showed
best performance.

• Highly irregular memory accesses make depth-awareness redundant.

• Also, being memory bound, vectorization has no benefit.

• Hybrid MPI+OpenMP implementation improves strong scaling at high
concurrencies w.r.t. MPI-only implementation. Up to 3× improvement observed
for best runs.

• A minimum memory of 250 MB per process needed. Can take advantage of any
available HBW memories in upcoming architectures, potentially providing
significant performance improvement.
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