
Estimating the Performance Impact of the MCDRAM on KNL Using Dual-Socket
Ivy Bridge Nodes on Cray XC30

Zhengji Zhao
National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory
Berkeley, USA

e-mail: zzhao@lbl.gov

Martijn Marsman
Computational Materials Physics

University of Vienna
Vienna, Austria

e-mail: martijn.marsman@univie.ac.at

Abstract— NERSC is preparing for its next petascale system,
named Cori, a Cray XC system based on the Intel KNL MIC
architecture. Each Cori node will have 72 cores (288 threads),
512 bit vector units, and a low capacity (16GB) and high
bandwidth (~5x DDR4) on-package memory (MCDRAM or
HBM). To help applications get ready for Cori, NERSC has
developed optimization strategies that focus on the
MPI+OpenMP program model, vectorization, and the HBM.
While the optimization on MPI+OpenMP and vectorization
can be carried out on today’s multi-core architectures,
optimization of the HBM is difficult to perform where the
HBM is unavailable. In this paper, we will present our HBM
performance analysis on the VASP code, a widely used
materials science code, using Intel's development tools,
Memkind and AutoHBW, and a dual-socket Ivy Bridge
processor node on Edison, a Cray XC30, as a proxy to the
HBM on KNL.

Keywords-HBM; MCDRAM; KNL; VASP; memory
bandwidth; Memkind; AutoHBW; performance

I. INTRODUCTION
NERSC’s next petascale system will be a Cray XC 40

system based on the Intel Knights Landing (KNL), Many
Integrated Core (MIC) Architecture [1], named Cori [2].
Cori is scheduled to arrive at NERSC this fall (August,
2016), and will have over 9300 single-socket KNL, MIC
processor nodes, interconnected with Cray’s Aries
Dragonfly high-speed network. Each Cori node will have 72
cores (288 threads or logical cores with Hyperthreading)
running at a <1.4 GHz clock-speed, 512 bit vector units, 96
GB DDR4 memory, and a 16 GB on-package high
bandwidth memory, named Multi-Channel DRAM
(MCDRAM, or HBM for simplicity), which will have about
5 times bandwidth of the DDR4 memory (>400GB/s). To
help the current MPI predominant NERSC workload [3]
make a successful transition to this new energy efficient
architecture, NERSC has developed optimization strategies
in collaboration with vendors, which focus on the
MPI+OpenMP program model, vectorization, and the
efficient use of the HBM. NERSC has also initiated a
program, named NESAP [4], to help the applications get
ready for Cori (Phase II). While optimization on
MPI+OpenMP and vectorization can be performed on
today’s multi-core architectures, optimization on the HBM
is difficult to perform where the HBM is unavailable. If

entire NERSC workload can fit into the 16 GB HBM on the
KNL nodes, optimization of the HBM would be less of a
concern. However, at least 50% of the NERSC workload
will not be able to fit into the HBM, as shown in our recent
workload analysis [3]. Therefore, the efficient use of the low
capacity HBM on the KNL nodes will be an important
optimization for applications to get the most performance
out of Cori. Specifically users and developers need memory
management tools that can selectively allocate data
structures to the HBM while allocating the rest of the data to
the DDR memory.

Intel has developed multiple tools to manage the HBM
on KNL, such as the Memkind [5] and AutoHBW [6]
libraries. Furthermore, it possible to emulate the HBM
performance on today’s dual-socket Xeon nodes by making
use of the fact that the bandwidths of accessing the near
socket memory and the far socket memory via QPI are
different. For example, on a dual-socket Ivy Bridge node,
the Stream Triad bandwidths of the two memory accessing
modes differ by 33%. The near socket memory can be used
as the proxy of the HBM (MCDRAM) on KNL, and the far
socket memory can be used as the proxy of the DDR
memory on KNL. Note that this is not an accurate model of
the bandwidth and latency characteristics of the HBM
(MCDRAM) on KNL, but it is a reasonable way to
determine which data structures rely critically on
bandwidths, and get applications ready for the HBM before
the KNL nodes arrive. In this paper, we will present our
HBM performance analysis on the VASP [7-8] code, a
widely used materials science application, using Intel's
development tools, Memkind and AutoHBW, and the dual-
socket Ivy Bridge processor nodes on Edison [9], a Cray
XC30, as the proxies to the HBM on KNL. Our analyses
were performed on the two representative VASP workloads.

The work described here is based on one of the
optimizations attempted during the VASP Dungeon Session
1 in Oct. 2015, which is a part of the NESAP activities to get
the applications ready for KNL. Some of the pre-dungeon
preparation and the post-dungeon follow-up work are
included as well. The rest of the paper is organized as

1 Intel Dungeon Session is a multi-day intense application optimization
session held at Intel Office at Hillsboro, OR with a team of application

developers, Intel engineers, and NERSC staff to get the NESAP application
codes (selected among the NERSC workload) ready for Cori (KNL).

follows: We will describe the environment and methods
used for our HBM analysis in Section II, and will describe
the VASP code and the test cases used in Section III. In
Section IV, we will apply the HBM analysis methods to the
VASP code and will analyze the HBM performance results.
We will conclude the paper by summarizing our
observations in Section V.

II. ENVRIONMENTS AND METHODS FOR HBM ANALYSIS

A. HBM (MCDRAM) on KNL
The KNL architecture brings in new memory

technology, a high bandwidth on package memory called
Multi-Channel DRAM (MCDRAM or HBM for simplicity)
in addition to the traditional DDR4 memory. MCDRAM is a
high bandwidth (~5x more than DDR4) and low capacity
(16GB) memory, packaged with the Knights Landing
Silicon (Fig. 1). MCDRAM can be configured (boot time
options) as a third level cache (cache mode) or as a distinct
NUMA node (flat mode) or somewhere in between (hybrid
mode). If the MCDRAM is configured as a third level
cache, no application source code changes are required,
however, the misses are expensive because applications
need to access both the MCDRAM and the DDR memory.
If the MCDRAM is configured in the flat mode, it is
mapped to physical address space and exposed as a NUMA
node (allocatable memory). The advantage of this mode is
allowing application developers and users have the full
control over the HBM use. The downside is that code
modifications may be required to be able to utilize the
available HBM efficiently. It is very challenging from a
software perspective to understand the best mode suitable

for an application. In this study, we will focus on the flat
mode in which the MCDRAM is configured as a NUMA
node (or multiple NUMA nodes).

B. Edison as HBM proxy
Edison is NERSC’s current petascale system, a Cray

XC30, which has about 5600 dual-socket Ivy Bridge
processor nodes, interconnected with Cray’s Aries
Dragonfly high speed network. Each Edison node has two
sockets, and each socket has 12 cores (24 cores/48 threads
per node) at 2.4GHz. Each node has 64 GB DDR3 1866
MHz memory utilizing eight 8 GB DIMMs. Stream TRIAD
bandwidth per node is 103 GB/s. The two sockets on the Ivy
Bridge node is connected with the QPI links (Fig. 2). The
bandwidths of accessing the near socket memory and the far
socket memory via QPI differ by 33%. This bandwidth
difference can be used to emulate the MCDRAM and DDR
on KNL. The near socket memory can be used as the proxy
of the MCDRAM on KNL, and the far socket memory can
be used as the proxy of the DDR on KNL. This is not an
accurate model of the bandwidth and latency characteristics
of the KNL on package memory, but is a reasonable way to
determine which data structures rely critically on memory
bandwidths.

C. Intel development tools to manage HBM on KNL
1) Memkind – code changes are required
The Memkind [5] library is a user extensible heap

manager built on top of Jemalloc [10], a general purpose
heap manger, which enables the control of memory
characteristics and a partitioning of the heap between kinds
of memory (including user defined kinds of memory). The
Memkind library is capable of managing a few different
memory types including HBM, hugepage memory, HBM
with hugepages, etc., with the HBM being the default
memory type. The Memkind library requires minimal code
changes. For the Fortran codes, the Memkind library uses

Figure 1. Intel KNL overview (source: Intel). Each KNL processor will
have 72 cores (288 threads) at <1.4 GHz, 96GB DDR4 memory
utilizing six 16GB DIMMs at 2400GHz, and a 16 GB MCDRAM with
about 5x memory bandwidth of the DDR4 memory. Processor cores
will be interconnected in a 2D mesh network with two cores per tile
(36 tiles in total), with a 1-MB L2 cache shared between two cores in a
tile, with two 512 bit vector processing units per core, and
with multiple NUMA domain support per socket.

Figure 2. Edison compute node diagram (source: Cray). Each Edison
compute node has two 12 cores Ivy Bridge processors (24cores/48
threads per node) at 2.4 GHz. Each node has 64GB DDR3 1866 MHz
memory utilizing eight 8 GB DIMMs. Each core has its own L1 and
L2 caches, with 64 KB (32 KB instruction cache, 32 KB data) and 256
KB, respectively; a 30-MB L3 cache shared between 12 cores on the
processor (socket). Stream TRIAD bandwidth per node is 103 GB/s.

the Intel compiler directive, !DIR$ ATTRIBUTES
FASTMEM to select data arrays in the code and to allocate
them in the HBM. For the C/C++ codes, it uses the malloc
or calloc wrapper APIs, such as hbw_malloc, hbw_calloc,
etc., to replace the malloc or calloc calls in the codes, to
place those memory objects on to the HBM. The
applications need to be linked to the Memkind library (and
Jemalloc library as well). To use the Memkind library on
Xeon nodes (non-KNL nodes) where the HBM is
unavailable, an environment variable,
MEMKIND_HBW_NODE, is needed to designate a socket
(or a NUMA node) as the HBM node (Note multiple
NUMA nodes can be set as the HBM nodes on a node with
more than two sockets or NUMA nodes). Fig. 3 shows the
steps to use the Memkind library on a dual socket Xeon
node.

In Fig. 3 the memory on Socket 0 on a dual-socket node
simulates the HBM on a KNL node (via
MEMKIND_HBW_NODES=0), and the memory on Socket
1 simulates the DDR memory on KNL. The code, ./a.out,
runs (bound to) on Socket 0, allocating the memory from
the DDR memory (Socket 1). Only the arrays, which were
prefixed with the FASTMEM directive (for example, the
arrays a, b, and c in Fig. 3), will be allocated to the HBM
(Socket 0). Note that the FASTMEM directive is currently
an Intel compiler specific directive. This causes
optimization of the HBM to lack of portability between
different compilers. Fortunately, Cray compilers will soon
support this directive as well [11]. In addition, the Memkind
library can only allocate heap variables to the HBM. There
is no good way to allocate stack variables to the HBM
currently. We showed the steps to use the Memkind library

on a standalone dual-socket Xeon node (e.g., under Edison
Cluster Compatibility Mode (CCM) [12]). However, the
same steps are applicable to the native environment on Cray
XC systems where the Cray compiler wrappers and the Cray
MPICH libraries are used (see [13]). The Memkind library
is an open source tool. See [5] for more details about the
Memkind library.

2) AutoHBW – no code changes are required

The AutoHBW [6] library is a tool that can be used to
automatically allocate arrays within certain size ranges to
the HBM without modifications to the application source
codes. AutoHBW intercepts the standard heap allocations
(e.g., malloc, calloc, etc.,) in the application codes and
allocates them in the HBM if the arrays are within the
specified size range. An environment variable,
AUTO_HBW_SIZE (in M, K, or G) is used to specify the
size range for the arrays to be allocated in the HBM. This
tool is built on top of the Memkind library. Application
codes need to be linked to the AutoHBW and Memkind
libraries. If applications are linked dynamically, then the
AutoHBW and Memkind libraries need to be preloaded (via
LD_PRELOAD) or added to the library search path
(LD_LIBRARY_PATH). AutoHBW uses environment
variables to control its behavior and to interact with the
application codes. See Fig. 4 for the available environment
variables. To use AutoHBW on non-KNL nodes the
environment variable, MEMKIND_HBW_NODES, must be
used to specify which socket/NUMA node to set as the to
use the AutoHBW library on a dual-socket Xeon node.
Similar to the Memkind library, the AutoHBW library can
also be used within the native environment on Cray XC
systems with the Cray compiler wrappers and the Cray
MPICH libraries (See [13]).

In Fig. 5 all arrays sized between1M to 5M will be
1) Modify the codes:

a) Fortran codes: Add Intel compiler directive !DIR$
ATTRIBUTES FASTMEM
real, allocatable :: a(:,:), b(:,:), c(:)
!DIR$ ATTRIBUTES FASTMEM :: a, b, c

b) C/C++ codes: Use hbw_malloc, hbw_calloc to
replace the malloc, calloc calls in the codes
#include <hbwmalloc.h>
malloc(size) -> hbw_malloc(size)

2) Link the codes to the memkind and jemalloc libraries using
Intel compilers

mpiifort -O3 -qopenmp mycode.f90 -L<path-to-
mekind-library> –lmemkind –ljemalloc

3) Run the codes with the numactl and
env MEMKIND_HBW_NODES

export MEMKIND_HBW_NODES=0
numactl --membind=1 --cpunodebind=0 ./a.out

Figure 3. The steps to use the Memkind library on a (standalone) dual-
socket Xeon node. To run on multiple nodes, or when a job lands on a
mom node instead of a head compute node, a parallel job launcher,
e.g., mpirun, srun, aprun or ccmrun, should be used in front of the
numactl command in Step 3 as shown above. Then, the “numactl --
membind=1 --cpunodebind=0” command could be replaced by the
corresponding task/memory affinity options of the job launchers.

AUTO_HBW_SIZE=x[:y]
Indicates that any allocation larger than x and smaller than
y should be allocated in HBM. x,y (in K, M, or G)

AUTO_HBW_LOG=level
 Sets the verbosity of the logging level:
0 = no messages are printed for allocations; 1 = a log
message is printed for each allocation (Default); 2 = a log
message is printed for each allocation with a backtrace.

MEMKIND_HBW_NODES=<list of numa nodes>
Sets a comma separated list of NUMA nodes as HBW
nodes, e.g., MEMKIND_HBW_NODES=0
For non-KNL node this env must be set

AUTO_HBW_MEM_TYPE=<memory_type>
Sets the type of memory that should be automatically
allocated. Default: MEMKIND_HBW.
Examples:
AUTO_HBW_MEM_TYPE=MEMKIND_HBW
(Default)
AUTO_HBW_MEM_TYPE=MEMKIND_HBW_HUGET
LB
AUTO_HBW_MEM_TYPE=MEMKIND_HUGETLB

Figure 4. The environment variables used in AutoHBW.

allocated to the HBM. As with the Memkind library, this
library also works with the heap arrays only. See [6] for
more details about the AutoHBW tool.

III. APPLICATION CODE AND TEST CASES

A. VASP code description and computational problem
The Vienna Ab-initio Simulation Package (VASP) [7-

8] is a widely used materials science application for
performing Ab-initio electronic structure calculations and
quantum-mechanical molecular dynamics (MD) simulations
using pseudopotentials or the projector-augmented wave
method and a plane wave basis set. VASP computes an
approximate solution to the many-body Schrödinger
equation, either within the Density Functional Theory
(DFT) to solve the Kohn-Sham equation or the Hartree-
Fock (HF) approximation to solve the Roothaan equation.
Hybrid functionals that mix the HF approach with DFT are
implemented, and Green's functions methods (GW quasi-
particles and ACFDT-RPA) as well as many-body
perturbation theory (2nd-order Møller-Plesset) are available
in VASP.

The fundamental mathematical problem that VASP
solves is a non-linear eigenvalue problem that has to be
solved iteratively via self-consistent iteration cycles until a
desired accuracy is achieved. This application makes use of
efficient iterative matrix diagonalization techniques like the
residual minimization method with direct inversion of the
iterative subspace (RMM-DIIS) and the blocked Davidson
algorithms. FFTs and Linear Algebra libraries
(BLAS/LAPACK/ScaLAPACK) are heavily depended on.

Currently, the released production code (e.g., 5.3.5) is a
pure MPI code. There is also an MPI+OpenMP hybrid code
that the developers (Marsman) are working on to get ready
for the next generation multi-core/many-core HPC systems.
The majority of the VASP code is written in Fortran. In this
study, we used the pure MPI code, version 5.3.5, and the
MPI+OpenMP hybrid code as well (the development
version as of 9/29/2015). The code was compiled with Intel
compilers (15.1.133) and linked to the MKL (11.02
update1) and ELPA (2015.05.001) libraries. The FFT
routines were also from MKL via the wrapped fftw3
interfaces.

B. Test cases
In this study, we used two different test cases. The first

case was used with the VASP 5.3.5 to test the HBM
performance impact to the hybrid functional calculations
(HSE06) in the VASP code. The hybrid functional
calculations are memory intensive, and are one of the
representative VASP workloads at NERSC. See Fig. 6 for
its atomic structure configuration (denoted as B.HR105-s
hereafter).

The second test case was used with the development
version of VASP (as of 9/29/2015, an MPI+OpenMP hybrid
code) to optimize the HBM use in the typical code path in

VASP (the RMM-DIIS iteration scheme). This is a PdO
slab, containing 174 atoms in total (denoted as PdO@Pd-
slab hereafter). This system was carefully chosen so that it
could fit in the single socket memory on the Haswell node
(Xeon processor E5-2697 v3 at 2.6 GHz). The developers
(Marsman) used this to prepare for the Dungeon Session,
where single node performance was focused on. Fig. 7
illustrates the structure of this test system.

IV. HBM ANALYSIS AND DISCUSSION

A. Estimating HBM effect on VASP performance using
AutoHBW.
For the application end users, who do not modify the

source code, the AutoHBW library could be a convenient
tool for them to experiment with HBM performance to use
the available HBM optimally on the KNL nodes. Using the
AutoHBW library, we estimated the HBM performance
impact on the VASP code. Fig. 8 shows the VASP run time
when arrays with certain sizes were allocated to the

Figure 6. This benchmark test case is a system with 105 Boron atoms,
315 electrons in 216 bands, and 110592 planewaves per band. This
system was used to test if the VASP hybrid functional calculations get
benefit from using the HBM.

Figure 7. The benchmark test case used in profiling the MPI/OpenMP
hybrid VASP code (the development version up-to 9/29/2015). The
test system contains 150 Palladium (Pd) atoms and 24 Oxygen atoms
(O) (denoted as PdO@Pd-slab hereafter), 1644 electrons in 1024
bands, and 33967 planewaves per band. The RMM-DIIS iteration
scheme was tested, and it was executed over multiple bands
simultaneously.

emulated HBM (the near socket memory) on Edison
compute nodes. A production VASP code (version 5.3.5,
pure MPI code) was used, and the memory intensive hybrid
functional computation (HSE06) was tested with the test
case, B.HR105-s. With only a 33% difference in
bandwidths, the total run time of the VASP code was
reduced by about 40% when all arrays sized from 1M to 5M
were allocated to the HBM. Given the fact that the HBM on
a KNL node has a bandwidth five times the size of the DDR
memory, one could expect a much larger performance boost
from utilizing the HBM on KNL. This experiment was very
encouraging and motivated the VASP code team to look
into HBM optimization during the Dungeon Session (Oct.
2015). To efficiently use the limited amount of the HBM on
the KNL nodes, it is critical to allocate only the arrays that
generate the most memory traffic to the HBM.

B. Indentifying HBM candidate routines in the code
To participate a Dungeon Session, developers are

required to do some preparation work [14], including code
profiling to select the hotspots to work on during the
Dungeon Session. In the context of the HBM optimization,
the developers need to determine if their applications (the
hotspots) are memory bandwidth or CPU bound, as the
HBM would benefit the applications only when they are
memory bandwidth bound. Instead of the VTune memory
access analysis, which is a proper tool to identify the arrays
that generate the most memory traffic in the code, Ref. [14]
recommended to run the half packed node and half clock-
speed tests to determine if a code is memory or CPU bound
(roughly). This was to avoid the complexity from using the

VTune memory access analysis, which was still developing
when the VASP Dungeon Session was held (Oct. 2015) and
required some learning effort. This was also due to other
limitations, such as licenses (some developers carried out
the pre-dungeon preparation work on non-NERSC systems).

The profiling of the hybrid code showed a reasonable
thread scaling up to 8 threads (Fig. 9), where the
performance of the hybrid code matched the pure MPI code.
The best performance was achieved with 4 threads per MPI
task (15% speedup in comparison to the pure MPI code).
Beyond 8 threads and up, the poor thread performance of
the FFTs (threaded 3d cfftw from MKL), BLAS1 calls (in
eddrmm), and an increase in the MPI_alltoall costs with a
decreasing number of MPI ranks caused the code to stop
scaling. Note that the top routines, eddiag, eddrmm, fft*,
lincom and orht1, all depend heavily on the math libraries.

The run time comparison between running on the fully
packed and half packed nodes (Fig. 10) showed that most of
the subroutines such as FFTs (fftwav_mpi and fftext_mpi),
the routines that map to the ZGEMM (lincom and orth1),
and the DGEMM (rpromu and racc0mu) were likely
bandwidth bound, especially the real-space projection
routines rpromu and racc0mu (the bars in the blue box).
They had the most run time reduction (30-35%) when
running on the half-packed nodes doubled the memory
bandwidth available per task. The FFTs work on contiguous
data structures. The ZGEMM calls work on contiguous data
structures and are blocked to reach peak performance.
Unfortunately, rpromu and racc0mu access their relevant
input and output data through an index table (gather/scatter),
and that could be a contributing factor for the higher
bandwidth demand on these two routines.

Figure 9. The thread scaling of the MPI/OpenMP VASP code with the
test case PdO@Pd-slab. These are the fixed core (16 cores) tests
running on one of the sockets on an Intel dual-socket Haswell node
(Xeon processor E5-2697 v3 at 2.6 GHz) at the University of Vienna.
The horizontal axis shows the number of MPI tasks and the OpenMP
threads per tasks, and the vertical axis shows the total run time of the
code (blue) and the run time breakdown for the top subroutines in the
code. All run times were from the VASP internal profiler (compile
VASP with the –DPROFILER preprocessor option to enable the
internal profiler).

Figure 8. The simulated HBM performance impact to the VASP hybrid
functional (HSE06) calculations on Edison. The production code
VASP 5.3.5 (pure MPI code) was used. The tests were run with 4
Edison nodes, and had 48 tasks in total. The horizontal axis shows the
size range of the arrays that were allocated to the HBM using the
AutoHBW library tool, and the vertical axis shows the total run time of
the VASP code. The leftmost bar (All DDR) shows the total run time
when everything is allocated to the DDR memory (the far socket
memory), and the rightmost bar (All HBM) shows the run time when
everything is allocated to the HBM (the near socket memory). The test
case used was the system containing 105 Boron atoms (B.HR105-s).

The run time comparison between running on two
different clock-speeds (Fig. 11) showed that the most of the
subroutines were likely CPU bound as well. However, the
two real-space projection routines, rpromu and
racc0mu, hardly benefited from the increased clock-speed
(the bars in the blue box), indicating that they are firmly
memory bandwidth bound (See Fig. 10 as well). This
suggests that the two routines would likely get the most
performance benefit from allocation to the HBM.

C. Allocating arrays in HBM using the Memkind library
and the FASTMEM Intel compiler directive
Based on the analysis in the previous subsection, we

decided to allocate the largest arrays in the real-space
projection routines RACC0MU and RPROMU in the HBM.
Since the code is written in Fortran 90, we must add the
Intel compiler directive FASTMEM in front of the arrays

that will be allocated out of the HBM. Adding the
FASTMEM directive to the code was straightforward if the
arrays to be allocated in the HBM are allocatable (heap
variables). For example, in the code example below (Fig.
12, upper panel), the only change needed to allocate the
arrays WORK, TMP, and CPROJ to the HBM was to add a
line, !DIR$ ATTRIBUTES FASTMEM :: WORK,TMP,CPROJ, in
the code. See the lower panel in Fig. 12 for the changed
code. Note the code snippets hereafter were based on the
real code in VASP but were slightly modified for simplicity.

However, allocating the arrays associated with the array
pointers was not straightforward. Intel compiler does not
support the FASTMEM directive for the array pointers. For
example, in the following code example (Fig. 13, upper
panel), to allocate the arrays pointed by the three array
pointers, NLI, RPROJ, and CRREXP to the HBM, we had
to introduce three allocatable work arrays, fm_NLI,
fm_RPROJ and fm_CRREXP, allocate them to the HBM by
adding the !DIR$ ATTRIBUTES FASTMEM directive in
front of them, and then associate the array pointers to these
work arrays, respectively. See the lower panel in Fig. 13 for
the changed code.

After the FASTMEM directive was added to the code,
it was compiled and run on Edison. Fig. 14 (upper panel)
shows the comparison between the total run time when
everything was allocated in the DDR memory (blue:All
DDR), when only a few selected arrays were allocated to the
HBM (red:Mixed), and when all arrays were allocated to the

Figure 10. The VASP run time breakdown over the top subroutines
when running on the fully packed (blue) and half-packed (red) nodes.
The tests were done on an Intel Xeon E5-2697 v3 node and used the
test case PdO@Pd-slab. When running on half packed nodes, the
memory bandwidth available for each task is twice as much as it is
when running on fully packed nodes. This experiment was designed to
test if an application code is bandwidth bound.

SUBROUTINE RACC0MU(NONLR_S, WDES1,
CPROJ_LOC, CRACC, LD, NSIM, LDO)
...
REAL(qn),ALLOCATABLE:: WORK(:),TMP(:,:)
GDEF,ALLOCATABLE :: CPROJ(:,:)
...
ALLOCATE(WORK(ndata*NSIM*NONLR_S%IRMAX),TMP
(NLM,ndata*2*NSIM),CPROJ(WDES1%NPRO_TOT,NSIM))
...
END SUBROUTINE RACC0MU

SUBROUTINE RACC0MU(NONLR_S, WDES1,
CPROJ_LOC, CRACC, LD, NSIM, LDO)
...
REAL(qn),ALLOCATABLE:: WORK(:),TMP(:,:)
GDEF,ALLOCATABLE :: CPROJ(:,:)

!To allocate WORK,TMP, CPROJ to HBM
!DIR$ ATTRIBUTES FASTMEM :: WORK,TMP,CPROJ
...
ALLOCATE(WORK(ndata*NSIM*NONLR_S%IRMAX),TMP
(NLM,ndata*2*NSIM),CPROJ(WDES1%NPRO_TOT,NSIM))
...
END SUBROUTINE RACC0MU

Figure 12. The upper panel shows the original code before adding the
FASTMEM directive; the lower panel shows the code after adding the
FASTMEM directive.

Figure 11. The VASP run time breakdown over the top subroutines
when running at the clock speeds of 2.5 GHz, and 1.9 GHz on an Intel
Xeon E5-2697 v3 node. The test case used was PdO@Pd-slab, and this
experiment was designed to test if the code is CPU bound.

HBM (green:All HBM). About 9% of speedup in the total
run time was achieved when a few selected arrays were
allocated to the HBM in comparison to when everything
was allocated in the DDR memory, while about 14% of
speedup was achieved when allocating everything out of the
HBM. Further looks into the run time breakdown of the two
real space projection routines (middle and lower panels)
revealed that allocating only a few selected arrays in the
HBM (red:Mixed) achieved the same level of speedup as
allocating everything to the HBM (23-26%). In fact as one
can see from the lower panel (RPROMU) results, allocating
only a few selected arrays to the HBM (Mixed runs, red
bars) outperforms allocating everything in the HBM (green
bars). (Note this is a reproducible result, not due to the run

time variation). This should be related to the increased
memory bandwidth from using both sockets on the node for
the Mixed runs while the All DDR and All HBM runs used
the memory from a single socket only on the dual-socket
Edison node. This test case (PdO@Pd-slab) had a modest
memory bandwidth usage. One could expect a further
performance boost for the systems with higher memory
bandwidth need. Given the fact that the HBM on a KNL

Figure 14. VASP performance comparison when everything was
allocated in the DDR memory (blue: All DDR), when only a few
selected arrays were allocated in the HBM (red: Mixed), and when
everything was allocated to the HBM (green: All HBM). The upper
panel shows the comparison of the total run time. The middle and
lower panels show the run time of the real space projection routines,
RACC0MU, and RPROMU, and the top two subroutines, respectively.
The tests were run on a single socket on an Edison node with two MPI
tasks and six threads per task. Al time shown here were from the
VASP internal profiler.

INTEGER, POINTER :: NLI (:,:) ! index for gridpoints
REAL(qn),POINTER, CONTIGUOUS :: RPROJ (:) ! projectors
on real space grid
COMPLEX(q),POINTER, CONTIGUOUS::CRREXP(:,:,:) !
phase factor exp (i k (R(ion)-r(grid)))

...

ALLOCATE(NONLR_S%NLI(IRMAX,NIONS),NONLR_S%R
PROJ(NONLR_S%IRALLOC))
ALLOCATE(NONLR_S%CRREXP(IRMAX,NIONS,1))

INTEGER, POINTER :: NLI (:,:) ! index for gridpoints
REAL(qn),POINTER, CONTIGUOUS :: RPROJ (:) ! projectors
on real space grid
COMPLEX(q),POINTER, CONTIGUOUS::CRREXP(:,:,:) !
phase factor exp (i k (R(ion)-r(grid)))

! To exploit fastmem, introduce extra allocatable work arrays
INTEGER, ALLOCATABLE :: fm_NLI (:,:) ! index for
gridpoints
REAL(qn), ALLOCATABLE :: fm_RPROJ (:) ! projectors on
real space grid
COMPLEX(q), ALLOCATABLE :: fm_CRREXP(:,:,:) !
phase factor exp (i k (R(ion)-r(grid)))

!add FASTMEM directive
!DIR$ ATTRIBUTES FASTMEM ::
fm_RPROJ,fm_CRREXP,fm_NLI

...

! allocate work arrays to HBM
ALLOCATE(NONLR_S%fm_NLI(IRMAX,NIONS),NONL
R_S%fm_RPROJ(NONLR_S%IRALLOC))
ALLOCATE(NONLR_S%fm_CRREXP(IRMAX,NIONS,1))

!associate arrays pointers to the work arrays
NONLR_S%NLI =>NONLR_S%fm_NLI
NONLR_S%RPROJ=>NONLR_S%fm_RPROJ
NONLR_S%CRREXP=>NONLR_S%fm_CRREXP

Figure 13. The upper panel shows the original code before adding the
FASTMEM directive; the lower panel shows the code after adding the
FASTMEM directive. In this code snippet, the arrays associated to the
array pointers, NLI, RPROJ, and CRREXP, will be allocated to the
HBM.

node has a bandwidth five times the size of the DDR
memory, one could expect a larger performance boost from
utilizing the HBM on KNL for the systems that have high
memory bandwidth usage. To achieve a level of speedup of
allocating everything in HBM (green bars) the VTune
memory access analysis could be used to identify the arrays
that generate most memory traffic, and allocate them to the
HBM. After the Dungeon Session, the developers
(Marsman) have added the FASTMEM directive to the rest
of the codes. As far as the HBM is concerned, VASP code is
ready to exploit KNL.

Note that the Memkind (also AutoHBW) library is not
capable of allocating the stack arrays to the HBM, such as
the automatic arrays in Fortran and the OpenMP private
arrays. Therefore one has to change them to the allocatable
arrays prior to place them to the HBM. However, changing
arrays that are placed in the stack to the heap so to use the
HBM may slowdown the memory accessing speed
significantly in some cases. These are the limitations of the
Memkind and AutoHBW methods (and Intel compilers)
currently. Hopefully, Intel could address these issues in the
near future.

V. CONCLUSIONS AND FUTURE WORK
We simulated and analyzed the performance impact of

the HBM (MCDRAM), which will be available on the
future KNL architecture, on the VASP code, a commonly
used materials science code, using the Memkind and
AutoHBW tools and using the dual-socket Ivy Bridge nodes
as the HBM proxy on KNL. With only 33% difference in
bandwidths between the emulated HBM (near socket
memory) and the DDR (far socket memory), we have
observed up to 40% performance boost when using the
HBM. Our analyses show that the HBM on KNL may have
a significant performance benefit to applications. Identifying
an application is memory bound or CPU bound is the first
step to the HBM optimizations. The run time comparison
between running an application on the fully and half packed
nodes could be used to tell roughly if an application is
memory bound or not. Selectively allocating arrays on the
HBM is a key optimization tactic to use the small amount of
the available HBM efficiently on KNL nodes. The VTune
memory-access analysis is useful to identify the candidate
arrays for HBM. Once the candidate arrays are identified,
using Intel compiler directive, FASTMEM, or using
Memkind APIs, one can selectively allocate those arrays to
the HBM. For the application end users who rarely change
the source codes, the AutoHBW tool could be used to
achieve the optimal use of the HBM conveniently. Early
adoption of the Memkind and AutoHBW tools is key to get

applications ready for KNL as far as the HBM is concerned.
Using Edison Ivy Bridge nodes as the HBM proxy to

estimate the HBM performance is not an exact analogy to
the HBM on KNL, however, the approach used in this study
will be applicable for KNL without modifications. Using
Memkind to do the HBM optimizations still have some
limitations and optimization portability concerns.
Applications developers and end users rely on Intel and
other compiler vendors to mitigate and/or resolve these
issues in the near future.

ACKNOWLEDGEMENT
The work presented in this paper was based on the

VASP Dungeon Session held in Oct. 2015. Many Intel
engineers and NERSC staff provided valuable insights for
this work. Authors would like to thank Jeongnim Kim,
Martyn Corden, Christopher Cantalupo, Sumedh Naik,
Gregory Junker, Ruchira Sasanka and other engineers at
Intel, and also Jack Deslippe at NERSC. This work was
supported by the ASCAR Office in the DOE, Office of
Science, under contract number DE-AC02-05CH11231. It
used the resources of National Energy Scientific Computing
Center (NERSC) and the computing resource at University
of Vienna.

REFERENCES

[1] https://www.nersc.gov/assets/Uploads/Preparing-Software-for-KNL-
ISC15-IXPUG-Keynote.pdf

[2] http://www.nersc.gov/users/computational-systems/cori/
[3] http://portal.nersc.gov/project/mpccc/baustin/NERSC_2014_Workloa

d_Analysis_30Oct2015.pdf
[4] http://www.nersc.gov/nesap
[5] http://memkind.github.io/memkind
[6] http://memkind.github.io/memkind/examples/autohbw_README
[7] http://www.vasp.at/
[8] G. Kresse and J. Furthm_ller. Efficiency of ab-initio total energy

calculations for metals and semiconductors using a plane-wave basis
set. Comput. Mat. Sci., 6:15, 1996

[9] http://www.nersc.gov/users/computational-systems/edison/
[10] https://github.com/jemalloc/
[11] Luis DeRose, “The Cray Programming Environment: Current Status

and Future Directions”, 2016 Cray User Group Meeting, 5-8-12,
2016, England UK.

[12] http://www.nersc.gov/users/computational-systems/edison/cluster-
compatibility-mode/

[13] http://www.nersc.gov/users/computational-systems/cori/application-
porting-and-performance/using-high-performance-libraries-and-tools

[14] http://www.nersc.gov/users/computational-systems/cori/application-
porting-and-performance/dungeon-session-worksheet/

