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Abstract: MeteoSwiss is transitioning from a traditional Cray 
XE6 system to a very dense GPU configuration of the Cray CS-
Storm. This paper will discuss some of the system design choices 
and configuration decisions that have gone into the new setup in 
order to operate the mission critical workloads of weather 
forecasting. This paper will share some of the modifications that 
have been made to enhance things such as CPU/GPU/HCA 
affinity in the job scheduler, monitoring systems that have been 
set up to examine performance fluctuations, and also discuss the 
design of the failover system. This paper will also share some 
challenges found with the CS-Storm management software, as 
well as the current support situation for this product line. 
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I.  INTRODUCTION  

A. Context 
“MeteoSwiss is the Federal Office for Meteorology and 

Climatology. We keep our finger on the pulse of the weather 
and climate, so it’s all clear as day to you.” 

MeteoSwiss has been using Cray systems hosted and 
administered by CSCS for over a decade. These systems are 
used to provide Switzerland with real-time weather analysis 
and forecasts. In addition to daily weather forecasts, this data 
is used for severe weather hazard alerts and provides 
information for air traffic safety. Since these systems are 
mission critical, this requires a very reliable setup in order to 
minimize downtimes and delays as outages and delays have 
the possibility severe consequences. 

The new Cray CS-Storm system is the first time that 
MeteoSwiss have used GPU based computations in their 
workflow. This allows for a much denser configuration of 
nodes. A benefit of this design is a much lower power profile 
along with a somewhat simpler system design as a whole, 
while greatly increasing the computational resources 
available. However, while the system as a whole is 
simplified, each individual node has increased in complexity 
which introduces many more potentials for problems and 
delays. 

With the increased computational capabilities of the new 
system, a new forecast model was implemented, increasing 
both resolution and frequency of forecasts. Under normal 
conditions, there are two forecasts run: COSMO-1 and 

COSMO-E. The COSMO-1 forecast is a short-term forecast 
that is run 8 times a day that forecasts 33 hours at a 
resolution of 1.1km. COSMO-E runs twice a day and 
forecasts 5 days at a resolution of 2.2km. Additionally, there 
are assimilation runs in between the forecasts.  This results in 
a maximum 45-minute window between runs, leaving very 
little room for maintenance activities or delays. 

B. System Design 
As with past Cray systems used by MeteoSwiss, the 

design of the system involves two identical stand-alone 
systems. The systems are designed to tolerate a single node 
failure without affecting production, but in case of additional 
problems the entire production suite can shift to the 
secondary machine. During normal operation, this second 
system is used for development of future codes. 

In the previous generation of the MeteoSwiss system, the 
Cray XE6 was used. This included 72 compute nodes on a 
Gemini network with a Sonexion 1300. The new Cray CS-
Storm system consists of 12 compute nodes on a FDR 
InfiniBand network. The Lustre Filesystem by Cray (CLFS) 
is used for the scratch file system server, and the Lustre 
client in operation is the Cray Cluster Connect (C3). Each of 
the compute nodes contains 8 NVIDIA K80 GPUs. This 
gives each system 192 individual GPUs, which means there 
are a lot fewer nodes that can have problems, however, there 
are a lot more parts in each compute node that can possibly 
influence the node’s availability. There are many monitors 
and health checks in place to alert and diagnose problems 
with the systems. 

In addition to the compute nodes, there are 5 post-
processing nodes to run CPU-only codes that handle post 
processing of data. There are also 3 login nodes for 
compiling and job control. Because each system is self-
contained, both systems have their own set of login and post-
processing nodes. Similar to the compute node policy, each 
node type can lose a single node before a failover is required. 

The CLFS (formally known as esFS) used for the scratch 
file system is identical to the non-Sonexion Lustre option 
found in the traditional Cray product line. This adds 3 nodes 
to the system for managing the storage: a Lustre Metadata 
Server (MDS), an Object Store Server (OSS), and a Bright 
Cluster Manager server that deploys and controls the OSS 
and MDS. There is no failover capability for the OSS or 



MDS, in case of problems on either system; the solution is to 
fail over to the secondary system. 

Rounding out the system are the ACE management 
nodes. ACE is Cray’s Advanced Cluster Engine software 
that controls the cluster. There are two management servers 
that operate in a high-availability setup using 
pacemaker/corosync. There is a global file system that holds 
all of the system images, and shared files. Additionally these 
nodes run our license servers, SLURM controller, and 
SLURM accounting database. 

 
Figure 1.  Piz Kesch Rack Layout 

II. SYSTEM MODIFICATIONS TO SUPPORT WORKLOAD 

A. Compute Nodes and GPU Affinity 
The Cray CS-Storm used by MeteoSwiss is the second-

generation 2826X8 node equipped with a S2600TP 
motherboard. This updated motherboard brings with it some 
desired improvements such as Intel Haswell support, and 
also moves the optional 8x PCIe risers to the second PCI root 
of the system allowing for the placement of a Mellanox FDR 
HCA on the second PCI root of the system enabling the use 
of GPUDirect RDMA across all GPUs. Previously, half the 
GPUs required traversing the non-optimal QPI link limiting 
their ability. 

To help fully support this, some modifications were 
required to our job scheduler. The system shipped with 

Slurm 14.11 that had no concept of GPU affinity. The initial 
modifications were based on work presented by Bull at 
GTC14[1]. Some early development code implementing 
their work was examined, but it fell short of what was 
required for MeteoSwiss. 

Instead of modifying the Slurm code to add additional 
parameters, everything for MeteoSwiss was implemented in 
a Slurm TaskProlog, controlled by setting environment 
variables at job submission time. These can be set in a batch 
script, or on the command line prior to submitting an 
interactive job allowing for a flexible selection of multiple 
modes of operation with the benefit of not having to rely on a 
non-standard Slurm daemon. All of these features can be 
enabled, disabled, or overridden by manually setting the 
associated variables by the user. 

The two main modes of GPU affinity operations 
implemented for MeteoSwiss are based on their job 
requirements. The first version is a strong binding where 
each rank sees only 1 GPU. This is useful for codes that do 
not know how to select between multiple GPUs. The second 
method involves reordering CUDA_DEVICE_VISIBILITY 
for selection by LOCAL_RANK. This is the method that the 
COSMO code uses for device selection.  

In both modes the InfiniBand HCA is also optionally 
masked per rank for proper network selection. Newer 
versions of the MVAPICH library are much better at 
selecting the proper HCA device, and the HCA affinity 
support is mainly still included for verification purposes.  

Slurm 15.08 has implemented a lot of the Bull 
functionality in the standard codebase, but in our limited 
testing, it didn’t fully match the use case of MeteoSwiss. The 
network affinity code in particular was written with 
OpenMPI in mind. MVAPICH uses different environment 
variables for selecting the network interfaces. Additionally, it 
was found on occasion jobs were failing when certain ranks 
would be starved for GPUs. This was caused by the GPU 
selection when CPU core distribution did not match the 
available GPUs due to the various resources being consumed 
and freed in an unpredictable way on the development 
system. This lead to ranks being placed on CPU cores that 
did not have enough GPUs available to assign. A simplified 
example of what was happening is shown in Figure 2. The 
only way around this problem was to assign a GPU to a non-
optimal core, which was preferred to a job outright failing to 
launch. This was a rare edge case that was easily handled by 
the flexibility of a TaskProlog. All of the scripts developed 
on 14.11 worked fully when the system was transitioned to 
15.08. 

 

 
Figure 2.  Comparison of Slurm 

Affinity decisions vs. Custom Solution 



B. Login/Post-Processing Nodes 
As shipped, the non-compute nodes are provisioned to 

disk and are generally unmanaged by ACE or anything else. 
This left eight individual installations of Red Hat Enterprise 
Linux leaving the nodes in a possibly inconsistent state. In 
order to minimize complexity, it was requested that Cray add 
2 additional “clusters” to ACE and provision our Login and 
Post-Processing nodes in a similar way to the Compute 
nodes. This requires only two additional images to maintain 
that now can be updated and pushed out, and is much 
preferred over keeping track of 8 separate system 
installations per-cabinet. 

C. Limitations of ACE 
ACE does many things well, and other things 

questionably. The provisioning is quite nice, as are 
maintaining multiple revisions of images. However, the way 
that the images are implemented is not quite as flexible as 
one would like. The initial documentation provided with the 
system is fairly sparse. It has improved in recent revisions, 
but many of the advanced procedures, such as kernel 
upgrades, had to be figured out by the administration staff. 

 
1) GNBD/Image Management 

Cluster nodes are booted over the network. These images 
live on a XFS file system on the management node. This file 
system is passed between the management nodes in a 
Pacemaker HA setup. The images themselves are LVM 
snapshots (CopyOnWrite stores) and are served using the 
Global Network Block Device (GNBD). The choice of using 
GNBD seems a little odd as the development was 
discontinued years ago. In any case, ACE comes with some 
module source to build a module in the images. This is used 
to mount read-only ext3 file systems across the entire cluster. 

In order to make modifications to an image; it first must 
be checked out of the ACE database. It is then modified, and 
checked in as a new revision. This can be done either using a 
mount point on the management server, or a cluster node 
needs to be rebooted into a read/write mounted image.  

Booting a node read/write is by far the safer option. 
Some issues have been reported where checking in a 
mounted image failed silently, causing the image to be 
checked back in, without creating a new revision. Effectively 
this deleted all work done on the image.  

After successfully checking in a new revision, the only 
way to push out the changes is to reboot the nodes into the 
new image. This results in even minor changes in 
configurations to require a fairly long and costly process. 

Some of this can be worked around by using the acefs 
FUSE driver to manage cluster or node specific files as long 
as a target file exists in the image to be used as a mount-
point. Many files in /etc have been specialized on the nodes 
this way. Another way is by moving files that are likely to be 
changed into what is known as the /global file system. This 
global file system is a NFS mounted directory that all nodes 
share and is useful for installing things such as libraries and 
packages, as well as spool, cron, and persistent files needed 
for GPFS. 

Another limitation of ACE image management is a limit 
on the number of revisions recorded at any given time, and 
that limit is 10. The numbering system is also fairly odd, in 
that it always picks the lowest revision number. For 
example: if a cleaning of images is performed and revisions 
2, 3 and 4 are removed when the system is on revision 7, the 
next revision checked in will be back at 2, and not 8. To help 
show which revision is most current, an alias was created on 
our systems called acerev which sorts the output of ace 
revisions by modification date instead of revision number. 

 
Figure 3.  acerev alias output 

2) Monitoring 
ACE provides monitoring of the cluster through various 

scripts that ship with the system. These scripts run various 
commands that massage outputs into data that populates a 
database residing on the management nodes. This database is 
also exported throughout the cluster in a FUSE mounted file 
system that lives in /acefs, giving a cluster-wide view similar 
to a /proc file system. This allows for multiple ways to query 
data: either using the “ace get” command, or just reading the 
directory structure directly on systems that do not have the 
ace command line tools installed. 

 

 
Figure 4.  Comparison of FUSE vs “ace get” 

ACE ships with it’s own modified version of ganglia 
which uses these database objects to monitor the entirety of 
the cluster. Additional monitors can be added by writing data 
to the database using “ace put”, and this modified Ganglia 
installation will then read the data. However, care must be 
taken when writing to the database, as it’s the same database 
that controls everything that ACE does.  

Due to possibly causing at least one database corruption 
during testing; this method is now avoided. To enable 
monitoring of additional components such as GPUs, an 
actual official Ganglia install was performed. This allowed 
for using such things as gmond plugins directly on the nodes, 
which gives the ability to easily add GPU health monitoring 
to the system.   



 

 

Figure 5.  GPU Temp/Clock speed monitors 

In addition to Ganglia, Nagios was installed on the 
systems, allowing for active and passive checks alerting for 
hard failures, or warnings. This is a standard practice on 
HPC systems, and is used on other systems that CSCS 
manages. Because ACE is providing many health checks 
itself, duplicate checks can be avoided by having Nagios 
checks just query the database instead of re-running the 
checks. 

III. EARLY ISSUES 

A. Cloning of System Images 
One early issue discovered comes from the fact there are 

two identical systems. In order to speed up initial 
installation, all work was done on the images on one system 
and then ACE’s image export functionality was used and the 
images were imported onto the other system. This worked 
well for the first image tested, but failed miserably on the 
others. It seems that on the first boot ACE does some extra 
processing of the imported image. The solution is that when 
importing an image, only boot a single node until it’s 
finished booting otherwise the imported image will be 
corrupted. It is not a huge problem to do it this way, it was 
just surprising. 

Another limitation with the import/export functionality is 
that the concept of cluster vs global specifications gets 
removed. Importing a cluster from one system exported from 
another has caused the configurations of unrelated clusters to 
be overwritten unexpectedly. Due to this behavior, we no 
longer use the export/import functionality across the 
different machines. Additionally, a snapshot of the /acefs 
specializations is made prior to any import operation to 
compare and verify. 

B. Corruption of the High Availability Filesystem 
Another issue found with data corruption is still under 

investigation. The shared XFS file system has now seen 
various degrees of corruption on both sets of management 

nodes. This seems to be related to some sort of failover 
event, but as of yet, it is still unknown completely what 
triggers it. When it happens, it takes the entire cluster down, 
as the cluster images are being mounted live on XFS. The 
only solution is to xfs_repair with the –L option, which will 
remove the metadata log, at which point the system can 
healthily mount the data again. 

C. GPU Health and Performance 
Outside of the management quirks, the early experience 

with the reliability of the compute hardware has been less 
than ideal. There were a few problems, but infant mortality 
was quite low. One issue seen a couple of times was with the 
risers needing to be reseated. There was some very odd 
behavior seen in some GPUs that were producing very slow 
results. Health checks were passing, and all reported link 
speeds were reading correct numbers. The measured 
bandwidth to a number of GPUs was well below average. 
The issue was that the link from the system to the riser was 
degraded. The link from the riser’s PLX to the GPU was 
reporting full speed; so simple link width checks were not 
catching it.  

 
Figure 6.  GPU PCIe Tree 

Using this chart helps to see where the problem most 
likely lies. Looking at how many GPUs go slow at a time is a 
good way to figure out where the problem is. If one or two 
are affected, there is probably something wrong with the 
K80. If four are affected, the problem is most likely in the 
riser or motherboard. 

D. RedHat Kernel Bugs 
The only other major issue seen was that the system was 

shipped with a RedHat kernel that had an issue with Haswell 
CPUs. This resulted in some workloads randomly stalling 
with stack traces pointing to hang in futex_wait(). Once the 
issue was discovered, the solution was to install a new kernel 
that contained the fix. After the kernel was put in place, jobs 
stopped stalling.  

IV. SUPPORT  
Due to the difference between this product and the XC 

line, the support situation is fairly new. The current model 
that CSCS is operating under is that the images on the 
compute nodes are completely our responsibility. With 
recent security vulnerabilities, the need to upgrade kernels 
and libraries has been critical. There exists some ACE 
documentation on the procedures to update and build images, 
but it is lacking when the updates involve updating the kernel 
and initrd.  

ACE handles much of the work of generating the boot 
files, but care must be taken for all necessary drivers to be 



built targeting the new kernel prior to attempting to boot it. 
In order to successfully boot, drivers are needed for OFED, 
GNBD, and Lustre.  

Outside of the images, anything involving the CLFS or 
ACE management servers are directly supported by Cray. 
The documentation of ACE says that it should be treated as 
an appliance. This means the underlying system is pretty 
much locked to changes. For system vulnerabilities this has 
meant filing a case with Cray requesting if a package change 
will be safe. ACE itself is in an odd state where fixes have 
been immediately provided after reporting problems. These 
fixes have build dates months in the past, but no notifications 
had been received that there was a new version prior to our 
reporting running into the issue.  

CLFS is identical to the product supplied to the large 
XE/XK/XC systems. Right now it is running the out of 
support CentOS 6.4 with no real roadmap for an update 
known. 

V. CONCLUSION 
While there have been a few initial problems and getting 

accustomed to a new system of configuration and support, 
overall the experience with these systems have been positive. 
It would be nice if there were a bit more in the way of 
defined support and documentation for this product line.  

There has definitely been a learning curve to the 
management of these machines, but with some 
modifications, customizations, and fixes they have turned out 
to be quite capable and powerful machines which has 
allowed MeteoSwiss a much improved resolution for their 
forecasts, which are now in production.  
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