
Improving User Notification on Frequently Changing HPC Environments
Chris Fuson, William Renaud, James Wynne III

Oak Ridge Leadership Computing Facility
Oak Ridge National Laboratory

Oak Ridge, TN USA
e-mail: {fusoncb|brenaud|wynnejr} at ornl.gov

Abstract—Today’s HPC centers’ user environments can be
very complex. Centers often contain multiple large
complicated computational systems each with their own user
environment. Changes to a system’s environment can be very
impactful; however, a center’s user environment is, in one-way
or another, frequently changing. Because of this, it is vital for
centers to notify users of change. For users, untracked changes
can be costly, resulting in unnecessary debug time as well as
wasting valuable compute allocations and research
time. Communicating frequent change to diverse user
communities is a common and ongoing task for HPC
centers. This paper will cover the OLCF’s current processes
and methods used to communicate change to users of the
center’s large Cray systems and supporting resources. The
paper will share lessons learned and goals as well as practices,
tools, and methods used to continually improve and reach
members of the OLCF user community.

Keywords-user; support; communication; hpc

I. INTRODUCTION
Today’s High Performance Computing (HPC) centers’

user environments can be very complex. Centers often
contain multiple large complicated computational systems
connected to multiple task-specific file systems, as well as
data analysis, data transfer and workflow resources. Each
system also contains its own user environment with
libraries, compilers, software packages, environment
variables, and batch queuing. Center-specific policies and
procedures used to govern resource use can further
complicate the user environment.

Users must utilize combinations of hardware and
software in order to effectively use HPC
resources. Software, library, compiler, and driver versions
must fit together like a puzzle. In many cases, changing a
single piece of the puzzle can break the process. Changes to
a default software package or library can, for example,
cause a build process or batch job to fail or produce
unexpected results. File system data retention policy
changes can result in data loss. Even changes to behind-the-
scenes pieces, such as environment variables, can cause
users to see failures.

But, a center’s resources are frequently changing and
evolving. It is not possible for a center or vendor to provide
users with an unchanging environment for very
long. Requests for additional features, bug fixes, and
security patches are just some of the reasons and
requirements that constantly drive centers to change user
resources. A center’s user environment is, in one-way or
another, frequently changing.

While testing procedures and environments that hide
underlying complexity, such as Cray’s programming
environment [1], can reduce the impact of change, in many
cases, users must take action as the result of
change. Change to libraries may, for example, require users
to alter function calls, compute system hardware changes
may require users to alter batch scripts, and center policy
changes may require users to alter workflows.

It is vital for centers to notify users of hardware,
software, and policy changes. It is similarly important for
users to follow changes that impact their work. For users,
untracked changes can be costly, resulting in unnecessary
debug time as well as wasting valuable limited compute
allocations and research time. Centers should carefully plan
user notification schedules and work to provide notifications
in a manner that reaches targeted audiences.

The diversity of a center’s user population adds
complexity to the notification process. A center’s user
population often contains hundreds to thousands of users
with differing backgrounds, experience levels, science
domains, schedules, and goals who connect remotely from
around the globe and around the clock, “Fig. 1”. Often
users have access to multiple systems at multiple centers
and their use of each is frequently more cyclic than constant.

FIGURE I. OLCF HOURLY LOGINS

Figure 1. Average hourly OLCF logins over three month period. While
peak logins occured between 09:00 and 17:00, approximately 30% of

logins occured outside normal business hours.

Because a center’s resources must cover a wide range of
use cases, change can impact users differently or not at
all. Changing a software package, for example, may impact

only a small group of users and not the entire user
population. Notifying users of changes that do not impact
them is not ideal; sending messages only to targeted user
groups who are impacted by the change and not the entire
user community is the better option. Notifying only users
who are actively using a software package, for example, will
reduce unnecessary communications and increase the
likelihood that a message will be read.

Communicating frequent change to diverse user
communities is a common and ongoing task for HPC
centers with large Cray systems. The purpose of this paper
is to share previous and ongoing work to improve Oak
Ridge Leadership Computing Facility (OLCF) user
communication. The paper will share historical
communication struggles, lessons learned, and goals as well
as practices, tools, and methods used to continually improve
and reach members of the OLCF user community.

This paper will cover the OLCF’s current processes and
methods used to communicate change to users of the
center’s large Cray systems and supporting
resources. Historical processes and lessons learned will be
covered to help frame the center’s current state. The paper
will also discuss notification methods developed over the
years and the tools and processes developed.

Existing and ongoing work to integrate notification into
the user environment will also be shared. Integrating
notices into center-managed modules has, for example,
proven to be a successful practice to provide targeted
messages to only those using the module. The paper will
discuss the work to integrate notification into the center-
provided and Cray-provided module environment.

II. NOTIFICATION METHODS
The OLCF utilizes a number of general tools and

procedures to notify users of system change and notable
events. Many of the methods utilize common
communication tools while others are system specific or in-
house developed. Some tools are designed to be
interruptive while others allow users to view the notification
at their convenience. Because users vary in the way they
work and interact with the center, the OLCF utilizes
multiple techniques and tools to notify users of change. A
tool or method is selected based on the notification, the
target user group, and the notification’s level of importance.

Email is likely the most common method of
notification. For most, email is a part of daily life; most are
already regularly checking and managing email. Because of
this, it makes sense to utilize email as one of the center’s
main notification methods. Email management systems
allow for easy dissemination of information to groups of
varying sizes. For example, the GNU Mailman List
Manager (Mailman) [2] software provides an easy method
to manage email recipients and limit who can send email to
the recipient lists. Messages and lists of email addresses can
be stored on local servers as opposed to remote servers
which allows more control over user email addresses. The

software also provides the ability for multiple staff members
to send messages on behalf of the center. Sending messages
that appear to come from the center, instead of individual
staff, help to provide a unified center notification.

While email is a vital information dissemination tool, it is
also important to utilize other methods of
communication. Web pages, for example, are an effective
method to provide large amounts of information to a broad
audience. Web sites provide the ability to display large
amounts of data in a format that is easy to navigate and
search. Because data is displayed from a single source, it
also provides a method that can easily be updated without
the need to redistribute or update distributed copies of the
information. The OLCF utilizes its web site [3] to provide
center information from a general overview of the center to
detailed processes needed to utilize center resources. The
center also utilizes web sites to notify users of
change. Other notification methods discussed in this paper
are limited in the amount of data that can be provided.

Web sites, login message of the day (motd), Twitter [4],
write to all (wall), and wrapping common command line
tools provide useful methods to reach users. Passive
methods of providing information, such as websites, allow
the center to provide information that can be viewed at the
user’s convenience. Other tools are more interrupt driven
and can be used to reach users while they perform a
task. For example, by wrapping common UNIX command
line tools, messages can be printed to the screen when the
user executes the command. Because the OLCF user base
varies, it is useful to also vary the methods used to notify
users of change users.

III. TARGETING SMALLER GROUPS
By emailing all OLCF users with a valid account and

placing notices on the center’s web site, the center can
notify all users of center change. However, not all change
impacts all users. In fact, most changes made to center
resources likely impact only a subset of the user
population. A change to a library, for example, only
impacts those who use the library. Notifying all users of all
center changes can greatly increase the amount of
communication a user receives from the center and can
reduce the likelihood that a change notice reaches the
impacted users. Sending a notification containing a small
number of change items is more effective than sending the
same two items mixed into a communication with a larger
number of change items. Notification provided to only
those impacted by the change can also help to increase the
likelihood that a message reaches the target audience. By
working to provide messages that target those groups of
users impacted by the change, center notifications can
become more effective.

A. Wrapping Command Line Tools
Integrating the ability to display messages at execution

time into existing tools provides the ability to target only the

groups who are actively using the tool. For example,
messages printed during a module load can be used to relay
change to only those using the package. This method
allows notification to be targeted to only those users
performing a specific action and at the time the action is
performed. Often a combination of email, web, and
command line tool wrapping messages are used to provide
notification. In this case, email and web are used to provide
a heads-up while command line tools provide a tap on the
shoulder notice.

The OLCF wraps qsub, aprun, and environment modules,
which are common tools required to utilize the OLCF Cray
systems. The methods used to wrap a tool may vary
depending on the tool. But, in each case wrapping the tool
provides the ability to see arguments passed to the tool and
review the arguments before calling the actual
tool. Wrapping a tool simply allows the ability to interject
checks between the time the user hits enter and the actual
tool is executed.

1) Qsub
The TORQUE Resource Manager’s [5] qsub utility is a

tool used to submit jobs to a system’s batch queue. The tool
is used on all OLCF systems as the only route to submit jobs
to the batch queue. Qsub is wrapped on all OLCF systems
to help enforce center policies, provide user-friendly
messages, and in some cases to alter the submission. Center
batch policies are enforced within the submission wrapper
as well as within the batch system. For policies enforced
within the batch system, outliers may be handled by placing
the job on hold indefinitely or by rejecting the job. When
rejected, the system may not reject a batch job for hours or
days after the job has been submitted. By wrapping batch
submissions, immediate feedback can be provided for cases
where the batch system will eventually reject the job. This
allows the submitting user the ability to see a message
describing the center policy that caused the job to be
rejected, make the necessary corrections, and resubmit the
batch job without waiting in the queue for some period of
time only to have the job move into an indefinite hold state
or rejected. The wrapper also provides the ability to print
notice messages for all job submissions. This method is
normally reserved for very large and impactful notices. By
wrapping the qsub submission tool, the center policy notices
can be provided to targeted groups of users upon batch job
submission

2) Aprun (and ld)
We can provide both users and center staff with a great

deal of information by wrapping the commands that users
use to both build and execute parallel jobs on the
system. The OLCF uses wrappers both to capture
information about libraries used by an executable and to
provide the user with alerts if the task layout within a job is
not optimal.

Tracking loaded and unloaded modules can provide great
insight into which software packages are being used, but
there is no explicit guarantee that specific modules will be

loaded every time the module’s associated libraries are
used. This is certainly the case with static linking where,
once an executable is built, there is no longer a need for the
system to find the library. It can be the case as well with
shared objects, where the user merely needs to tell the
loader where to find relevant libraries [6]. Ideally, the user
will load the module to accomplish this, but users may
simply opt to set appropriate variables to permit the system
to find libraries necessary to resolve all symbols. Therefore,
we can't rely solely on information from module actions
(loads/unloads) to determine what software is being used.

The Automatic Library Tracking Database (ALTD) has
been in use for a number of years at OLCF, as previously
reported [7]. Readers desiring a more complete description
of ALTD should refer to [8]; however, a brief overview will
be provided here. ALTD is implemented by wrapping both
the linker (ld) and parallel job launcher. The parallel job
launcher on Titan is aprun. At link time, the ld wrapper
stores an executable's link line in the database and adds a
tag to the executable. When the executable is later launched
via aprun, the aprun wrapper reads the tag provided by the
ld wrapper and records in the database an instance of the
particular executable being run. Center personnel can later
query the database to determine a variety of statistics about
particular libraries on the system, including how often
they're linked against, by whom (both in terms of which
users and which projects), and how often these executables
are run. An executable’s statistics can be of great interest to
center staff in gathering information on which packages are
being used and how often they are being used. In the case
of users who are not loading modules at runtime, it provides
center staff with critical information regarding library
usage. This provides an additional tool over notifications
previously discussed, in that center personnel can more
directly query what software is in use so they can build a list
for a targeted email regarding a version of software that is
being considered for removal. It should be noted that OLCF
is currently moving away from ALTD and toward XALT,
which is a newer utility providing similar functionality
[9][10]. This transition is in its infancy at OLCF, but is
expected to be completed in the coming months.

As time goes on, systems become more and more
complex, especially from the perspective of the user running
a parallel job. Systems with one single-core processor per
node have given way to more complex designs such as the
Cray XK7, which contains a multi-core processor, and a
general-purpose GPU/accelerator per node [11]. As there is
no one-size-fits-all model in terms of how codes run, these
more complex systems allow the user a great degree of
control over the layout of tasks across the compute nodes
allocated to a user. Additionally, users can have accounts
on multiple systems at multiple sites. Thus, they likely use
numerous job launchers and therefore need to remember
multiple settings and options for job task layout. Obviously,
this kind of system information changes far less often than

system software, but is nonetheless important to
communicate to the users.

One consequence of this complexity is the possibility to
inadvertently select an inefficient layout for tasks
allocated. An example of this is running a hybrid
MPI+threaded code but not requesting resources in a
manner that allows each thread to be placed on its own core
(unless explicitly requested, all threads on the XK7 run on a
single core)[12]. It's likely that the job would experience
less-than-expected performance, but might not be aware of
the root cause.

Another example applies when a job only partially
populates a node with MPI tasks (which might be necessary
to accommodate tasks using relatively large amounts of
memory). The AMD Opteron 6200 series processor is built
around compute units that pair integer cores with a single
floating-point unit [13]. By default, the system will place
tasks in a "first fill" method, that is, it will place tasks on
both integer cores of one compute unit before placing tasks
on another compute unit [12]. When a user only uses part of
the node, it is likely they would prefer to only place one
MPI task per floating-point unit to increase floating-point
performance. This is not the default behavior, and can be a
stumbling block for increasing performance.

While it is important to document these application-
scheduling intricacies on user documentation websites and
via emails notifications and to discuss them during formal
training events, such notifications are not the best way to
target individuals. Fortunately, we also have the
opportunity to communicate directly by analyzing the aprun
job layout request prior to launching the job. OLCF's aprun
wrapper calls a tool named aprun-usage, which analyzes the
given aprun's job layout request to detect potentially
inefficient layout options. Feedback is printed to standard
error when certain suboptimal job layouts are
requested. This feedback is instant if the job is running
interactively; for batch jobs submitted using a script the
feedback is simply logged to the job’s output file. In all
cases, the job does continue to run, so the messages are
merely informative (to help select a more optimal task
layout in future runs) and not an obstruction to their
processing.

To handle multiple wrappers for the aprun command,
OLCF extended the model used by ALTD in which the
initial aprun wrapper called a supplementary script called
aprun-prologue [8]. The aprun-usage script was installed in
its own directory but renamed aprun-prologue. The basic
aprun wrapper script provided with ALTD was then
extended to call both the ALTD and aprun-usage versions of
aprun-prologue and was installed as a separate
modulefile. Thus, it now functions as an overall aprun
wrapper that can call additional task-specific wrappers. The
additional wrappers (that is, the altd and aprun-usage aprun-
prologue scripts) are installed in other module
files. Additional wrappers, if identified in the future, could
potentially be installed in a similar way. Users can control

which aprun wrappers are used by unloading the
corresponding modules (all are loaded by default).

As noted earlier, OLCF is transitioning from ALTD to
XALT. While it is similar in function to ALTD, XALT
does not use the same aprun/aprun-prologue calling
sequence as ALTD. As an interim measure, the standard
aprun wrapper provided with XALT has been modified
slightly to call the aprun-usage script. With that
configuration, execution of the aprun-usage script can be
controlled via an environment variable. Additional work
will be required to fully duplicate the model of a single
aprun wrapper that can call multiple task-specific wrappers.

3) Modules
The OLCF user base is very diverse containing projects

that cover a wide range of science categories. The
applications, libraries, and compilers used by projects across
science categories, within science categories, and often
within a project vary. Because of the diversity of the user
base, each OLCF system must provide and support multiple
compilers, libraries, and application packages. The center
must also provide multiple version of each supported
package. Dependencies between compilers, libraries, and
application packages must also be taken into
consideration. For example, an application may require a
particular non-default version of a library, the library may
require a specific non-default compiler version, and the
compiler may require other non-default versions of multiple
libraries. Managing multiple versions of compilers,
libraries, and applications as well as the dependencies that
connect each is a very large task. To build applications,
users must be able to select the needed compiler and library
versions as well as the dependent libraries that are often
unknown to the user.

Environment modules [14] is a tool to help manage users’
shell environments. The tool provides the ability to set and
alter environment variables in a user’s shell. Setting
environment variables, including key variables such as
$PATH and $LD_LIBRARY_PATH, provides control over
versions without the need to specify installation
locations. Users can, for example, execute a module load
command providing the package name and version to add
the package to their environment. The module will alter any
needed variables and will also often add additional modules
to the environment based on the package’s needs. The
OLCF uses environment modules to help provide multiple
versions of compilers, libraries, and applications and
manage the complex dependencies between each version.

To use environment modules, users call an alias or
function (depending on the calling shell) named
module. The alias and additional variables needed to use
environment modules is set upon login for all users. The
module alias calls a binary named modulecmd passing along
the user provided arguments. The basic arguments passed
to module can include flags to list, load, and unload
modules. For example, to add a package to an environment,
‘module load package-name/version’ could be executed

from a system’s command line. The module alias would
call modulecmd passing the given arguments. The
modulecmd would then use a file specific to the package
and version to update the environment. The file used to
specify actions is called a modulefile and is written in Tcl
(Tool Command Language) [15]. Modulefiles can be used
to set new or alter existing variables, load or unload
additional modulefiles, or other tasks such as executing a
command. Calling the module command with a load will
cause the execution of the package’s modulefile; calling the
module command with an unload will undo the environment
settings made during the load.

On Cray provided systems, Cray provides the
environment modules package and many modulefiles. The
Cray systems utilize a combination of environment
modules, compiler wrappers, and login scripts to control
versions and hide system complexity. Compiler wrappers
and modules work together to provide a simplified and user-
friendly environment. A compiler wrapper may key off of
environment variables set by a modulefile in order to create
a link line that adds needed libraries, headers, and link
flags. To use a Cray provided library, a user only needs to
load the necessary library’s modulefile and build using the
compiler wrapper. The compiler wrapper will link to the
libraries, headers, and flags that match the calling compiler
behind the scenes.

The OLCF also builds and maintains additional software
and the software’s associated module for center resources
including Cray systems. Smithy [16], a software installation
management tool, is used to manage center maintained
software builds and modulefiles. On Cray systems, the
center provided modulefiles exists alongside the Cray
provided modulefiles. The same module alias used to load
Cray provided modules is used to load center-managed
modules. In most cases, general use and listing does not
denote the difference.

Throughout a system’s lifetime new modules will be
added, old modules will be removed, and defaults will
change. Because changes to available modules impacts use
of the system, users must be notified of all module
changes. The process to change defaults and remove old
module versions has historically involved notifying users
via email as well as adding the change to the
website. However, because modulefiles must be loaded
before using, they also provide an opportunity to target
those using a package. By printing a notification when a
module is loaded, change notification can be provided to
those using the package. Providing a reminder of change at
the point a package is being used has the ability to reach a
target audience more effectively than email or other
methods.

An initial opportunity to test providing targeted notices
through modules came in December 2014 when
approximately 180 builds of center provided software
packages were scheduled to be removed from Titan
[17]. The builds spanned approximately 46 software

packages that often each contained multiple versions and
multiple compiler specific builds per version. Each of the
to-be-removed builds was managed by the center; because
of this, center staff had access to the
modulefiles. Modulefiles for each of the impacted package
versions was updated to call a script. The script printed a
notification message to standard error stating the package
version was going to be removed from the system on a
given future date. As a result of the added module
notifications, the center received inquiries that allowed the
opportunity to work with individual users prior to the
change. In some cases, after working with users, package
versions were taken off the list of to be removed
versions. Often inquiries noted the module notice message
as the reason for the inquiry. Following the change, the
number of inquiries was limited and lower than previous
software removals. Due to the amount of pre-change
inquiries that noted the module messages combined with the
limited amount of post-change inquiries, the method was
deemed useful and the center proceeded to investigate a
long-term implementation.

A long-term implementation plan discussed involved
modifying all center-provided modulefiles to call a
notification message printing script. The notification script
could decide based on the module action, module package,
and version if a notice should be printed to standard error
before continuing with the module action. Since the
software management system used by the center also
manages modulefiles, the management system could add a
call to the notification message script to each
modulefile. This method is a valid option for center
provided modules, but not for Cray provided modules.

Because the center uses modulefiles provided by both the
center and Cray, a solution that provides the ability to print
messages for both center provided modules and Cray
provided modules is required. After investigating a number
of options, wrapping the modulecmd binary was chosen as
the path forward. Wrapping the modulecmd binary is
accomplished by renaming the modulecmd binary and
creating a script named modulecmd that calls the renamed
original modulecmd binary. By wrapping the binary, scripts
to parse the module’s command line arguments could be
inserted into module requests. The scripts would be
executed for all module commands regardless of the
modulefile location or maintainer. Wrapping the
modulecmd binary provides the ability to insert center-
managed actions into all module commands without the
need to touch individual modulefiles.

To provide a straightforward implementation across all
user facing center resources that use modules, the module
environment software can be placed in the center’s third
party software installation directory tree. By relocating the
software, shell specific login files on each system could
simply source the modules.csh and modules.sh initialization
scripts located in the center’s third party software

area. Modifications to the module build could then be made
without the need to modify system files.

During the development of the environment modules
wrapper, it became apparent that having an extensive test
suite was very important. If there were a bug in the custom
environment modules setup, or in the modules wrapper, it
would end up being very impactful on the user’s experience
and could greatly hinder usability of the system. Therefore,
tests would have to be written for each of the functions of
the wrapper (user messages, module usage logging, etc), as
well as each of the base functions of environment modules
itself. Not only would the test suite need to test all these, it
would be necessary to test them under all available shells:
sh, bash, zsh, csh, ksh, tcsh, etc. Having an extensive test
suite helps prevent issues that could take time away from
users’ developing and running codes which directly
translates to the computers being used more efficiently.

The modulecmd wrapper is currently used in production
at the OLCF on the center’s 744 node Cray XC30,
Eos. Recently approximately 100 Cray provided software
builds spanning over 25 packages were removed from Eos
[18]. The module wrapper was used prior to removing the
builds as one method to provide notification of the removal,
“Fig. 2”. Based on success seen, the plan is to continue
expanding the wrapper to other OLCF systems.

FIGURE II. MODULE NOTICE

Figure 2. Notitication of package version removal targeting users of the
package and printed to standard error upon module load.

B. Email
The OLCF maintains multiple email lists to help target

groups of users. Email lists are generally organized by
system and storage access. In addition to a list of all
enabled users, lists for each of the allocated systems, Lustre
[19] filesystems, and High Performance Storage System
(HPSS) [20] are maintained. As historic lessons have
shown, two groups exist: those who like to receive limited
amount of email and those who like receiving large amounts
of email. To help address both groups, two email lists per
system, filesystem, and HPSS are maintained. The first set

of email lists is considered low-volume, mandatory
membership lists. The lists contain users who have access
to the system. The second set of email lists are considered
optional and contain users who are active on the
system. Users can opt-out of the lists if they do not wish to
be on the list.

By maintaining system specific email lists, system
notices can be sent to only those who have access to a
system. Additionally, maintaining two email lists per
system, a mandatory membership low-volume list
containing all users and an optional high-volume list
containing active users, provides the ability to target user
groups based on system activity. Weekly center update
messages and other high-level or high-impact messages can
be sent to all center users. Events that impact only users
actively using the system can be sent to the high-volume
optional list that contains only those actively using the
system.

C. Web
The center’s main web site [3] is publically accessible

and does not require authentication. The site can be
organized by content to target groups of viewers by subject
category. But, the ability to target the individual viewer is
limited because we only know the viewer based on the
subject category of the page they are viewing. In addition to
the publically available web site, the OLCF also maintains a
site, named MyOLCF, whose access is limited to only users
on a current OLCF project. Because the site requires
authentication, the content can be targeted to the
viewer. For example, the site can display only information
that pertains to projects to which the viewer has access,
“Fig. 3”. By providing a web site that requires
authentication, the displayed content can be adjusted to
target the viewer.

FIGURE III. AUTHENTICATED WEB NOTICE

Figure 3. Notification examples taken from authenticated MyOLCF web
site.

D. Write to All (wall)
The UNIX write to all (wall) [21] tool is not new

technology, but it is still a very effective tool to send
messages to those connected and actively using a
system. The wall tool allows the center to print a message
to the screen of all who are connected to a system. While
email provides the ability for the center to passively send
notification of upcoming outages, the wall tool allows the
center to send an interruptive reminder to those actively
using a system. The tool provides the ability to essentially
‘tap users on the shoulder’ and remind them that the system
will be taken off line within a short period of time. Because
the tool is very interruptive, it is used infrequently and
normally only to notify of impending system or file system
outages, “Fig. 4”. Often the center utilizes the tool to
notify those actively using a system before a system
outage. The center also uses the tool in combination with
login messages to notify of impending emergency system
component maintenance. The wall tool provides the center
the ability to target those connected to and actively using a
system.

FIGURE IV. WALL NOTICE

Figure 4. Wall message providing notification of system outage targeting
users connected to and activily using system.

IV. AUTOMATION
Manually updating email address lists can be a time-

consuming and error prone operation. Similarly, manually
sending notifications of system state change in a timely
manner can be a difficult task especially for changes that
occur outside normal business hours. Automating list
populations can improve notifications by producing accurate
email lists with shorter turnaround time and with increased
frequency. By automating system state change notifications
the time between the state change and the notification can be
set to a constant period of time.

A. Enabled Users Mail Lists
The OLCF maintains multiple low volume mandatory

membership email lists. Membership to each of the low
volume lists is mandatory for all users with current OLCF
accounts. The center maintains a center-wide list containing
all current users as well as lists for each HPC
resource. Each list is updated as accounts are created and
disabled. Because the OLCF adds and removes accounts
throughout the calendar year, manually adding and
removing emails as accounts are created and disabled is an
error prone process. Due to the frequency of account
creations, account state changes, and the maintenance issues

created by manually updating multiple mail lists, each list is
updated automatically.

The account creation and disabling process requires a
number of steps to be completed across the center on
multiple systems. By adding a step to add or remove users
from the mail lists to the account process, users can be
automatically added or removed from the mail lists each
time an account is created or disabled. The GNU Mailman
List Manager (Mailman) software [2], managed by ORNL,
is used to by the center to send mass email to OLCF user
groups. The Mailman tool allows addresses to be added and
removed by sending an email to the server. The account
process emails the mailman server to update the relevant
lists according the account process event.

B. Populate Email Lists with Active Users
In addition to the mandatory membership low volume

email lists; the center also maintains a higher volume
optional membership email list for each center resource
including the HPC systems, the Lustre [19] file systems, and
the mass storage system. Each resource list is populated
with users who are actively using the resource. For this
purpose, an active user is defined as a person who has
logged into a system and/or has had a job, in any state, in
the system’s batch queue within a recent period of time.

Outside of outage periods, users have the ability to log
into OLCF resources and submit batch jobs 24 hours a day
seven days a week. Because authentications are required to
interact with center resources and center policy regulates the
amount of time a login session can be inactive, looking at
successful login attempts over a recent period of time
provides a list of users who are interactively utilizing center
resources. However; the batch system will hold jobs until
resources are free and center policies are met. Because of
this, it is possible that a batch job will not run during the
window of time used to monitor system login
sessions. Center policy and resource availability may cause
a batch job to wait in the queue for a longer period of time
than the window used to gather active user logins. A batch
job in the queue, even if the job was not submitted recently,
is likely still impacted by system changes. Because of this,
users who have had a batch job in the queue within a recent
period of time are also considered an active user.

The center uses a combination of successful
authentications and batch jobs to capture active
users. Because users frequently log into and submit batch
jobs to center resources, calculating the active user list
manually is not feasible. To automate the process, a tool to
gather authentications and batch jobs, and then update mail
lists was created. The tool runs daily to gather user IDs
from logs and then uses the IDs to retrieve email addresses
and update mailman lists.

Each authentication to center resources creates a detailed
record in the center’s logging system. Because successful
authentications are used for a number of activities, the logs
are parsed daily to create simplified authentication

records. The active user-gathering tool uses the simplified
authentication records to quickly retrieve successful
authentications that occurred within a recent period of
time.

Snapshots of each user facing resource’s batch system
are stored on 15-minute intervals. The snapshots provide a
list of jobs in the batch system queue in all states at the
instance the snapshot was taken. A number of activities use
the queue snapshots to view the state of the batch queues
over time. The active user-gathering tool utilizes snapshots
taken within the defined active user window to retrieve
users with batch jobs in the queue during the timeframe.

Once system specific lists of active users are retrieved
from the authentication logs and batch queue snapshots, the
active user-gathering tool retrieves email addresses for each
user ID. Email addresses and user IDs are stored and
maintained for each user in a center database. The database
is used to map needed user IDs to up-to-date email
addresses. Once a list of email addresses is retrieved, the
tool then communicates to the Mailman [2] server, via
email, addresses that should be removed and
added. Because interactions with the mailman server are
performed through a GUI or via email, list memberships are
maintained locally to simplify the automation process. The
tool maintains a per system membership list containing a
email address; the list matches the system’s live Mailman
list. Each time the tool is executed the newly calculated list
of addresses is compared against the local copy of the live
Mailman lists. The comparison provides addresses that
should be removed and added to and from the live Mailman
lists. Using the calculated add/remove address list, the tool
updates the Mailman server via email and updates the local
copies of the lists. The local copies of the lists are
considered definitive. Because the Mailman server can be
updated outside the active user-gathering tool, each
Mailman list is regularly updated to match the local copy.

C. System Status Notifications
One of the items of greatest interest to any center's user

base is the current state of the center's resources. Ideally,
system status changes are infrequent and limited to
previously announced outages. Unfortunately, unplanned
outages are inevitable for a variety of factors. While not a
change in the sense of software update or other
configuration change, such events nonetheless are important
issues to communicate to a center's user base. Such
information can not only alert a user that a running job may
potentially need to be restarted or resubmitted, it can also
alert the user that a given resource is temporarily
unavailable, permitting the user to target other systems to
make the most efficient use of their time.

In general, it is likely that a login attempt will occur first
versus polling an information source to see if a system is
known to be down. Such an event can distract the user from
their computing task and instead direct their attention
towards finding more information about the current state of

the system. This could be an email or phone call to the
center's user support group, but that may not always be the
best option, especially during "off hours" such as overnight
and weekends when the full support staff may not be readily
available and responses delayed. Even if such a request was
made at a time when the center was fully staffed, it could be
mixed with numerous other user requests, which could delay
a response to the user.

Timely notification regarding system outages, therefore,
remains critical. Large computing centers often have users
working at all hours of the day thus timely notification
regarding system outages remains critical at all times. And
much like user activity, system outages do not adhere to the
same workday as system administrators and support staff
and even when they do, communication between individual
users and the center staff is an inefficient way to pass this
information. A method of notifying all potentially impacted
users at once is therefore ideal. At the beginning of an
outage, however, system administrators are likely working
to bring the systems back online. Other center staff may not
be immediately aware of the outage.

Centers must find a way to notify users in a timely
manner at all hours. The solution as implemented at OLCF
is to automate user notifications of system
unavailability. The system in use remains largely
unchanged from that described previously for both the
National Oceanic and Atmosphere Administration’s
National Climate-Computing Research Center [22] and the
OLCF [23], which is based on parsing logs from the center's
Nagios [24] instance and making an educated guess of the
system status based on the results of the various tests run by
Nagios. These status decisions can then be used to provide
user notifications via websites “Fig. 5”, emails to the high-
volume lists discussed earlier, or other utilities [23].

FIGURE V. SYSTEM STATUS INDICATORS

Figure 5. Web system status indicators updated automatically.

As discussed in [22], the status script does have the
potential for false positives (which are often corrected
during the next iteration of the status script), which are
deemed 'flip-flops'. Any notifications must take this
possibility into account. Notifications via websites can
simply be updated, but email notifications require more
caution. It is better to send an email a little late than to send
an incorrect one. At other times, the script may detect (and
continue to detect) that a system is unavailable when in
reality all is well. To combat this, administrators and

support staff have a window of time during which they can
cancel a message. For this reason and the potential for a
flip-flop, the sending of any user notification from the script
is delayed for a set amount of time. If either the state that
resulted in the message being created turns out to be a flip-
flop or center staff determine the message to be in error, the
message is discarded.

Currently, the cancellation of a message does that and
nothing else. The script continues to "think" that the system
is in the state that was deemed errant, and notifications via
the website [25] and Twitter [4] continue to show the errant
state. Correction of this is a potential future enhancement;
however, the major focus has been on the correctness of
email notifications since those are expected to be the most
visible to the user.

In the time that has passed since the aforementioned
publications, the system has been modestly enhanced. The
most notable such change is inclusion of not only Nagios
data but also additional data sources such as the center's
Splunk [26] infrastructure to provide additional
information. Various statistics regarding OLCF Lustre [19]
filesystems are stored via Splunk, and a subset of those
statistics are queried to provide better information on the
status of the center's Lustre filesystems. At present, the
script does not use Splunk data in determining the status of
any other system. Should other systems begin storing
information pertinent to the status script in Splunk, it would
be a trivial task to incorporate a query of that information
into the status script.

Another such change was to reduce potentially
confusing notification messages. Note again that there is
the potential for center staff to cancel a message that the
script has generated. When this is done, there is the
potential for the script to continue to think the system is
unavailable. The potential confusion occurs when the script
detects that the system has returned to service. Without
intervention to cancel the resulting message that's generated,
users will be notified that the system has returned to service
(even though it was never down). Recently logic was added
to the script to prevent this from happening. The script
retains a database of sent messages (including the system
state that generated the message), and it will not send a
message for a system if the state for that message matches
the state of the last sent message for that system.

A final update improved system state
notification. Previously, states were simply returned as "up"
or "down"; however, the recent additions noted in the
previous paragraph have added a "degraded" state,
informing the user that the system is available but may have
performance limited in some way, such as slower than usual
response times. Logic in earlier versions of the script was
rudimentary and assumed binary states, so the addition of a
third state required changes to several parts of the
code. The end result is better communication of the
system's state, which is an important improvement.

V. LESSONS LEARNED
Over the years, the center’s goal to communicate change

has remained consistent; however, methods used to
communicate change have varied. In many cases, user
feedback drives methods used to communicate change. In
other cases, trial and error exposes issues with a
communication method or points to new methods.

A. Email Size
Large emails can unintentionally hide useful

information. A five-page email, for example, may only be
perused or set aside to be read at a less busy time. Topics
placed in a short concise email are more likely to reach the
target audience. Email format is also important. For longer
emails, adding a bulleted lists to the top of the email, “Fig.
6”, can help the audience see at a glance areas that may
impact their work. Brief descriptions of each topic placed in
a section below the bulleted list provide more information
for topics of interest.

FIGURE VI. EMAIL BULLETED MENU

Figure 6. Bulleted menu from OLCF weekly update email.

For topics that require more than a few sentences, it is
useful to place only a brief description of the topic in the
email and place in depth information on the center’s web
site. The email’s brief description can contain a link to the
topic’s more in depth web page allowing interested readers
the ability quickly find more information on the
topic. Formatting and presentation options provided on the
center’s web site provides a more favorable location to
display large amounts of detailed information. Center
resource and infrastructure changes can, for example,
require pages of in depth information to relay requirements
and impact. By emailing the top need-to-know topics
regarding the change in a concise bulleted format with links
to a web page containing detailed descriptions of each topic,
an overview of the change can be quickly viewed by the
reader. For topics of interest, the reader can follow
provided links to the topic’s section on the center’s web site,
which contains a more detailed description of the topic.

B. Email Volume
The user community is diverse containing a wide variety

of center interaction workflows. History has shown that
some workflows work best when most notifications are
received via email, others may prefer limited amounts of
email opting instead to retrieve the bulk of center
notifications from the web or other methods. It was difficult
to address both limited and larger volume email notices with
a single email list. With a single list, the center was either
always sending too many emails or too few emails. To help
address the issue, the center now maintains two sets of email
lists, a high-volume optional membership list and a low-
volume mandatory membership list. The low-volume lists
contain all enabled users; users do not have the option to
remove their address from the list. Under normal
circumstances, an email is sent to the list once a week. The
high-volume list contains users who are actively using
center resources. Access to the list is optional allowing
users to remove their address from the list. Higher volumes
of notices are sent to the list; for example, automated system
status change notices are sent to the list each time a system
changes state. Maintaining high and low volume email lists
provides the center with the ability to address multiple email
volume preferences.

C. Multiple Communication Channels
Because the OLCF user base varies, a single form of

communication is not ideal for all users. While email may
be the preferred method to reach some, it may not be the
best method to reach others. It is important to maintain
multiple notification avenues. Placing a change notification
in an email, on the web, presented at monthly user calls, and
echoed at module load time, increases the avenues to which
a message can be viewed. Providing the same message in
multiple locations increases the odds that the message will
reach its intended audience.

D. Changing Opt-In to Opt-Out
The OLCF regularly utilize email lists as one method to

notify users of system change and center events. Utilizing
multiple lists allows the ability to notify targeted groups of
users and improve email effectiveness. For example, the
OLCF utilizes a set of system-specific email lists to provide
automated notification of system state change and other
notable system events. Because the lists are higher volume
than our standard email notifications, membership to the
lists is optional. Historically users had to sign-up to join the
lists, but after evaluating the opt-in process, it was
determined that an opt-out method would be more beneficial
to the user community. In 2015, the OLCF developed a
process to automate populating each system’s high volume
mail list with users who are actively using the system. An
active user is defined as one who connects to a system or
utilizes the system’s batch queue within a recent period of
time. Maintaining an email list of active users prevents the
need for users to sign-up and provides the center with the

ability to email only users actively utilizing the resource
without sending unnecessary emails to users who are not
currently utilizing the center’s resources.

E. Placeholder Modulefiles
Occasionally, modules are removed or change names

requiring users to find other packages to complete tasks
previously provided by the removed or altered module
package. Unlike default version updates, package name
changes require loading a new module to utilize a tool or
library previously loaded through a module of another
name. Removing modules, especially modules that are
regularly used, can cause confusion. In addition to
notification of the change through standard processes, it is
also useful to create a placeholder modulefile to note the
change. The placeholder modulefile has the same name as
the removed modulefile and can be used to print a message
noting the change. In addition to printing a message, the
placeholder modulefile can also load the new
modulefile. When a module must be removed or renamed,
creating a module with the same name provides the ability
to give the calling user a notice of the change and helps to
reduce confusion caused by the change.

FIGURE VII. MODULE PLACEHOLDER

Figure 7. Notice of module naming convention change targeting users of

the module and printed to standard error upon module load.

F. Software Change Table
Changing defaults and removing old software versions

are required tasks to provide an up-to-date software
environment. Often, changes to software default versions
and removal of old software is performed for a large number
of packages. A change to a library may, for example,
require a large number of Cray and center provided
packages as well as user maintained applications to be
rebuilt. In some cases, a new version of the package may
also be required because only new versions of the package
support the new library. In other cases, the center may take

the rebuild requirement as an opportunity to move package
defaults forward. Old software versions are also often
removed in large bundles. To provide user notification,
software default changes and removal are appended to a
web page on the externally facing web site
[27]. Notification of the change sent via email and other
methods point to the software change web page. As
opposed to previous methods that included all software
change in email notification, this method allows notification
of the change to be concise. The web page provides a
format better suited than email for displaying large amounts
of data. Unlike email, maintaining a web site with software
changes over a recent six to twelve month period also
provides the ability to view and search a historical timeline
of change in one location. The ability to view historical
software changes is very useful in the debug processes and
can help reduce time spent debugging an issue.

VI. CONCLUSIONS
HPC systems are very complex and frequently changing

in one way or another. Change is often required, but can be
very impactful to users of a system. To reduce the impact of
change, notification of change must be provided to the
system’s user community in a manner that reaches all
impacted by the change. The diversity of user communities
and complexity of HPC systems often complicates change
notification. For example, not all change impacts all users
and center use is often more cyclic than constant. Because
of this, notifying the entire user community of all change
unnecessarily increases the amount of communication sent
from the center and reduces the odds that a notification will
reach the target audience impacted by the change.
Employing multiple communication avenues and tools
improves the odds that notifications will reach target
audiences. Utilizing methods and creating tools that target
small groups of users improves the impact of the notice by
helping to ensure the notice is relevant to the user’s work.
Notifications given while an action or tool is being executed
provides the opportunity for a “tap on the shoulder”
reminder of change. It is also important to regularly
evaluate new tools and methods and alter notification
methods based on user feedback. Communicating frequent
change to diverse user communities will likely continue to
be a common and ongoing task for HPC centers with large
Cray systems; because of this, it is important for centers to
continue to evolve and improve change notification
procedures and methods.

ACKNOWLEDGMENT
The authors would like to thank Cathy Willis for her

assistance implementing the module wrapper, Ross Miller
for his work on the script to query Splunk for Lustre data,
Scott Atchley for his work creating the aprun layout tool, and
Robert French for his work on module testing. This research
used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is

supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

REFERENCES
[1] Cray Programming Environment, http://docs.cray.com/books/S-2529-

116/S-2529-116.pdf
[2] GNU Mailing List Manager, https://www.gnu.org/software/mailman/
[3] Oak Ridge Leadership Computing Facility, http://olcf.ornl.gov
[4] Twitter, https://twitter.com
[5] Adapitve TORQUE Resource Manager,

http://www.adaptivecomputing.com/products/open-source/torque-
resource-manager/

[6] D. Wheeler, Program Library HOWTO, version 1.36, 15 May 2010,
http://www.dwheeler.com/program-library/Program-Library-
HOWTO.pdf

[7] B Hadri, M Fahey, T Robinson, W Renaud, Software Usage on Cray
Systems across Three Centers (NICS, ORNL and CSCS),
Proceedings of the Cray User Group Conference (CUG 2012)

[8] M. Faney, N. Jones, B. Hadri, The Automatic Library Tracking
Database, Conference: Cray User Group 2010, Edinburgh, United
Kingdom

[9] M. Fahey, R. McLay, K. Agrawal, XALT Users Manual, version 0.5,
retrieved from https://github.com/Fahey-
McLay/xalt/blob/master/doc/XALTUsersManual-0.5.pdf

[10] M. Fahey, R. McLay, K. Agrawal, XALT Design and Installation
Manual, version 0.5, retrieved from https://github.com/Fahey-
McLay/xalt/blob/master/doc/XALTDesignandInstallationManual-
0.5.pdf

[11] Cray, Inc. Cray XK7 Brochure,
http://www.cray.com/Assets/PDF/products/xk/CrayXK7Brochure.pdf

[12] aprun man page, http://docs.cray.com/cgi-
bin/craydoc.cgi?mode=Show;q=;f=man/alpsm/52/cat1/aprun.1.html

[13] J. Larkin, Titan Architecture, presentation from Titan Users and
Developers Workshop (East Coast) and Users Meeting,
https://www.olcf.ornl.gov/wp-
content/uploads/2013/02/Titan_Architecture_1-JL.pdf

[14] Environment Modules, http://modules.sourceforge.net/
[15] Tcl (Tool Command Language), https://www.tcl.tk/
[16] Smithy, http://anthonydigirolamo.github.io/smithy/
[17] Titan software removal,

https://www.olcf.ornl.gov/kb_articles/software-
news/#Titan:_Software_Removal_Dec_09_2014

[18] Eos software removal,
https://www.olcf.ornl.gov/kb_articles/software-
news/#Eos:_Cray_Provided_Software_Removal_March_29_2016

[19] Lustre. http://www.lustre.org
[20] HPSS (High Performance Storage System), http://www.hpss-

collaboration.org/
[21] Wall (Write to All), http://www.unix.com/man-page/suse/1/wall/
[22] A. Carlyle, R. Miller, D. Leverman, W. Renaud, and D. Maxwell,

"Practical support solutions for a workflow-oriented cray
environment" in CUG Conference Proceedings, Stuttgart, Germany,
May 2012

[23] A. Carlyle, R. French, W. Renaud, Designing Service-Oriented Tools
for HPC Account Management and Reporting, CUG Conference
Proceedings, Lugano, Switzerland, May 2014

[24] Nagios, http://www.nagios.org
[25] OLCF Website, Top-level User Support Page,

https://www.olcf.ornl.gov/support
[26] Splunk. http://www.splunk.com
[27] OLCF Software News,

https://www.olcf.ornl.gov/kb_articles/software-news

