
Finally, A Way to Measure Frontend I/O Performance

Christopher Zimmer, Saurabh Gupta, Verónica G. Vergara Larrea
Oak Ridge Leadership Computing Facility

National Center for Computational Sciences
Oak Ridge, Tennessee

{zimmercj,guptas1,vergaravg}@ornl.gov

Abstract—Identifying sources of variability in the Spider 2
file system on Titan is challenging because it spans multiple
networks with layers of hardware performing various functions
to fulfill the needs of the parallel file system. Several efforts
have targeted file system monitoring but only focused on metric
logging associated with the storage side of the file system. In
this work, we enhance that view by designing and deploying
a low-impact network congestion monitoring system designed
especially for the I/O routers that are deployed on service nodes
within the Titan Cray XK7 Gemini network. To the best of our
knowledge, this is is the first tool that provides a capability of
live monitoring for performance bottlenecks at the I/O router
level. Our studies show high correlation between I/O router
congestion and I/O bandwidth. Ultimately, we plan on using
this tool for I/O hotspot identification within Titan and guided
scheduling for large I/O.

I. INTRODUCTION

Performance monitoring within supercomputers is chal-
lenging. Supercomputers differ from traditional data-center
and cloud computing systems in that the applications tend to
be highly coupled, latency sensitive, and resource intensive.
As a result, we often see supercomputers utilizing low-
latency configurations across the system stack. These include
tickless operating system (OS) scheduling, low-latency inter-
connects, OS-bypass functionality, among others. Significant
effort has been put towards reducing noise in these environ-
ments. For this reason, it should be no surprise that high
performance computing (HPC) system administrators tend
to be wary of adding fine-grained system-monitoring tools
to compute environments. Fine-grained monitoring tends to
require sampling of the system state during periodic timing
intervals. While generally the overhead of such sampling is
low, it can add jitter to a system in which great effort has
been put in to eliminate jitter.

The Oak Ridge Leadership Computing (OLCF) facility
is home to Titan, the second fastest supercomputer in the
world [1]. Titan is a Cray XK7 [2] system with 18,688 com-
pute nodes, each with a 16-core 2.2 GHz AMD Interlagos
processor and an NVIDIA Kepler K20X GPU accelerator.
Spider 2 [3], [4] is a center-wide Lustre parallel file system
at the OLCF is which has 32 PB of capacity and provides
a 1 TB/s bandwidth [4].

Facilitation of the Spider 2 file system requires the
connection of the Gemini torus network [5] within Titan

to the storage I/O InfiniBand network (SION 2), a center-
wide resource. This fact coupled with the complexity of
the backend storage creates a system where performance
variability is frequent and difficult to pinpoint. Unfortu-
nately, from a system design standpoint, an understanding
of system bottlenecks can be difficult to impossible without
constant data-streams of performance information showing
the machine under various workloads.

To date, there have been several projects at the OLCF
that aim to improve visibility into the backend file system
performance, and also to assist in identifying degradation.
Many of the tools developed are currently deployed on
the storage system backend and collect statistics from the
different file system components. The DDNtool [6] utility,
for example, continuously polls the DDN controllers and
collects performance and fault information, such as the
number of failed drives, and progress of rebuilds, and stores
all the information in a database. Similarly, brw_stats is
another tool that is used to monitor the backend systems.
The brw_stats tool which provides I/O statistics from
object storage targets (OSTs) to help identify I/O patterns
that negatively impact the file system e.g. small, random I/O.

While the information collected from these tools can
help identify performance degradation stemming from the
backend, they do not capture information on bottlenecks
that could originate from within Titan. To help address
this gap, the OLCF developed the I/O Router Congestion
Daemon (IORCD) which was designed specifically for the
I/O routers within Titan’s Gemini network, and is currently
deployed on Titan. Our preliminary results using the OLCF’s
I/O test harness [7] show that introducing IORCD produces
a negligible impact on runtime and I/O performance. Al-
though Gemini congestion data from IORCD alone is not
sufficient to definitively identify system wide sources of
performance degradation, it has already been useful to gain
a better understanding of the impact of Gemini network
congestion on I/O performance. The IORCD tool, as well
as the results obtained from using the tool in production to
monitor I/O router congestion on Titan, can further extend
I/O performance monitoring capabilities and can help gain
a better understanding of I/O performance under production
workloads.



II. BACKGROUND

A. Spider 2

Spider 2 is the primary file system resource available
to users at the OLCF. As shown in Figure 1, Spider 2 in
combination with the storage I/O network (SION 2) and
the OLCF’s compute and analysis resources form the OLCF
end-to-end I/O path. Although Spider 2 was designed to
primarily support Titan, it is a center-wide resource and, as
such, other resources at the OLCF including Eos, a 736-node
Cray XC30 system, and Rhea, a 512-node RHEL cluster,
rely on Spider 2 for storage.

Spider 2 [3] is a Lustre-based parallel file system with
32 PB of capacity and provides an aggregate bandwidth
of 1 TB/s. Spider 2 is partitioned into two file systems,
atlas1 and atlas2, each one with access to 1,008 object
storage targets (OSTs). This design allows applications that
use single-shared files to take advantage of wide-striping to
achieve better I/O performance.

Troubleshooting performance bottlenecks on a parallel
file system of the scale of Spider 2 can be challenging.
In addition to having a complex architecture, Spider 2 also
relies on several system software components. Both changes
in Spider 2’s system software stack or hardware can poten-
tially impact I/O performance. In order to minimize negative
impacts on I/O performance, the OLCF regularly tests new
versions of system software (e.g. Lustre server/client soft-
ware, InfiniBand firmware) using a combination of kernels,
I/O benchmarks, and real-world applications [7]. However,
due to the limited amount of time that can be reserved
for testing, and the different behavior observed at-scale in
comparison to that observed on test systems, performance
regressions do occur in production. Given that performance
degradation can originate from any part of the OLCF end-to-
end I/O system, monitoring tools throughout the end-to-end
I/O path are necessary.

B. Frontend I/O

Titan uses the Gemini 3D torus network, built upon tightly
coupled custom ASICS. The network contains 9,600 Gemini
routers where routing decisions are dimension ordered in the
absence of faults. Titan is composed of a total of 19,200
nodes in the 3D torus, and 18,688 of those are compute
nodes. Many of the remaining nodes are service nodes
that are used for various purposes. One such purpose is to
serve as login nodes, used for deploying applications and
various other activities. Other service nodes are used for
I/O forwarding. These nodes, called I/O routers, perform the
action of routing traffic between the Gemini and InfiniBand
networks, and are less sensitive to latency.

Due to the striping nature of Spider II, the OLCFs Lustre
parallel file system, when data is written from a compute
node to Spider II, it is packetized and sent through several
I/O routers. This data is picked up by the recipient I/O router,

where a checksum is performed and then it is forwarded
onto the InfiniBand network. The most expensive operation
performed is the data checksum. In our own analysis, we
have observed the work of the file system routing client to
be mostly memory bound under heavy load.

C. I/O Performance Bottlenecks
As sections II-A and II-B emphasize, there are signifi-

cant differences in the hardware capabilities of the storage
backend versus that available on Titan’s I/O routers. These
differences result in an egress path with support for up to
56 OSTs, each capable of up to approximately 400 GB/s,
and a lower ingress bandwidth at the I/O router interface.
Furthermore, due to the high number of Titan compute
nodes that map to each I/O router, in combination with
the additional load the I/O router must endure in order to
perform checksums, the likelihood that over-subscription at
the I/O router interface can occur is high.

Standard monitoring tools like DDNtool and
brw_stats rely on information obtained from the
backend systems and can assist system administrators in
detecting issues impacting object storage servers (OSSs),
metadata servers (MDS), object storage targets (OSTs),
and metadata targets (MDTs). However, these kind of tools
do not capture information about performance bottlenecks
that can occur at different sections of the end-to-end I/O
path, including those occurring at Titan’s I/O routers. In
order to detect I/O performance bottlenecks that stem
from congestion between Spider 2 and Titan’s Gemini
network, additional logging is needed at the I/O router
level. To monitor potential over-subscription of I/O router
nodes, as well as assist system administrators in identifying
performance bottlenecks, the IORCD tool was deployed on
Titan’s I/O router nodes.

III. I/O ROUTER CONGESTION DAEMON

The I/O Router Congestion Daemon (IORCD) is a tool
developed to give insight into I/O performance bottlenecks
that may exist within the Titan’s Gemini network. As dis-
cussed in the background of this work, all prior tools on
Titan have focused on the backend storage controllers and
InfiniBand fabric associated with the Spider II file system.
Unfortunately, such a limited view could result in missed
opportunities to identify hot spots such as build-up at I/O
Routers. For the first-phase development of IORCD, we
decided to employ simple Gemini monitoring but ultimately
plan on extending this further. While this would result in a
lack of fidelity, we wanted to ensure that the first pass of the
tool would have negligible overhead impacts when deployed
on our production systems.

In order to make the I/O Router Congestion Daemon
collect data, we integrated the sampling with the Gemini-
Performance Counter Daemon (GPCD). GPCD effectively
employs a kernel module that enables the sampling of both



Enterprise Disk
are connected to 

controllers 
via Serial ATA.

20,160 
2 TB NL- SAS 

drives

Lustre servers
run parallel file 

system 
software and 

manage 
incoming FS 

traffic.

288 Dell
 servers with
64 GB of RAM 

each

SION II Network
provides 

connectivity 
between OLCF 
resources and 

primarily carries 
storage traffic.

1600 ports,
56 Gbit/sec

InfiniBand switch
complex

Lustre Routers and Clients
run parallel file system 

client software and
forward I/O operations

from HPC clients.

440 XK7 XIO nodes
configured as Lustre

routers on Titan

Titan XK7

Other OLCF
resources

XK7 
Gemini 3D Torus

InfiniBand
56 Gbit/sec

Serial ATA
6 Gbit/sec

Enterprise Storage
controllers are 

connected
via InfiniBand.

36 DDN SFA12K-40 
controller pairs and 
16 InifiniBand FDR 
connections per 

pair

SPIDER 2 SION 2 COMPUTE

Figure 1: OLCF Spider 2 end-to-end I/O path.

Gemini Router and Gemini network interface card (NIC)
performance counters through an IOCTL to the kernel. This
mechanism allows us to get back a per-tile set of counters
related to network performance. Each Gemini router is
composed of 48 tiles, and each tile provides 6 performance
counters for the link associated with the tile. For our effort,
we were mostly interested in the tile which corresponded to
host-side transfers. On Gemini routers there are eight links
associated with two hosts, with messaging overhead we see
roughly 5.8 GB/s of bandwidth to each host. These links
are used by IORCD to establish a measure of congestion of
traffic flowing into and out of the I/O Router.

Each Gemini Router tile provides six fixed performance
counters (MMRS) [8], [9] associated with their bound
link. These performance counters measure request/response
phits/packets and congestion. Congestion is represented as
INQ and OUTQ congestion. INQ congestion manifests dur-
ing tile internal routing. In the case of the host-link this
counter would increase when transferring data from the host-
tiles to the directional-tiles that will send the packets off of
the Gemini Router. On the opposite side OUTQ congestion
manifests when there is a backup transferring off router. In
the case of host-links this would be when transferring data
from the Gemini router into the host-NICs of the service
nodes. Ideally, INQ congestion should manifest during file-
read operations and OUTQ congestion should manifest from
file-write perspectives. Figure 2 shows an evaluation of these
performance counters taken under controlled experiments on
the Chester test system. In this example we use IOR from
8 processes to generate an 8GB file, after termination of

the first phase a waiting period is employed and then we
use IOR to read back the file. During this time we sample
performance counters using a 30 second interval. The results
show the congestion impacts across the 4 I/O routers used
for these transfers. The first phase of write shows the OUTQ
congestion, between the Gemini Router and Service node,
becoming congested. In the worst case the congestion cycles
increase to roughly 210,000,000 cycles. This indicates a
good traffic flow but is by no means a high-measure of
congestion. During the read phase the INQ counters on
the same routers experience congestion. In all steps both
congestion counters are being measured and shown. There
are several takeaways from this example, the main one being
that the INQ and OUTQ counters can respectively be used
to identify read and write I/O. Since no significant MPI
processes are running on these nodes, the bulk of traffic
can be assumed to be I/O related, and the counters are fine
grained to be able to measure even small I/O actions.

Through our previous experiment we were able to show
that the congestion counters can provide a directionality of
the I/O flow being processed. However, it is also important
to be able to establish a reasonable relationship between the
magnitude of the flow and the measurement of congestion.
With such a large sampling rate as 30 seconds, we are
limited in the granularity of data that we can obtain. For
our first effort, we decided to focus on detecting high
levels of congestion which would result in several seconds
of full congestion during a 30 second sampling window.
Essentially, at heavy uses of the I/O system, this will help
us to better characterize the relationship between congestion



0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

Write	File Quiet	System Read	File

IN
Q
	C
on
ge
st
io
n

O
UT

Q
	C
on
ge
st
io
n

c0-0c0s6n3-OUTQ c0-0c1s3n3-OUTQ c0-0c0s6n0-OUTQ c0-0c1s3n0-OUTQ

c0-0c0s6n0-INQ c0-0c0s6n3-INQ c0-0c1s3n0-INQ c0-0c1s3n3-INQ

Figure 2: Per IO Router Congestion Counters by I/O Type

and I/O bandwidth.
For this experiment we used IOR to read and write

files. Our IOR input parameters were selected to generate
I/O from the application to fill the 30 second sampling
window. Then, we extracted the average bandwidth that
was achieved during this period to show the relationship
between congestion and bandwidth. To fully achieve peak
bandwidth it was necessary to scale the number of partic-
ipating compute nodes and the number of ranks per node.
Too many ranks per node would generate a bottleneck at
the compute node. For these experiments, we scaled up to
64 participating ranks limiting 4 ranks per node. Figures 3
and 4 show these experiments for reads and writes. In the
case of writes, the bandwidth and congestion trends correlate
well, with a Pearson’s coefficient of 0.94. This indicates
that for higher levels of congestion we can infer an I/O
router reaching a capacity where additional I/O added to a
router would likely result in diminished performance. The
correlation with reads however was lower, a 0.85 Pearson’s
coefficient. Additionally, we observed diminished congestion
values between 32 and 64 ranks. This was due to credit
starvation between the clients and the compute endpoints
that resulted in data throttling.

Based on these results we view write congestion as being
a more accurate indicator of I/O router workload. This makes
sense when reasoning about network flows into and out of
the I/O router. Traffic exiting the I/O router can be blocked
along the Gemini path resulting in varying congestion levels
based on end-points, as reads are a fan-out pattern from I/O
routers to compute nodes. However, write traffic follows a
fan-in pattern, where the congestion measurement is taken
at the end-point. Any slow down in the backend or on
the I/O router will result in increased congestion at the
I/O router. Thus, any overflow at the compute nodes is
blocked at ingress prior to reaching the I/O router. This
makes measuring the flow/congestion at the point of the
I/O router more representative of the flow moving through
the I/O router. This is important from the perspective of
detecting over saturated resources and ultimately will be

0

2000

4000

6000

8000

10000

12000

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

3E+10

3.5E+10

1 2 4 8 16 32 64

Re
ad
	B
an
dw

id
th

Re
ad
	C
on
ge
st
io
n(
Cy
cle

s)

Writers

Congestion Bandwidth

Figure 3: Read Congestion vs IOR Bandwidth

0

2000

4000

6000

8000

10000

12000

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

1 2 4 8 16 32 64

W
rit
e	
Ba
nd
w
id
th

W
rit
e	
Co
ng
es
tio
n(
Cy
cle

s)

Writers

Congestion Bandwidth

Figure 4: Write Congestion vs IOR Bandwidth

instrumental in designing mitigation techniques.
One of the major reasons we did not deploy IORCD

globally on all compute nodes is the sampling cost of GPCD.
Sampling requires an IOCTL call through the GPCD kernel
daemon, which in the past has shown to require up to 600ns
to return. In our own profile, we measured results around
250ns dependent upon the data we were collecting. By
reducing our samples to 8 tiles associated with the HH link
and only two performance counters from each, we are able to
make these calls with minimal overhead. In our preliminary
version of IORCD we are using a sampling period of 30
seconds. We rely on the global NTP service utilized across
all OLCF systems to keep the daemons within reasonable
synchronization.

IORCD and the Lustre LNET client co-exist within a
service node. Working locally on our test system, we eval-
uated the Lustre LNET client under load. While multi-
threaded, the Lustre LNET client appeared to be memory
bound with CPU loads between 50-70% for a heavily loaded
client. This indicated that IORCD needed a small memory
footprint but that the CPU cost of data collection should
fit without perceptible overhead. We evaluated this during
our first pass deployment discussed in the next section.



Ultimately, we plan to decrease this sampling period but
as a first pass of the production viable daemon we wanted
to ensure negligible overhead in order to add additional data
collection functionality.

Performance data after collection on the individual routers
is collated into the Cray System Management Workstation
(SMW) via the syslog utility. From the SMW, individual
log entries are forwarded into our Splunk infrastructure.
Splunk is a log collection and analytics framework. The
Splunk infrastructure enables visualizations of time-series
data, automatic field extraction, and the ability to generate
alerts based on pattern based analysis. In our first pass
implementation, the log entry data contains the internal
hostname, a timestamp epoch, write congestion values, and
read congestion values. Time granularity from syslog

was insufficient and could be delayed, so we included the
timestamp from the time the sampling occurred in IORCD.
This improves analytics by eliminating any gap in the
indexed record between the sample time and the time the
SMW received the message.

IV. DEPLOYMENT

For our initial deployment we evaluated IORCD on our
debug cluster, Chester. Chester like Titan, is a Cray XK7,
containing 96, 80 of which are compute nodes. Chester
contains 8 LNET routers for I/O. In our first evaluation,
we wanted to make sure that the I/O performance from an
application’s point of view was not negatively impacted. To
perform this evaluation, we ran experiments from our I/O
test harness. The three benchmarks we use are configured
with different I/O patterns that impact the file system in
different ways. HACC-IO reads and writes single shared
files, whereas GTC has a single terminal write phase during
which each rank creates and writes independent files in an
N:N write strategy. Finally, we use the IOR benchmark,
using a file-per-process, to stress the I/O Routers under
heavy write traffic. From the graph in Figure 6, we can
see the performance ratio of runtimes of these applications
with and without IORCD running. As expected, the re-
sults demonstrate the negligible impact of monitoring using
IORCD. Variance between measurements is consistent with
and without IORCD monitoring. This is exactly as expected
and will allow us to build in further monitoring and increase
sampling rate.

A. Performance Diagnostic
Shortly after the deployment of IORCD to Chester, we

got our first opportunity to analyze performance anomalies
in the I/O system from the perspective of IORCD. During
some experimental runs of the I/O test harness used to
characterize the performance overhead of an I/O profiling
tool, we ran into a two hour period during which some
of our evaluations of the GTC application experienced up
to 600% performance degradations in their runtimes. From

0

0.2

0.4

0.6

0.8

1

1.2

IOR GTC Hacc	10000 Hacc	1000000 Hacc	10000000

Av
er
ag
e	
Pe
rfo

rm
an
ce
	R
at
io

Figure 6: I/O Router Congestion Daemon: Performance
Impact Study

investigation of the experimental outputs, we identified that
the jobs were experiencing significantly increased write
times. In IORCD, this manifested as shown in Figure 7. Over
several runs of GTC the I/O system was able to handle the
burst of I/O from the compute nodes in a small time frame.
Healthy runs spike quickly with significant magnitude and
the I/O write phase ends within a single sampling period of
the daemon. In unhealthy phases, shown around 2:27:38,
the congestion duration extends through approximately 5
samples with low congestion during the entire duration. In
all of the degraded runs, the problem manifested as reduced
congestion with long duration in more than two samples.
More than two samples is an important aspect here because
an application run of GTC could have simply startled two
sampling periods without manifesting irregular performance.
Extending congestion beyond two sampling periods strongly
indicates that the duration of the I/O was being impeded. It
is also important to point out the low congestion values.
Lustre LNET uses a credit exchange mechanism to handle
network data exchanges. If a component within the parallel
file system became bottlenecked due to under-performance
or the manifestation of errors, interfaces would become
throttled due to lack of credits, resulting in low-congestion
over an extended period of time, as was shown in IORCD.
Ultimately, an analysis of OSS logs showed a locking issue
in the system shortly after 3:00 PM that was resolved
automatically. The performance degradations also stopped
shortly before 3:00 PM. This example was important for
two reasons, it demonstrated a new way for us to start
investigating degradations in the file system performance
and also demonstrated to us a new set of information that we
could use from the I/O routers in Titan to refine our analysis
of congestion. This will be discussed in the next section.

IORCD was deployed to Titan in February of 2016. Due to
the binding of two service nodes per Gemini router, IORCD
was deployed to half of the service nodes in the system
making sure to attain coverage for each Gemini router. The



Figure 5: Splunk Dashboard IORCD Interface

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1E+10

2:
12

:3
8	
PM

2:
14

:0
8	
PM

2:
15

:3
8	
PM

2:
17

:0
8	
PM

2:
18

:3
8	
PM

2:
20

:0
8	
PM

2:
21

:3
8	
PM

2:
23

:0
8	
PM

2:
24

:3
8	
PM

2:
26

:0
8	
PM

2:
27

:3
8	
PM

2:
29

:0
8	
PM

2:
30

:3
8	
PM

2:
32

:0
8	
PM

2:
33

:3
8	
PM

2:
35

:0
8	
PM

2:
36

:3
8	
PM

2:
38

:0
8	
PM

2:
39

:3
8	
PM

2:
41

:0
8	
PM

2:
42

:3
8	
PM

2:
44

:0
8	
PM

2:
45

:3
8	
PM

2:
47

:0
8	
PM

2:
48

:3
8	
PM

2:
50

:0
8	
PM

2:
51

:3
8	
PM

2:
53

:0
8	
PM

2:
54

:3
8	
PM

2:
56

:0
8	
PM

2:
57

:3
8	
PM

2:
59

:0
8	
PM

Figure 7: January 21, 2016: GTC apruns including several
highly degraded runs

deployment created a significant increase in the amount of
data being pushed into the SMW, and ultimately Splunk, but
each of the systems responded well and were able to handle
the new volume of data. To logically organize the data
streams from 220 I/O routers, we leveraged the organization
inherently built into Titan through Fine-grained routing.
Fine-grained routing creates a static organization of routes
from compute nodes to I/O routers to top-of-rack switches
in the file system backend. This mapping reduces hop counts
in the Gemini network and also congestion in the backend
network. This also serves as a logical organization in which
to break up I/O routers into differing groups represented
as 12 I/O partitions on Titan. Figure 5 is a screen taken
directly from the Splunk UI of Partition 2 on Titan. Partition
2 contains 36 I/O routers, representing 36 LNETs. This
provides access to all of the OSSs within Spider II, and
nodes within each LNET’s geometric partition on Titan will
communicate through this set of I/O routers to reach the

parallel file system.

V. FUTURE WORK

In this work, we have discussed our first implementation
of a new mechanism for monitoring parallel file system
performance on Titan. Up to this point we have focused
our efforts on mining the Gemini performance counters as
a means of inferring I/O performance at the routing layer.
Due to the granularity of sampling and the limitations of the
performance counters, the fidelity of this data only provides
loose estimations of our view into operations. In this section,
we will discuss additional work that is currently being
undertaken to improve upon our ultimate goal of identifying
Gemini side impacts to I/O performance.

A. LNET Credit Integration
In the previous evaluation of congestion vs. bandwidth, we

demonstrated that increasing the write bandwidth results in
an increase in service node ingress congestion. While this in-
ference works as a reasonable analogue for assessing work-
load on I/O routers, we found that additional information
would be necessary to increase the accuracy of bottleneck
detection. This weakness of inference became apparent when
debugging the GTC performance degradations on Chester.
With the knowledge that applications were experiencing
significant performance degradation, we were able to pin-
point the data from the IORCD logs. However, in different
circumstances, and on a busier system that same pattern
could simply result from several small files being written
over an extended period of time.

The difference between the two situations lays within the
credit exchange method that is used for LNET routing in
Lustre. In the first case of data throttling, a common OST
was under-performing. This resulted in a credit depletion
between the I/O router and the OST, due to work being
enqueued for transfer to the OST faster than it could be



lctl get_param -n nis

nid status alive refs peer rtr max tx min

0@lo up 0 2 0 0 0 0 0

16798@gni101 up 0 839 16 0 4096 4096 3734

16798@gni102 up 0 750 16 0 4096 4096 3865

16798@gni103 up 0 748 16 0 4096 4096 4015

10.36.229.1@o2ib201 up 0 4 63 0 1280 1280 1091

lctl get_param -n peers

nid refs state last max rtr min tx min queue

7616@gni102 1 NA -1 16 64 64 16 15 0

15431@gni101 1 NA -1 16 64 -156 16 -40 0

6197@gni103 1 NA -1 16 64 64 16 15 0

13724@gni101 1 NA -1 16 64 -219 16 -30 0

10.36.225.100@o2ib201 1 up 69 63 64 -126 63 -27802 0

...

Figure 8: Lustre LNET Client Stat Commands

stored. This created back-pressure that extended to the
credits used for transfers between the compute-hosts and the
I/O router. This, in turn, forced the compute hosts to transfer
at a lower rate, and block at ingress. This resulted in low
congestion at the Gemini interface due to credit exhaustion at
the LNET layer. In the inverse case of many small transfers
being made over an extended period of time to a healthy
OST, there would be remaining credits and low Gemini
congestion. From this example, it became clear that there
would be benefit to integrating LNET credits into IORCD.

The Lustre LNET client provides several ways of mea-
suring congestion at the higher level I/O routing layer.
Lustre LNET routing is accomplished using credit exchanges
to limit overloading. Credits are employed at the network
interface level. Information about the LNET counters can be
found in the Lustre Operations Manual [10]. The network
interface level is queried as shown in Figure 8. These
counters show the particular network interface and a series of
credit counters. Of interest to us are the max and tx credits.
In this case, max is the combined number of send credits for
this interface and tx is the number of send credits currently
available for this interface. Therefore MAX � TX is the
number of active sends. Using these counters, we could track
active sends over successive sampling periods, where large
values of active sends or increasing values over measured
time periods may be indicative of problems. Combining this
data with the Gemini congestion may provide better insight
into overall routing performance and aid in identification of
bottlenecks at the routers.

Credits are also applied at the peer level, shown as the
second command in Figure 8. These counters reflect peer
exchange credits and are used to limit a single peer from
monopolizing resources. As with the NIS counters, the peer
counters reflect the peer credit availability. Gemini side
peers are denoted by nid@gni and OSS peers are reflected

by IP@o2ib. From these counters, we would likely be
interested in the RTR and TX counters. The RTR counter
represents the number of routing buffer credits that are cur-
rently available for use by the peer. The TX counter, as on the
NIS metrics, represents the number of send credits available
to the peer. Credit integration into IORCD would enable
the tracking of individual peers, and, as mentioned before,
the value of these counters can enable an understanding
of the instantaneous in-flight messages for a single host.
This is represented by RTR � TX , additionally, the ratio
of (RTR/TX) > MAX where MAX is the number of
concurrent sends from this peer, indicates that operations
are blocking.

The next steps of integrating Lustre credit congestion
data into IORCD enables several options for improving the
view into I/O performance from Titan. The NIS credits
would potentially require a higher sampling interval but the
backups in these credits have a directionality associated with
them that when coupled with Gemini interface congestion,
enable us to determine if the backup were on the Gemini or
the InfiniBand side. The value here is the additional cost to
include this in IORCD should be relatively low as there are
very few counters that would need to be considered.

A stronger potential outcome of this would be the integra-
tion of peer credits. Tracking individual peers representing
Lustre OSSs and compute nodes in Titan would enable
us to accurately track individual specific backups. On the
OSS, this could aid us in detecting under-performing OSTs.
Using NIS credits for this would show backup on the
InfiniBand side, but would not enable us to identify the
specific under-performing OST. Another possible use of
this data is in detecting performance degradation through
geometric digression. Geometric digression is an artifact of
blocking communication on the Gemini torus. Essentially,
when multiple compute nodes communicate with the same



I/O router, if the path from their respective nodes to the I/O
router overlaps, then bandwidth will be reduced. Without
tracking flows, it is extremely difficult to detect geometric
digression. However, using peer credits, it would be possible
to identify GNI peers that engaged in adversarial traffic
flows. Since the GNI peers themselves have static locations
in the network as does the I/O router. This information,
coupled with the common XYZ dimension order routing
that is most commonly used, can enable us to infer if there
is potential overlap in the traffic pattern. This information
would be valuable to libraries such as ADIOS or Lib-
FGR in phasing I/O timing to attempt to mitigate these
bandwidth reductions. Techniques like these are already used
inside applications to improve I/O performance, but they
are unable to make inferences about traffic patterns from
other applications in adjacent locations. This data would be
application agnostic and thus provide a deeper insight into
the network traffic.

VI. CONCLUSION

In this work, we have presented a new tool for identifying
congested I/O within the Gemini network on OLCF’s Titan.
The I/O Router Congestion daemon is the first tool, to our
knowledge, to run on the service nodes with the Gemini
network, where all other efforts have been focused on the
backend of the parallel file system. Using this tool we can
identify and detect I/O routers that are over-provisioned
causing reduced performance in I/O bandwidth that is invis-
ible to the backend of the storage system. We also outlined
our plans to extend the data collection of IORCD to integrate
more detailed knowledge of Lustre congestion to improve
the understanding of I/O performance at this level. We
believe this effort will enable us to detect non-ideal write
patterns from multiple compute hosts and develop mitigation
strategies to reduce the impact of geometric digression on
network performance.

REFERENCES

[1] J. Dongarra, H. Meuer, and E. Strohmaier, “Top500 super-
computing sites,” http://www.top500.org, 2015.

[2] “Cray XK7.” [Online]. Available:
http://www.cray.com/products/computing/xk-series

[3] D. A. Dillow, D. Fuller, R. Gunasekaran, Y. Kim, H. S.
Oral, D. M. Reitz, J. A. Simmons, F. Wang, G. M. Shipman,
and J. J. Hill, “A Next-Generation Parallel File System
Environment for the OLCF,” Jan. 2012.

[4] S. Oral, D. A. Dillow, D. Fuller, J. Hill, D. Leverman,
S. S. Vazhkudai, F. Wang, Y. Kim, J. Rogers, J. Simmons
et al., “Olcfs 1 tb/s, next-generation lustre file system,” in
Proceedings of Cray User Group Conference (CUG 2013),
2013.

[5] R. Alverson, D. Roweth, and L. Kaplan, “The Gemini System
Interconnect,” in High Performance Interconnects (HOTI),
2010 IEEE 18th Annual Symposium on, Aug. 2010, pp. 83–
87.

[6] Ross Miller, Jason Hill, David A. Dillow, Raghul Gu-
nasekaran, Galen M. Shipman, and Don Maxwell, “Moni-
toring Tools for Large Scale Systems,” in In Proceedings of
Cray User Group Meeting, 2010.

[7] Veronica G. Vergara Larrea, Sarp Oral, Dustin Leverman,
Hai Ah Nam, Feiyi Wang, and James Simmons, “A More
Realistic Way of Stressing the End-to-end I/O System,” in In
Proceedings of Cray User Group Meeting, 2015.

[8] K. T. Pedretti, C. T. Vaughan, R. F. Barrett, K. Devine, and
K. S. Hemmert, “Using the Gemini Performance Counters,”
Napa Valley, May 2013.

[9] “Using the Cray Hardware Counters.” [Online]. Available:
http://docs.cray.com/books/S-0025-10//S-0025-10.pdf

[10] “Lustre* Software Release 2.x: Operations Manual.” [Online].
Available: http://doc.lustre.org/lustre manual.pdf


