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Abstract—Lonestar 5, a 30,000 core, 1.2 petaFLOP Cray
XC40, entered production at the Texas Advanced Computing
Center (TACC) on January 12, 2016. Customized to meet the
needs of TACC’s diverse computational research community,
Lonestar 5 provides each user a choice between two alterna-
tive, independent configurations that are robust, mature, and
proven: an environment based on that delivered by Cray, and a
second, highly customized environment that mirrors Stampede,
Lonestar 4, and other TACC clusters.

This paper describes our experiences preparing Lonestar 5
for production and transitioning our users from existing
resources. It focuses on unique features of the system, espe-
cially customizations related to administration (e.g. hierarchical
software stack; secure virtual login nodes) and the user
environment (e.g. consistent, full Linux environment across
batch, interactive compute, and login sessions). We motivate
our choices by highlighting some of the particular needs of
our research community.
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I. INTRODUCTION

January 2016 marked the advent of a fifth generation of
the Lonestar series of supercomputers deployed at the Uni-
versity of Texas at Austin-based Texas Advanced Computing
Center (TACC). Over 3500 active users began the transition
from Lonestar 4, a 22,000 core Dell CentOS Linux cluster,
to Lonestar 5, TACC’s new 30,000 core, 1.2 petaFLOP Cray
XC40 supercomputer. Serving as a unique and powerful
computational resource for the University of Texas research
community, as well as public institutions and other partners
across the state, Lonestar 5 supports a diverse range of
research interests across dozens of fields of science. This
spectrum of users drives the demand for intuitive, adaptive,
and efficient environments that work for the researcher.

Our paper will offer a look behind the scenes at workflow
needs that helped to motivate the choices behind the crafted
user environment custom-built to satisfy our eclectic user
base. Parts of the design, construction, and administration
of the Lonestar 5 computing environment are illustrated
to emphasize the functionality and accessibility that has
become indispensable on other TACC cluster systems. We
also discuss our experience during both pre-production and
the first months of production operation.

This system offers users a choice between two robust and
vetted computing environments: 1.) a variation of the Cray

environment and 2.) a highly customized TACC environment
that tailors other vendor-independent environments familiar
to the open-science community. The customized TACC
environment leverages proven Cray infrastructure in ways
that are often invisible to the user. This is executed in
a manner to relieve users from the burden of needing to
worry about the implementation, facilitating existing TACC-
supported researchers to smoothly migrate workflows to
Lonestar 5.

At the heart of the TACC environment lies a set of
customized scripts that govern shell startup behavior. User
environments are automatically and efficiently propagated
from login sessions to batch and interactive sessions. The
result is consistency: the environment that the user sees is the
same whether on a login node, in an interactive session, or
running via a batch submission. Thanks to a tailored network
and firewall rules that allow the Slurm workload manager to
communicate directly with all login nodes, users are able to
gain access directly to 1252 24-core Haswell compute nodes
via ssh connections maintained by prolog/epilog scripts in
conjunction with Slurm’s Pluggable Authentication Module
(PAM) [1]. This allows for a minimum of disruption when
transitioning from a development cycle to production-level
computation.

The TACC user environment has been honed over several
generations of compute systems to provide a scalable and
flexible platform to address workflows ranging from mas-
sively parallel system-level computation, to serial scripting
applications conducting ensemble studies, to visualization of
complex and varied data sets. Built upon this environment
framework, Lonestar 5 implements a hierarchical software
tree managed by TACC’s own Lmod module system. This
Lua-based implementation of environment modules makes it
easy to define and manage application and library dependen-
cies so they are consistent across both the login and compute
nodes, and allows users to define their own custom software
collections to meet their specific needs.

To support protected data including but not limited to
applications and data sets falling under International Traffic
in Arms Regulations (ITAR), secure virtual login nodes
contained within an image of Cray Development and Login
(CDL) employ a multitude of logging and security tools to
audit the contents of users’ protected files while allowing



access to the same open science resources enjoyed by our
broader research communities.

Multiple, portable build environments reside in their own
change rooted (chroot) jail. Each is a copy of an up-to-
date image of a compute node; support and operations staff
use these environments to compile and test staff-supported
open science and protected data type applications before full
production-level deployment. This helps to ensure a safe
and dependable creation of over one hundred staff-supported
applications on Lonestar 5 minimizing the risk inherent with
the operation and maintenance of globally shared production
file systems.

A custom MPI wrapper module connected to Cray’s
MPICH library implementation is available in the TACC
environment. This tool provides functionality and familiarity
while being able to maintain the scalability and performance
inherent to Cray MPICH. Combining Cray’s User-Level
Generic Network Interface (uGNI) with the efforts of the
MPICH Application Binary Interface (ABI) Compatibility
Initiative, we have been able to test multiple MPI libraries
across the Aries network [2]. Coupled with Lmod and the
RPM build environments, we have been able to sample in
short order a variety of off-the-shelf parallel implementations
to potentially be integrated in future staff-supported software
releases.

Lonestar 5 renews TACC’s relationship with Cray, one of
the leading companies in the high performance computing
(HPC) sector. The hardware, tools, applications, and best
practices of Cray and TACC together allow our staff to
dynamically respond, assess, and address the needs of user
communities that are growing in number, depth, and breadth
at record pace. This paper identifies the best of these key
features and implementation details that make us proud to
welcome Lonestar 5 into the TACC supercomputing family.

II. LONESTAR 5 ENVIRONMENT

Propagating a consistent, full Linux environment from
the moment a user logs in through each and every job
submitted stands as a keystone spanning all major TACC
HPC systems. Many pieces work in concert to provide a
powerful and intuitive experience that has become essential
for our research communities.

The foundation of a typical TACC cluster environment is
built upon customizations of shell startup behavior. These
scripts define a persistent core collection of functions and
aliases that provide the ability to easily navigate file systems
and applications as well as display system and user status
information for any login session. This translates to a shell
environment that other tools and applications can then rely
upon for providing a reproducible start point. Section III
delves into more detail about the customizations created to
work in harmony with the existing Cray infrastructure.

Up front, users are presented with a familiar and standard-
ized set of four network-mounted file systems: /home, /work,

/scratch, and /corral. While /home and /scratch are single-
system NFS and Lustre file systems respectively, /work
(Lustre) and /corral (NFS) are shared across all major TACC
HPC resources. Users are provided a collection of aliases
and environment variables that allow for fluid navigation
across these file systems.

As on other TACC resources, users gain access to Lones-
tar 5 through a set of login nodes. For the XC40, the login
nodes are classified as External Services Login (esLogin)
nodes. They will be referred to as “login nodes” throughout
the remainder of this paper. These shared resource machines
serve as a location for file transfer, compilation, and job
submission. The environment present on these login nodes
is also present on the compute nodes. In addition to the shell
startup behavior modifications, to achieve this uniformity,
network customizations, discussed in Section IV, allowed
for a modified build of Slurm in native mode, discussed
in Section VII, to communicate and negotiate user ssh
traffic directly to and from compute nodes without the use
of intermediary batch system management (MOM) service
nodes or wrapper applications.

The Lmod module system is utilized to manage the
software stack, both for Cray-provided applications with
their TCL-based modulefiles as well as for TACC staff-
supported packages. Leveraging the startup behavior de-
scribed in Section III, Lmod (Section V) has been heavily
integrated into customized application support (Section VI)
best practices.

Up to this point, the components mentioned in this section
are present, in some form, regardless of what environment
users choose to utilize. Upon login, users default into the
“TACC environment”. The changes made on the XC40 to
support this environment are the main focus of this paper.
Where appropriate, asides will be provided to help clarify
specific details about any changes or important points with
regard the Cray environment.

Users may transition to the “Cray environment” by issuing
the command cray_env and, as prompted, log out of their
current Lonestar 5 terminal sessions to login in once again.
At this stage, the user is presented with an environment
that resembles the unmodified, off-the-shelf, Cray-provided
environment. Users accustomed to working on a Cray sys-
tem running native Slurm would notice only a handful
of changes, none of which would necessitate a significant
alteration in workflow on their part. To transition back
to the TACC environment, users may issue the command,
tacc_env, log out of all current Lonestar 5 sessions, and
log in once more.

III. SHELL STARTUP BEHAVIOR

With every log in, script executed, or file transferred, users
and their programs negotiate shells that interact with the
operating system. Customizations, typically at the user level,
are commonplace, usually through a set of predefined files



that are called upon in a well-defined hierarchical nature at
specified event points, such as log in or subshell execution.

Both TACC and Cray employ site-wide shell startup mod-
ifications to the common shells (bash, (t)csh, zsh, etc.) pro-
vided by SUSE. System-level shell startup behavior begins
in the /etc directory in which specific scripts initialize the
content found in the /etc/profile.d directory in alphanumeric
order.

To provide users with a choice of either Cray or TACC
environment, it was necessary to construct customized
shell startup behavior in both cases. To keep environ-
ments distinct, the presence of a particular file in a user’s
home directory signaled startup scripts which environ-
ment to initiate. The creation and destruction of this file,
∼/.use cray modules, is managed by calls to the cray_env
and tacc_env commands respectively.

This environment choice was provided for the login
and compute nodes only. Service nodes integral to the
Aries network fabric need not have a modified envi-
ronment given users do not run there. To distinguish
these nodes from others, the startup scripts would query
the system kernel via a call to uname -r. Login
nodes return <version>-default where <version>
is the Linux kernel version. Compute nodes return
<version>-cray_ari_c and service nodes return
<version>-cray_ari_s where c and s stand for com-
pute and service respectively.

From there, an environment variable,
${__CRAY_STARTUP__}, is specified if the kernel
version is not a compute kernel and not a login kernel.
TACC startup scripts are then given a sentinel, where if the
variable was defined, the contents of the file are ignored. In
two cases, a Cray startup file is also modified to be ignored,
one on login nodes (modules.sh) and the other on compute
nodes (zz-cray-hss-llm.sh), to allow for correct TACC
environment startup behavior to occur without conflict.

A tool that had previously been developed in-house to
help diagnose user’s shell startup problems, e.g. a malformed
∼/.bashrc file, proved to be invaluable in first understanding
startup behavior and then engineering this relatively simple
mechanism to provide distinct environments based on kernel
and file triggers. The tool, Shell Startup Debug [3], is able to
show a shell’s startup path, execution times for each startup
file, and also track propagation of environment variables of
interest, all from the presence of an environment variable
set within a file in a user’s home directory. This immensely
powerful collection of scripts empower individuals at the
user level to track and diagnose startup issues that otherwise
would be impossible to see and, at best, tedious and difficult
as the root user.

IV. NETWORK CUSTOMIZATION

To provide users with a consistent experience across
all TACC resources, routes were created to connect the

compute nodes residing within the Aries network directly to
login nodes. Prior to reconfiguration, login nodes leveraged
the Cray-provided eswrap module to collect and route
specific commands via ssh from the login nodes to a MOM
service node. This service node would then reissue the user’s
commands to utilize compute resources.

All login nodes and the Slurm database (SDB) node
were given an additional internal IP address reachable from
within the compute private network. This allows direct
communication from the login nodes to the SDB node. A
connection was made by adding a one 1GigE TP Ethernet
cable from the login switch to the SDB node. Slurm traffic,
e.g. sbatch, scontrol, uses this route directly.

To allow ssh communication to the Aries network, all
compute node IP addresses were added to the login nodes’
/etc/hosts files. Login nodes were then set up to route this
traffic to the boot node. Network address translation (NAT)
was configured on the boot node to switch login traffic over
to the internal Aries network destined for the appropriate
compute node. With the inclusion of Slurm’s PAM, only a
user requesting nodes through a particular Slurm job may
gain exclusive ssh access to their subset of compute nodes.

When a job is launched onto the compute nodes, processes
are executed in a change rooted shared-root file system.
Slurm’s prolog script is initiated and run by the Slurm
user before any user processes begin. To gain access to the
compute nodes, a temporary RSA host key is generated for
the life of the job and an ssh daemon is started, listening
on port 6999 with this host key. This is to avoid conflict
with the already running ssh daemon outside the chrooted
file system. From this point onward, various checks and
usage-gathering daemons are initiated before relinquishing
the compute nodes over to the user’s job.

As a job is completed, Slurm’s epilog script is executed.
Any remaining user processes are cleaned up and given a
chance to exit gracefully. The remaining processes, including
the ssh daemon, are terminated before epilog is complete.

V. LMOD MODULE SYSTEM

Users of HPC resources often work with specialized
software applications that demand the highest levels of
performance. This requires resource providers to support
a number of different libraries, applications, compilers and
MPI distributions. With even a modest set of packages and
versions available, the choice of how to clearly and concisely
present these tools to the user is crucial. The Environment
Modules tool [4], based in TCL, has long served as a
solution for managing pieces of the environment such as
PATH or LD_LIBRARY_PATH. When faced with choosing
a schema for how to organize packages through their mod-
ulefiles, one approach is a hierarchical convention where the
currently loaded compiler and MPI distribution govern what
modulefiles are available. Modulefile location, as opposed to
manually coded logic, dictates swapping behavior when one



Figure 1. The Lonestar 5 network is configured such that Slurm traffic travels directly to the Slurm database node and also to allow users to ssh directly
to compute nodes within the Aries fabric.

package is substituted or removed. This approach inherently
helps to prevent package incompatibilities from the user’s
perspective and simplifies the maintainer’s task of tracking
dependencies.

At TACC, we implement Lmod [5], [6]; a Lua-based
module system that provides several key features that help
protect and guide users’ choices when navigating potential
software combinations. Of the most important features,
dependent modules are automatically reloaded when their
upstream dependencies change. Moreover, by default, users
cannot load more than one module at a time that belong to
the same module family or are different versions of the same
module.

Given the example in Figure 2, git, a version control
tool, is considered an independent or “core” package. This
is to say that its modulefile may be loaded at any time and
is independent of what compiler (Intel, GCC, etc.) and MPI
distribution (Cray MPICH, Intel MPI, etc.) modules happen
to be loaded. Core packages tend to be built against the GCC
compiler that the system uses natively which stands outside
of the module hierarchy. In the case where no compiler,
and, hence, no MPI distribution modules are loaded, only
core package modules will be available.

When a compiler module is loaded, such as Intel 16.0.1

in the example figure, an additional path is prepended to
the environment variable MODULEPATH. Lmod will use the
additional path as an extra branch to search for module-
files. For the Intel 16 series of compilers, the core-level
directory intel16/modulefiles is appended to MODULEPATH.
All packages that are dependent upon Intel 16 at run time
would reside inside the intel16 directory. In this example,
upon loading Intel 16, the boost library modulefile would
then subsequently be on the MODULEPATH and would be
available to load if the user wishes.

With a particular compiler loaded, typically a set of
MPI distribution modules are made available. Similar to
the compiler modulefiles, MPI distribution modulefiles will
prepend an additional path onto the current MODULEPATH.
In this example, the directory cray mpich7 2/modulefiles
is added when Cray MPICH 7.2.4 is loaded. Packages
that are dependent on this particular MPI distribution, e.g.
PETSc, along with their modulefiles will reside inside the
cray mpich7 2 directory.

This hierarchical structure ensures that a compatible ver-
sion of a package is loaded even when compiler or MPI dis-
tribution is swapped out. Continuing with the example and
assuming that intel/16.0.1, cray_mpich/7.2.4,
and petsc/3.6 are currently loaded, if, for instance,
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Figure 2. Lmod provides an intuitive, HPC-centric software module hierarchy to coordinate and organize staff-supported packages within the TACC
environment.

a user were to issue a module swap intel/16.0.1
gcc/4.9.3, Lmod would search for a gcc/4.9.3 com-
patible cray_mpich/7.2.4 and petsc/3.6. If found,
these package modules would automatically be reloaded to
ensure consistency. In the event that one or more dependent
package modules do not exist in a branch, the currently
loaded dependent module would become inactive.

To help users see what modules are available, the com-
mand module avail will show all modules that are
currently loaded on the MODULEPATH. To transcend the
current MODULEPATH, and see or query all potentially

available modules, the command module spider can be
used. This command can show modules by keyword and
version and will provide a dependency list when a single
module is queried. Typically, a “spider cache” can be set
up, either at user or system level to index results and make
spider return immediately.

Generally speaking, different compiler modules need not
be loaded simultaneously. Usually, having, for instance,
the Intel compiler loaded together with the PGI compiler
could lead to unusual behavior. The same could be true of
simultaneously loading different MPI distribution modules.



Lmod provides the concept of families as an intuitive and
elegant solution for these situations. All compilers can be
given a common family tag, usually “comp”. By default,
Lmod will automatically swap out modules of the same
family so that only one is loaded at a time. In the event
where the need arises to have more than one module in the
same family loaded simultaneously, users have the ability to
toggle on expert mode where they are given full control of
their environment.

Module collections are another feature provided by Lmod
that empower the user to fully customize their workflow
environment. In addition to shell startup behavior being
consistent across compute and login nodes, so too, are
the staff-supported packages that all leverage Lmod. This
decision allows a user to craft custom collections of modules
that are relevant to their research and to be able to use
them anywhere in the system. A default collection can be
created by loading the desired modules and issuing the
command module save. Any time a user starts a new
session or issues the command module restore, the
default collection will be reinstated. Users may also save
named collections in the event that they would like to quickly
and easily switch between different sets of modules, perhaps
for a different workflow. The metadata for these collections
is stored in a dot file within the user’s home directory.

Lmod provides a multitude of well thought-out enhance-
ments and features over the current Environment Mod-
ules package. For this paper, these last noted features
give users the ability to quickly and efficiently manip-
ulate their environment in ways not possible with En-
vironment Modules. First, a user may reset the current
module stack at any time back to the system-provided
default by issuing the module reset command. Second,
while the module swap command is provided, it is in
almost all cases unneeded with Lmod. If a user wishes to
swap compilers, they need only to load the compiler they
want. Lmod automatically takes care of the rest. Third,
a user may completely unload their module environment
with the module purge command. Forth, Lmod supports
shorthand notation. For instance, the command module
restore becomes ml r; module list becomes ml;
module swap intel/16.0.1 gcc/5.2.0 becomes
ml gcc.

VI. RPM BUILD ENVIRONMENT

TACC staff build, maintain, and support many dozens of
software applications, libraries, and tools. These elements
are served and accounted for using RPM Package Man-
ager [7]. An up-to-date, safe, and powerful build environ-
ment is needed to facilitate in the creation of these site-
customized RPMs. A chroot jail, based on the latest compute
node image, provides the opportunity to develop RPMs in
a space much like the production environment the RPMs

are targeted for. This is accomplished while isolating any
changes away from the live system.

The majority of staff-supported packages are served via
a shared read-only Data Virtualization Service (DVS) pro-
jected NFS mount. This file system, referred to by its mount
point, /opt/apps, is visible from all login and compute nodes.
Any change to /opt/apps is affected immediately throughout
the system. This allows for quick and simple management
of content served from the master administration node.
New packages can be installed on-the-fly without need for
maintenance or downtime. This serves as a double-edged
sword in the sense that live packages could be removed while
in production. The chroot jail environment is purposefully
disconnected from the production /opt/apps to remove the
potential of impacting running jobs while RPMs are in
development.

An instance of the RPM chroot jail is created on one of
the System Management Workstation (SMW) nodes from
the current compute image located on the boot node. Content
is copied to a staff-accessible subdirectory within /opt/apps
where several files and directory mounts are connected, some
bind mounted, to provide a persistent experience between
updates. A Bash function is provided to staff with elevated
privileges to ensure the consistency and integrity of the jail
before transitioning into the change rooted environment. An
updated RPM jail is typically created at the end of regularly
scheduled maintenance periods after all other compute image
changes have been completed.

Multiple instances of RPM chroot jails can be created at
different mount points. Specific community jails exist for
the development of open science packages and for export
controlled packages that fall under ITAR. Staff may also
opt to clone an instance of a community jail in the event
that a personalized isolated environment is necessary.

Staff using the RPM jail may transition between TACC
and Cray provided environments using the same commands
as outlined in Section III. While a few packages are main-
tained for the Cray environment by TACC staff, the majority
of the staff-supported software stack is custom built for
the TACC environment. At the time of this writing, just
under 100 unique modules are provided, many with multiple
versions across the Intel and GCC compilers and Cray
MPICH MPI distribution. For perpsective, Lonestar 4 served
over 225 unique modules at its retirement. In total, over 170
modules are currently provided and maintained. This number
will continue to grow as Lonestar 5 prepares to cross its three
month deployment mark.

RPM spec files for each package are curated by a number
of staff members, many of which use template skeletons to
aid in an efficient build process. These spec files are tracked
via version control and can be migrated between systems
with ease; usually only needing minor updates upon a new
system build. A fifteen line nested if-condition included
in all spec files controls package and modulefile names



plus paths in the form of RPM macros. These are used
to integrate into the Lmod module hierarchy by helping to
create modulefiles directly in the RPMs and to standardize
RPM naming conventions. This snippet of logic is all that is
needed by developers to produce a structured and consistent
software stack able to harness Lmod.

VII. WORKLOAD MANAGEMENT

Thanks to recent advancements made by SchedMD and
Cray, TACC joins a growing number of supercomputing sites
operating Cray XC systems with Slurm in “native” mode
[8]–[10]. Slurm control and database daemons continue to
reside on the Slurm Database (SDB) service node within
the Aries fabric. In native mode, Slurm daemons now reside
directly on the compute nodes. In this mode, there is no need
for the Cray Application Level Placement Scheduler (ALPS)
daemon nor the calls to aprun that most Cray users would
be familiar with. Instead, Slurm’s srun is used for parallel
job launching.

Native Slurm leverages alpscomm, a low-level network
interface library, to communicate with the Aries fabric via
hardware APIs. Node information including health and state,
as well as job launching is managed by Slurm via this
communication interface [11]. Native Slurm is installed
directly into the Dynamic Shared Objects and Libraries
(DSL) shared-root file system that is projected by DVS to
the Cray Linux Environment (CLE) compute nodes [12].
Slurm leverages Cray’s specialized libpmi library, an integral
component for MPI jobs to succeed on the Aries fabric.

With routes configured such that login nodes can interact
directly with the Slurm database node, Slurm commands
do not require any sort of wrapper function to ssh to a
MOM service node before queries or job launches. This
approach provides a more intuitive and familiar design that
also provides the path to which our users may directly ssh
to compute nodes.

Clearly this configuration is neither Cray’s Cluster Com-
patibility Mode (CCM) nor its Extreme Scalability Mode
(ESM). Our current configuration is probably beyond what
Cray would still classify as a Massively Parallel Processing
(MPP) supercomputer. Fair enough: ours is a unique, eclectic
system that borrows key components from several design
philosophies. It is a performant platform with the power
and flexibility that TACC-supported researchers have come
to expect.

Additional Slurm source code modifications have been
employed to aid in job accounting and to help attach a
custom filter plugin that allows for additional site-specific
settings and imposed resource limits. System administrators
can quickly and easily provide user access on a per queue
basis, allow specific users to run for extended periods of
time, toggle checks for file system health, ensure correct ssh
key permissions in a user’s home directory, manage system

accounting, and disable users who are negatively impacting
the system, among many other customized features.

Given this setup, users can issue an sbatch command
directly to the compute nodes. The TACC Slurm filter pro-
cesses sanity, accounting, and access checks before initiating
a typical Slurm job sequence. Once the job is running,
a user may ssh directly to any compute node that their
job is running on. While this style is more rare, a repre-
sentative workflow case could include online job status or
performance monitoring. Moreover, this gives consultants
the ability to watch a job that a user has initiated for
diagnostic purposes.

Long provided as a core piece of functionality on TACC
resources, interactive development sessions play a crucial
role in the HPC code development cycle. The ability to
modify, recompile, and relaunch a job in short order en-
hances productivity immensely over having to resubmit a
Slurm job to busy queues for every change in one’s code.
These sessions also play a central role as a simple and quick
way to have our users in training be able to learn exactly
what type of compute environment will be available for both
batch and interactive jobs. At the other end of the spectrum,
advanced users and consultants can use interactive sessions
at the largest scale to interrogate and observe code behaviors
that are otherwise incredibly difficult to diagnose when only
provided a remote, non-interactive, batch session.

TACC’s own tool for interactive access to compute nodes
is idev [13]. It provides all the functionality needed for
a scalable solution that delivers the same environment for
interactive development sessions that users see in their batch
jobs. Whether providing the twenty-four cores of a single
compute node for parallel makefile execution, or harnessing
multiple visualization compute nodes for interactive data
rendering, idev serves as the tool of choice. A user need
only to type idev to launch an interactive job on one
compute node. If more are desired, all standard sbatch
flags are recognized. As an idev job is started, an sbatch
is launched under the covers. A user’s idev launch environ-
ment is recorded and secure copied into the head compute
node’s /tmp directory. Upon shell startup execution, if this
file is found, it is sourced to provide a duplicate environment
on the compute node. This behavior is true of any ssh
sessions to the compute node. Users start their compute
session in the same directory, with the same loaded modules,
and the same environment variables set.

VIII. MPI

Cray MPICH libraries, with a few adjustments, are pro-
vided via an Lmod wrapper module in the TACC envi-
ronment as the default production-level MPI distribution.
Both Intel and GCC compiler versions are used, tested, and
maintained to provide the same expected performance typi-
cally found within the Cray environment. A few key design
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decisions were made to help functionality and usability by
our user community.

The Cray-provided compiler wrapper routines generate a
compile-time set of include paths and libraries automati-
cally generated via pkg-config. These configurations are
built up based upon what modules happen to be loaded
at the time of compilation. This approach is inclusive,
providing all possible components that a user may need
for compilation. The TACC environment is not based upon
pkg-config directories and metadata. Instead, a smaller
number of include paths and libraries are provided to the
user in a set of wrapper scripts renamed mpicc, mpicxx,
and mpif90 to align with MPI distributions provided on
other TACC resources. For the applications tested by TACC
staff, no discernible differences in performance have been
documented.

On TACC resources, an MPI job launcher wrapper script
called ibrun is provided to simplify a user’s experience
[14]. The different launchers (mpirun, mpiexec.hydra,

mpirun_rsh, srun, etc.) all provide different flags and
calling options. Moreover, many launchers expect a user-
provided host list. Working on a production system, Slurm
jobs will in almost all cases be on a differing set of compute
nodes than previous runs. The ibrun wrapper is a way
to abstract this layer and provide a uniform experience
regardless of MPI distribution, hardware layout, and host
list. On Lonestar 5, the ibrun script has been adapted to
call srun with the correct options based on a user’s input
arguments.

Inevitably, with such a diverse user base, experiences
and knowledge differ about what methods are supported
for launching MPI jobs. Through the use of the default
TACC Lmod meta-module, we provide a set of wrappers
that appear at the beginning of a user’s default PATH.
When called, these wrappers produce a message to inform
the user that the current command is not supported and
points them to documentation in our user guide. This gentle
reminder helps to minimize confusion and is easily super-



seded, by design, by any user-supplied additions supplied to
PATH. Current wrappers include mpirun, mpiexec, and
mpiexec.hydra.

IX. VIRTUAL LOGINS

The wide diversity of TACC-supported researchers bring
to bear many challenges in the form of specialized work-
flow needs. In some cases, this can include requests for
customized login environments. A login node that tries
to suit all researchers’ needs is difficult to secure and in
some cases is not feasible due to the exclusive nature of
particular requests. Rather than procure new hardware for
each situation, TACC hosts virtual machines (VMs) in-house
through a VMware [15] service. In short order, a customized
VM for can be spun up for a specified research group. The
practice has been carried out for many years and continues
to gain in popularity as our user base grows.

To assemble a virtual login (vlogin) node, configuration
begins by creating a virtual machine that uses the Cray
Development and Login (CDL) install media. The base
operating system, security updates, and TACC customized
RPMs are installed while a new private network is plumbed
from the VMware server to the Lonestar 5 login switch.
Once configured, this virtual machine can be cloned and
given minor adjustments for another research group or other
purpose. Currently, all file systems are mounted via NFS
on the VMs including the shared file systems /scratch and
/work. An instance of the created virtual machine can then
be utilized as a virtual login node.

A version of the generic virtual machine described above
will soon be deployed into production with several security
and monitoring enhancements. The purpose of this virtual
machine is to serve researchers whose projects require the
use of source code, binaries, and/or data that in some way
fall under ITAR. These vlogins require two-factor authen-
tication to gain access and mount a specialized file system
that is used to store users’ protected ITAR contents.

Core services and file systems are monitored via Nagios,
incron, and customized in-house scripts [16], [17]. Events
are remotely logged and aggregated via Splunk server infras-
tructure [18]. Rules are integrated to alert appropriate staff
for notable security or environment events. For example, a
cron job that runs on the server that houses the ITAR file
system is required to update a timestamp on a file within
a monitored directory. This heartbeat rule is set up on a
Splunk server to send an alert if the timestamp was not able
to successfully update. Checks such as these help to ensure
that all services and scripts of the monitoring systems are
healthy.

Users who access the ITAR file system through a virtual
login node also have the ability to read and write contents
through Slurm jobs that run on the same compute nodes
that open-science researchers access via regular login nodes.
Logic in the Slurm prolog and epilog scripts are used to

identify specific users, queues, and accounting projects that
are authorized to access the ITAR file system. The file
system, served by DVS, is dynamically mounted at the
beginning of the job and unmounted at the end. In the event
that compute node has trouble mounting or unmounting the
ITAR file system, the node is automatically disabled and
system administrators are notified.

X. CONCLUSION

When it comes to the crucial components needed to
successfully provision a supercomputer, the devil is always
in the details. It is easy for us as authors, and you as readers,
to be distracted by the many facets and miss the big picture.
In the end, three principles informed our software design for
Lonestar 5:

• Familiarity: Anyone who uses TACC resources should
find themselves in an environment that provides the
same recognizable look and feel. Those who use both
Stampede and Lonestar 5, for example, should have the
same experience on both systems. The same should be
true for users transitioning from Lonestar 4.

• Consistency: No matter where researchers find them-
selves on the Lonestar 5 system, they see the same full
Linux environment delivered with a rich and broad se-
lection of tools, applications, and libraries. This means
less distraction fighting the machine and providing
more freedom to just get the job done.

• Flexibility: TACC’s infrastructure supports more than
60 Fields Of Science (FOS), 120 institutions, and
230 research projects. This means we require that our
systems provide intuitive platforms that can respond
and evolve in ways driven by our users’ needs.

Clearly there is more to be done and we don’t pretend
to have all the answers. From our perspective, preparing
Lonestar 5 has and continues to serve as a wonderful
opportunity to grow and adapt. This system is, invariably, a
different machine from its predecessor. While TACC hosts
a variety of HPC resources from many vendors, it has
been since Lonestar 1, a 40 GigaFLOP T3E, that a Cray
machine was housed in our data center. Challenges lie on
the road ahead; some already well known as we define our
experiences and refine lessons learned; others, down avenues
we have yet to encounter.

It has taken many of hours of hard work but we judge
them as successful. With innumerable thanks to individuals,
externally and internally, research has continued, by and
large, in “business as usual” fashion for the majority of our
Lonestar user base. To provide some perspective, Lonestar 4
did not use Slurm as its workload manager. So, some users,
transitioning from Lonestar 4 encountered Slurm for the first
time. Our support staff report that learning a new workload
manager proved to be the hardest part of the transition to
Lonestar 5. We take this as evidence of success; we must
be doing something right.
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