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e Motivation

* How to estimate MCDRAM (or HBM) performance on
existing Xeon nodes

* Application to VASP
e Conclusions
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Efficient use of HBM is important to get &RsC/ 0
optimal application performance on Cori P2 o

Ratio Cori P2 to Edison

Cori P2, a Cray XC40 based on Intel KNL processors, compared to Edison, a Cray XC30 based on
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Cori’s KNL nodes will have 16 GB MCDRAM (HBM) with ~ 5x DDR4 bandwidth

Edison: http://www.nersc.gov/users/computational-systems/edison/

Cori: http://www.nersc.gov/users/computational-systems/cori/cori-phase-ii/




Memory utilization of NERSC workload in

allocation year 2014
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Slide from http://portal.nersc.gov/project/mpccc/baustin/
NERSC 2014 Workload Analysis_300ct2015.pdf
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71% of Edison
workload used less
than 16GB memory
per node. However,
considering more
cores on the KNL
node, we estimate
about half of the
Edison workload will
not fit into the 16GB
HBM (if no changes).
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Dual Socket Xeon nodes can serve as proxies m()
for HBM on KNL nodes i

- Accessing memory on the remote socket via the QPI bus is
slower compared to accessing the near socket memory.

- The near socket memory can mimic the HBM on KNL,; while the
remote socket memory can mimic the DDR memory.

- This is not an accurate model of the bandwidth and latency
characteristics of the KNL on package memory (MCDRAM, or
HBM) but is a reasonable way to determine which data
structures rely critically on bandwidth.
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Memkind library is an Intel development tool i
to allocate arrays in HBM _ W e

* The Memkind library is a user extensible heap manager built
on top of Jemalloc which enables control of memory
characteristics and a partitioning of the heap between kinds
of memory (including user defined kinds of memory).

* Using the Intel compiler directive, IDIRS ATTRIBUTES
FASTMEM, for Fortran codes, and/or using the malloc
wrapper APIs, hbw_malloc, for C/C++ codes, one can
allocate selected arrays to HBM on KNL by linking the
application codes to the Memkind library.

* On today’s Xeon nodes, Memkind can be used to simulate/

estimate the HBM performance impact on the application
codes

http://memkind.github.io/memkind
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Code changes are required to use Memkind NiRSC/
to selectively allocate arrays in HBM bt

* Add compiler directive IDIRS ATTRIBUTES FASTMEM in
the Fortran codes

— real, allocatable :: a(:,:), b(:,:), c(:)
— IDIRS ATTRIBUTES FASTMEM :: a, b, ¢
* Use hbw_malloc, hbw_calloc to replace the malloc,
calloc calls in the C/C++ codes
— #include <hbwmalloc.h>
— malloc(size) -> hbw_malloc(size)
* Link the codes to the memkind and jemalloc libraries
using Intel compilers

— mpiifort —dynamic -O3 -openmp mycode.f90 -L<path-to-mekind-
library> —Imemkind —ljemalloc
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On today’s Xeon nodes (proxies for KNL) an environment variable,
MEMKIND _HBW_NODES, is needed to designate a socket for HBM

* Run the codes with the numactl and
env MEMKIND_HBW _NODES
— export MEMKIND HBW_NODES=0
— numactl --membind=1 --cpunodebind=0 ./a.out

* Notes:

— Memkind can only allocate heap variables to the HBM.
There is no way to allocate stack variables to HBM currently.

— The FASTMEM directive may be supported by other
compilers in the future, e.g., Cray, but may be slightly
different from the Intel FASTMEM directive.

— Srun can be used for parallel jobs

/ wiversitat
_Jwien

Office of |
Science BERKELEY LAB

e



AutoHBW tool is another Intel development tool to NERsC/
allocate arrays in HBM without code changes

 AutoHBW Tool — automatically allocate the arrays in certain
size range to the HBM at run time.

 AutoHBW intercepts the standard heap allocations (e.g.,

malloc, calloc) and allocate them out of HBM using the
memkind API.

* No code change is required

* Included in the memkind distribution:
http://memkind.github.io/memkind

Reference: examples/autohbw README
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AutoHBW tool uses the environment variables ‘nerscA I
to control its behavior o=

e AUTO_HBW_SIZE=X]:y]
— Indicates that any allocation larger than x and smaller thany
should be allocated in HBM. x,y (in K, M, or G)

— AUTO_HBW SIZE=1M:5M # allocations between 1M and 5M
allocated in HBM

« AUTO_HBW_LOG=level

— Sets the verbosity of the logging level:
0 = no messages are printed for allocations
1 = a log message is printed for each allocation (Default)
2 = a log message is printed for each allocation with a backtrace.

— Using the autohbw_get_src_lines.pl script to find source lines
for each allocation.

— Logging adds extra overhead. Use O for performance critical runs
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Application codes need to link to the autohbw 'NERSC/
and memkind libraries .

* MEMKIND_HBW _NODES=<list of numa nodes>

— Sets a comma separated list of NUMA nodes as HBW nodes, e.g.,
MEMKIND_ HBW_NODES=0

— For non-KNL node this env must be set

* AUTO_HBW_MEM_TYPE=<memory_type>

— Sets the type of memory that should be automatically allocated.
Default: MEMKIND _HBW.

— Examples:
AUTO_HBW_MEM_TYPE=MEMKIND_HBW (Default)
AUTO_HBW_MEM_TYPE=MEMKIND_ HBW_HUGETLB
AUTO_HBW_MEM_TYPE=MEMKIND HUGETLB

* Link the codes to the autohbw, memkind and jemalloc
libraries

— mpiifort -O3 -openmp mycode.f90 mycode.f90 -L<path-to-memkind-
library> -lautohbw —Imemkind —ljemalloc
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The autohbw libraries may need to be preloaded to make sure the
malloc commands in applications get intercepted by AutoHBW.

* Run the codes with the numactl and proper environment variables
— export MEMKIND_HBW_NODES=0
— export AUTO_HBW_LOG=0

— export AUTO_HBW_SIZE=1K:5K # all allocations between sizes 1K and 5K
allocated in HBM

— Export LD_LIBRARY_PATH=<path-to-memkind-library>:S{LD _LIBRARY_PATH}
— numactl --membind=1 --cpunodebind=0 ./a.out

 Make sure the malloc calls intercepted by the autohbw library APIs:

— For dynamic builds, using LD_PRELOAD or LD_LIBRARY_PATH to allow
libautohbw.so:libomemkind.so in front of the system default path.

— For static builds, make the autohbw and memkind libraries in front of the
link line. May use -WI,-ymalloc to confirm

e Use the numastat —p <pid> command to displays the memory
allocations among sockets for a running process
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- - - - m YEﬁeRS
Memkind and AutoHBW applications in VASP

* The Vienna Ab-initio Simulation Package (VASP) is a widely

used materials science application.
— Rank #1 code at NERSC, uses about 10-12% of total computing cycles
at NERSC each year

* The fundamental mathematical problem that VASP solves is
a non-linear eigenvalue problem that has to be solved
iteratively via self-consistent iteration cycles until a desired
accuracy is achieved. FFTs and Linear Algebra libraries
(BLAS/LAPACK/ScaLAPACK) are heavily depended on.

* Fortran code with MPI or MPI + OpenMP

VASP: http://www.vasp.at/
VASP: G. Kresse and J. Furthm_ller. Efficiency of ab-initio total energy calculations for /\ Lniversitat
metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci., 6:15, 1996 '\_,l wien



VASP versions used and test cases i

* Two different versions of VASP were used in this study
— Currently released, version 5.3.5, a pure MPI code
— A development version (as of 9/29/2015), a MPI + OpenMP hybrid
— Compiled with Intel compilers and used MKL / ELPA libraries

Test case 1: B.hR105-s Test case 2: PdO@Pd-slab
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Estimating the performance impact of HBM on VASP
code using AutoHBW tool on Edison
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VASP run time for the
hybrid functional
calculation (HSEO0G) when
arrays in different size
range were allocated to
the HBM.

The bandwidths of the
near socket memory
(simulating MCDRAM)
and the far socket memory
via QPI (simulating DDR)
differ by 33%

VASP performs significantly better (40%) when arrays within 1M to
S5M were allocated to HBM.
Expect to have a larger performance benefit from HBM on KNL
Application End users may use HBM more efficiently using

AutoHBW.



U::)nﬂBI\II\I;Iamkmd to selectively allocate arrays =20

* Profiling
* |dentify the candidate routines and memory objects
that may get benefit from using the HBM

 Add the Intel compiler directive, FASTMEM, to the
code

* Linking the code with the memkind library

 Run with numactl on the KNL proxy, the lvy Bridge
Edison compute node
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VASP heavily depends on the math libraries

at the
FOREFRONT

VASP MPI/OpenMP Scaling
320 +-total
300 o Y - eddiag The thread scaling of the
o eddrmm MPI/OpenMP VASP
220 —fftwav_mpi code with the test case
§ 200 ~fitext_mpi PdO@Pd-slab. These
glso lincom are the fixed core (16
2 orthl cores) tests running on
. . rpromd one of the sockets on an
50 ———* . "Lccomu h Intel dual-socket Haswell
- y —3 PENTIE | node (Xeon E5-2697 v3
0 w . MPI_alltoall
16x1 8x2 4x4 2x8 26 GHZ)_at the
MPI Tasks x OpenMP Threads UmverSIty of Vienna.

 Top routines, eddiag, eddrmm, fft*, lincom and orht1, all depend
heavily on the math libraries used.

 The real space projection routines, rpromu and raccOmu, could be
good candidate hotspots for HBM optimization

~
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Is VASP memory bandwidth bound?

al
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BW bound test
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The VASP run time
breakdown over the top
subroutines when running
on the fully packed (blue)
and half-packed (red)
nodes. The tests were done
on an Intel Xeon E5-2697
v3 node and used the test
case PdO@Pd-slab. When
running on half packed
nodes, the memory
bandwidth available for
each task is twice as much
as it is when running on
fully packed nodes.

« Several top subroutines ran faster when running on the
unpacked nodes, especially rpromu, and raccOmu, indicating

they might be bandwidth bound.
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Is VASP compute bound?

CPU bound test
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The VASP run time
breakdown over the top
subroutines when
running at the clock
speeds of 2.5 GHz, and
1.9 GHz on an Intel Xeon
E5-2697 v3 node. The
test case used was
PdO@Pd-slab, and this
experiment was designed
to test if the code is CPU
bound.

« Several top subroutines ran slower when the clock speed was
decreased, indicating they were likely CPU bound. Relatively
rpromu and raccOmu were affected less by the clock speed change.

« Two real space projection routines, rporomu and raccOmu were

likely memory bandwidth bound.
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Allocating arrays in subroutine raccOmu in HBM using the Memkind
library and the FASTMEM Intel compiler directive

Simple cases
SUBROUTINE RACCOMU(NONLR_S, WDES1, CPROJ_LOC, CRACC, LD, NSIM, LDO)

REAL(qn),ALLOCATABLE:: WORK(:),TMP(:,:)
GDEF,ALLOCATABLE :: CPROJ(:,:)

IDIR$ ATTRIBUTES FASTMEM :: WORK, TMP,CPROJ

ALLOCATE(WORK(ndata*NSIM*NONLR_S
%IRMAX),TMP(NLM,ndata*2*NSIM),CPROJ(WDES1%NPRO_TOT,NSIM))

END SUBROUTINE RACCOMU

The only change needed to allocate the arrays WORK, TMP, and CPROJ to
the HBM was adding !DIR$ ATTRIBUTES FASTMEM :: WORK,TMP,CPROJ
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The FASTMEM directive does not work directly with  ETEEY
the Fortran array pointers. oo

INTEGER, POINTER :: NLI (:,:) ! index for gridpoints
REAL(gn),POINTER, CONTIGUOUS :: RPROJ (:) ! projectors on real space grid
COMPLEX(q),POINTER, CONTIGUOUS::CRREXP(:,:,:) ! phase factor exp (i k (R(ion)-

r(grid)))

ALLOCATE(NONLR_S%NLI(IRMAX,NIONS),NONLR_S%RPROJ(NONLR_S%IRALLOC))
ALLOCATE(NONLR_S%CRREXP(IRMAX,NIONS, 1))

* To allocate array pointers NLI, RPROJ and CRREXP to HBM,
— Need to introduce intermediate allocatable arrays.
— Allocate the intermediate arrays in HBM
— Associate the array pointers to these intermediate arrays in HBM
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FASTMEM: Working with Fortran array pointers

INTEGER, POINTER :: NLI (:,:) ! index for gridpoints
REAL(gn),POINTER, CONTIGUOUS :: RPROJ (:) ! projectors on real space grid
COMPLEX(q),POINTER, CONTIGUOUS::CRREXP(:,:,:) ! phase factor exp (i k (R(ion)-

r(grid)))

! To exploit fastmem

INTEGER, ALLOCATABLE :: fm_NLI (:,:) ! index for gridpoints

REAL(gn), ALLOCATABLE :: fm_RPROJ (:) ! projectors on real space grid
COMPLEX(q), ALLOCATABLE :: fm_CRREXP(:,:,:) ! phase factor exp (i k (R(ion)-

r(grid)))

IDIR$ ATTRIBUTES FASTMEM :: fm_RPROJ,fm_CRREXP,fm_NL

! put NLI and RPROJ into fastmem
ALLOCATE(NONLR_S%fm_NLI(IRMAX,NIONS),NONLR_S%fm_RPROJ(NONLR_S
%IRALLOC))

NONLR_S%NLI =>NONLR_S%fm_NLI
NONLR_S%RPROJ=>NONLR_S%fm_RPROJ

ALLOCATE(NONLR_S%fm_CRREXP(IRMAX,NIONS,1))
NONLR_S%CRREXP=>NONLR_S%fm_CRREXP
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VASP performance when a few selected arrays were
allocated in HBM using FASTMEM+Memkind
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Estimating HBM performance Impact to VASP code on Edison

All DDR

Mixed
DDR and HBM usage

All HBM

VASP performance
comparison between
runs when everything
was allocated in the
DDR memory (blue/
slow), when only a few
selected arrays were
allocated to HBM (red/
mixed), and when
everything was allocated
to HBM (green/fast). The
test case PAO@Pd-slab
was used, and the tests
were run on a single
Edison node.

About 9% of speedup of total run time was achieved when a few
selected arrays were allocated to HBM in comparison to when

everything was allocated in the DDR memory.

14% of speedup when everything was allocate on the HBM
This test case had a modest memory bandwidth usage.



Allocating a few arrays in RACCOMU to the HBM achieved the
same level of speedup as allocating everything in the HBM

RACCOMU
25
20
15 —
<
o & All DDR
£
. 10 ——— & Mixed
All HBM
5 - — 3 —
0 -
raccOmu

gemm crrexp_mul_work_add
RACCOMU and its top subroutines

Allocating a few arrays in the real-space projection routine,

RACCOMU, in the HBM (red:Mixed) showed up to 23% of speedup
compared to allocating everything in the DDR memory.
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Allocating a few arrays in RPROMU to the HBM achieved the
same level of speedup as allocating everything in HBM

RPROMU
25
20
- 15 —
g L All DDR
=
10 — & Mixed
All HBM
5 - . —_— | —
O -

rpromu

gemm

crrexp_mul_wave
RPROMU and its top subroutines

Allocating a few arrays in the real-space projection routine,

RPROMU, in the HBM (red:Mixed) showed up to 26% of speedup
compared to allocating everything in the DDR memory.
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Conclusions = =R

« HBM may have a significant performance benefit to
applications.

— Selectively allocating arrays to HBM is a key optimization tactic
to use the small amount of available HBM efficiently on KNL
nodes.

* Intel development tools like Memkind and AutoHBW are
very helpful for users and developers to do HBM
optimizations for KNL on today's architectures. Early
adoption of these tools is key to produce the KNL ready
codes.

 The available tools such as Memkind and AutoHBW are
only capable of allocating heap arrays in HBM, and there
is no good way of allocating stack arrays to HBM so far.
— This prevents OpenMP private arrays from using HBM.

— It is also necessary to change stack arrays (where applicable) to
allocatable arrays to use HBM
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Conclusions --continued @ R4

* The Intel compiler directive IDIRS ATTRIBUTES FASTME
does not work with array pointers directly. Allocatable
work arrays must be introduced and allocated to the
HBM first before associating the array pointers to them.

* The FASTMEM directive is an Intel compiler specific
directive, and is not supported by other compilers.
— This may cause the HBM optimization portability issue.
— Cray compilers will support this directive (with slight
modification) in the future.
* The estimation may not be exact analogy to the HBM
on KNL, however, the approach used here will be
applicable for KNL without modification.
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