
Early Experiences configuring a Cray CS-Storm for Mission Critical Workloads

Mark Klein, Marco Induni
HPC Systems Engineer

Swiss National Supercomputer Centre (CSCS)
Lugano, Switzerland

mark.klein@cscs.ch, marco.induni@cscs.ch

Abstract: MeteoSwiss is transitioning from a traditional Cray
XE6 system to a very dense GPU configuration of the Cray CS-
Storm. This paper will discuss some of the system design choices
and configuration decisions that have gone into the new setup in
order to operate the mission critical workloads of weather
forecasting. This paper will share some of the modifications that
have been made to enhance things such as CPU/GPU/HCA
affinity in the job scheduler, monitoring systems that have been
set up to examine performance fluctuations, and also discuss the
design of the failover system. This paper will also share some
challenges found with the CS-Storm management software, as
well as the current support situation for this product line.

Keywords-component; CS-Storm; CSCS; MeteoSwiss; GPU
affinity; configuration; high-availability

I. INTRODUCTION

A. Context
“MeteoSwiss is the Federal Office for Meteorology and

Climatology. We keep our finger on the pulse of the weather
and climate, so it’s all clear as day to you.”

MeteoSwiss has been using Cray systems hosted and
administered by CSCS for over a decade. These systems are
used to provide Switzerland with real-time weather analysis
and forecasts. In addition to daily weather forecasts, this data
is used for severe weather hazard alerts and provides
information for air traffic safety. Since these systems are
mission critical, this requires a very reliable setup in order to
minimize downtimes and delays as outages and delays have
the possibility severe consequences.

The new Cray CS-Storm system is the first time that
MeteoSwiss have used GPU based computations in their
workflow. This allows for a much denser configuration of
nodes. A benefit of this design is a much lower power profile
along with a somewhat simpler system design as a whole,
while greatly increasing the computational resources
available. However, while the system as a whole is
simplified, each individual node has increased in complexity
which introduces many more potentials for problems and
delays.

With the increased computational capabilities of the new
system, a new forecast model was implemented, increasing
both resolution and frequency of forecasts. Under normal
conditions, there are two forecasts run: COSMO-1 and

COSMO-E. The COSMO-1 forecast is a short-term forecast
that is run 8 times a day that forecasts 33 hours at a
resolution of 1.1km. COSMO-E runs twice a day and
forecasts 5 days at a resolution of 2.2km. Additionally, there
are assimilation runs in between the forecasts. This results in
a maximum 45-minute window between runs, leaving very
little room for maintenance activities or delays.

B. System Design
As with past Cray systems used by MeteoSwiss, the

design of the system involves two identical stand-alone
systems. The systems are designed to tolerate a single node
failure without affecting production, but in case of additional
problems the entire production suite can shift to the
secondary machine. During normal operation, this second
system is used for development of future codes.

In the previous generation of the MeteoSwiss system, the
Cray XE6 was used. This included 72 compute nodes on a
Gemini network with a Sonexion 1300. The new Cray CS-
Storm system consists of 12 compute nodes on a FDR
InfiniBand network. The Lustre Filesystem by Cray (CLFS)
is used for the scratch file system server, and the Lustre
client in operation is the Cray Cluster Connect (C3). Each of
the compute nodes contains 8 NVIDIA K80 GPUs. This
gives each system 192 individual GPUs, which means there
are a lot fewer nodes that can have problems, however, there
are a lot more parts in each compute node that can possibly
influence the node’s availability. There are many monitors
and health checks in place to alert and diagnose problems
with the systems.

In addition to the compute nodes, there are 5 post-
processing nodes to run CPU-only codes that handle post
processing of data. There are also 3 login nodes for
compiling and job control. Because each system is self-
contained, both systems have their own set of login and post-
processing nodes. Similar to the compute node policy, each
node type can lose a single node before a failover is required.

The CLFS (formally known as esFS) used for the scratch
file system is identical to the non-Sonexion Lustre option
found in the traditional Cray product line. This adds 3 nodes
to the system for managing the storage: a Lustre Metadata
Server (MDS), an Object Store Server (OSS), and a Bright
Cluster Manager server that deploys and controls the OSS
and MDS. There is no failover capability for the OSS or

MDS, in case of problems on either system; the solution is to
fail over to the secondary system.

Rounding out the system are the ACE management
nodes. ACE is Cray’s Advanced Cluster Engine software
that controls the cluster. There are two management servers
that operate in a high-availability setup using
pacemaker/corosync. There is a global file system that holds
all of the system images, and shared files. Additionally these
nodes run our license servers, SLURM controller, and
SLURM accounting database.

Figure 1. Piz Kesch Rack Layout

II. SYSTEM MODIFICATIONS TO SUPPORT WORKLOAD

A. Compute Nodes and GPU Affinity
The Cray CS-Storm used by MeteoSwiss is the second-

generation 2826X8 node equipped with a S2600TP
motherboard. This updated motherboard brings with it some
desired improvements such as Intel Haswell support, and
also moves the optional 8x PCIe risers to the second PCI root
of the system allowing for the placement of a Mellanox FDR
HCA on the second PCI root of the system enabling the use
of GPUDirect RDMA across all GPUs. Previously, half the
GPUs required traversing the non-optimal QPI link limiting
their ability.

To help fully support this, some modifications were
required to our job scheduler. The system shipped with

Slurm 14.11 that had no concept of GPU affinity. The initial
modifications were based on work presented by Bull at
GTC14[1]. Some early development code implementing
their work was examined, but it fell short of what was
required for MeteoSwiss.

Instead of modifying the Slurm code to add additional
parameters, everything for MeteoSwiss was implemented in
a Slurm TaskProlog, controlled by setting environment
variables at job submission time. These can be set in a batch
script, or on the command line prior to submitting an
interactive job allowing for a flexible selection of multiple
modes of operation with the benefit of not having to rely on a
non-standard Slurm daemon. All of these features can be
enabled, disabled, or overridden by manually setting the
associated variables by the user.

The two main modes of GPU affinity operations
implemented for MeteoSwiss are based on their job
requirements. The first version is a strong binding where
each rank sees only 1 GPU. This is useful for codes that do
not know how to select between multiple GPUs. The second
method involves reordering CUDA_DEVICE_VISIBILITY
for selection by LOCAL_RANK. This is the method that the
COSMO code uses for device selection.

In both modes the InfiniBand HCA is also optionally
masked per rank for proper network selection. Newer
versions of the MVAPICH library are much better at
selecting the proper HCA device, and the HCA affinity
support is mainly still included for verification purposes.

Slurm 15.08 has implemented a lot of the Bull
functionality in the standard codebase, but in our limited
testing, it didn’t fully match the use case of MeteoSwiss. The
network affinity code in particular was written with
OpenMPI in mind. MVAPICH uses different environment
variables for selecting the network interfaces. Additionally, it
was found on occasion jobs were failing when certain ranks
would be starved for GPUs. This was caused by the GPU
selection when CPU core distribution did not match the
available GPUs due to the various resources being consumed
and freed in an unpredictable way on the development
system. This lead to ranks being placed on CPU cores that
did not have enough GPUs available to assign. A simplified
example of what was happening is shown in Figure 2. The
only way around this problem was to assign a GPU to a non-
optimal core, which was preferred to a job outright failing to
launch. This was a rare edge case that was easily handled by
the flexibility of a TaskProlog. All of the scripts developed
on 14.11 worked fully when the system was transitioned to
15.08.

Figure 2. Comparison of Slurm

Affinity decisions vs. Custom Solution

B. Login/Post-Processing Nodes
As shipped, the non-compute nodes are provisioned to

disk and are generally unmanaged by ACE or anything else.
This left eight individual installations of Red Hat Enterprise
Linux leaving the nodes in a possibly inconsistent state. In
order to minimize complexity, it was requested that Cray add
2 additional “clusters” to ACE and provision our Login and
Post-Processing nodes in a similar way to the Compute
nodes. This requires only two additional images to maintain
that now can be updated and pushed out, and is much
preferred over keeping track of 8 separate system
installations per-cabinet.

C. Limitations of ACE
ACE does many things well, and other things

questionably. The provisioning is quite nice, as are
maintaining multiple revisions of images. However, the way
that the images are implemented is not quite as flexible as
one would like. The initial documentation provided with the
system is fairly sparse. It has improved in recent revisions,
but many of the advanced procedures, such as kernel
upgrades, had to be figured out by the administration staff.

1) GNBD/Image Management

Cluster nodes are booted over the network. These images
live on a XFS file system on the management node. This file
system is passed between the management nodes in a
Pacemaker HA setup. The images themselves are LVM
snapshots (CopyOnWrite stores) and are served using the
Global Network Block Device (GNBD). The choice of using
GNBD seems a little odd as the development was
discontinued years ago. In any case, ACE comes with some
module source to build a module in the images. This is used
to mount read-only ext3 file systems across the entire cluster.

In order to make modifications to an image; it first must
be checked out of the ACE database. It is then modified, and
checked in as a new revision. This can be done either using a
mount point on the management server, or a cluster node
needs to be rebooted into a read/write mounted image.

Booting a node read/write is by far the safer option.
Some issues have been reported where checking in a
mounted image failed silently, causing the image to be
checked back in, without creating a new revision. Effectively
this deleted all work done on the image.

After successfully checking in a new revision, the only
way to push out the changes is to reboot the nodes into the
new image. This results in even minor changes in
configurations to require a fairly long and costly process.

Some of this can be worked around by using the acefs
FUSE driver to manage cluster or node specific files as long
as a target file exists in the image to be used as a mount-
point. Many files in /etc have been specialized on the nodes
this way. Another way is by moving files that are likely to be
changed into what is known as the /global file system. This
global file system is a NFS mounted directory that all nodes
share and is useful for installing things such as libraries and
packages, as well as spool, cron, and persistent files needed
for GPFS.

Another limitation of ACE image management is a limit
on the number of revisions recorded at any given time, and
that limit is 10. The numbering system is also fairly odd, in
that it always picks the lowest revision number. For
example: if a cleaning of images is performed and revisions
2, 3 and 4 are removed when the system is on revision 7, the
next revision checked in will be back at 2, and not 8. To help
show which revision is most current, an alias was created on
our systems called acerev which sorts the output of ace
revisions by modification date instead of revision number.

Figure 3. acerev alias output

2) Monitoring
ACE provides monitoring of the cluster through various

scripts that ship with the system. These scripts run various
commands that massage outputs into data that populates a
database residing on the management nodes. This database is
also exported throughout the cluster in a FUSE mounted file
system that lives in /acefs, giving a cluster-wide view similar
to a /proc file system. This allows for multiple ways to query
data: either using the “ace get” command, or just reading the
directory structure directly on systems that do not have the
ace command line tools installed.

Figure 4. Comparison of FUSE vs “ace get”

ACE ships with it’s own modified version of ganglia
which uses these database objects to monitor the entirety of
the cluster. Additional monitors can be added by writing data
to the database using “ace put”, and this modified Ganglia
installation will then read the data. However, care must be
taken when writing to the database, as it’s the same database
that controls everything that ACE does.

Due to possibly causing at least one database corruption
during testing; this method is now avoided. To enable
monitoring of additional components such as GPUs, an
actual official Ganglia install was performed. This allowed
for using such things as gmond plugins directly on the nodes,
which gives the ability to easily add GPU health monitoring
to the system.

Figure 5. GPU Temp/Clock speed monitors

In addition to Ganglia, Nagios was installed on the
systems, allowing for active and passive checks alerting for
hard failures, or warnings. This is a standard practice on
HPC systems, and is used on other systems that CSCS
manages. Because ACE is providing many health checks
itself, duplicate checks can be avoided by having Nagios
checks just query the database instead of re-running the
checks.

III. EARLY ISSUES

A. Cloning of System Images
One early issue discovered comes from the fact there are

two identical systems. In order to speed up initial
installation, all work was done on the images on one system
and then ACE’s image export functionality was used and the
images were imported onto the other system. This worked
well for the first image tested, but failed miserably on the
others. It seems that on the first boot ACE does some extra
processing of the imported image. The solution is that when
importing an image, only boot a single node until it’s
finished booting otherwise the imported image will be
corrupted. It is not a huge problem to do it this way, it was
just surprising.

Another limitation with the import/export functionality is
that the concept of cluster vs global specifications gets
removed. Importing a cluster from one system exported from
another has caused the configurations of unrelated clusters to
be overwritten unexpectedly. Due to this behavior, we no
longer use the export/import functionality across the
different machines. Additionally, a snapshot of the /acefs
specializations is made prior to any import operation to
compare and verify.

B. Corruption of the High Availability Filesystem
Another issue found with data corruption is still under

investigation. The shared XFS file system has now seen
various degrees of corruption on both sets of management

nodes. This seems to be related to some sort of failover
event, but as of yet, it is still unknown completely what
triggers it. When it happens, it takes the entire cluster down,
as the cluster images are being mounted live on XFS. The
only solution is to xfs_repair with the –L option, which will
remove the metadata log, at which point the system can
healthily mount the data again.

C. GPU Health and Performance
Outside of the management quirks, the early experience

with the reliability of the compute hardware has been less
than ideal. There were a few problems, but infant mortality
was quite low. One issue seen a couple of times was with the
risers needing to be reseated. There was some very odd
behavior seen in some GPUs that were producing very slow
results. Health checks were passing, and all reported link
speeds were reading correct numbers. The measured
bandwidth to a number of GPUs was well below average.
The issue was that the link from the system to the riser was
degraded. The link from the riser’s PLX to the GPU was
reporting full speed; so simple link width checks were not
catching it.

Figure 6. GPU PCIe Tree

Using this chart helps to see where the problem most
likely lies. Looking at how many GPUs go slow at a time is a
good way to figure out where the problem is. If one or two
are affected, there is probably something wrong with the
K80. If four are affected, the problem is most likely in the
riser or motherboard.

D. RedHat Kernel Bugs
The only other major issue seen was that the system was

shipped with a RedHat kernel that had an issue with Haswell
CPUs. This resulted in some workloads randomly stalling
with stack traces pointing to hang in futex_wait(). Once the
issue was discovered, the solution was to install a new kernel
that contained the fix. After the kernel was put in place, jobs
stopped stalling.

IV. SUPPORT
Due to the difference between this product and the XC

line, the support situation is fairly new. The current model
that CSCS is operating under is that the images on the
compute nodes are completely our responsibility. With
recent security vulnerabilities, the need to upgrade kernels
and libraries has been critical. There exists some ACE
documentation on the procedures to update and build images,
but it is lacking when the updates involve updating the kernel
and initrd.

ACE handles much of the work of generating the boot
files, but care must be taken for all necessary drivers to be

built targeting the new kernel prior to attempting to boot it.
In order to successfully boot, drivers are needed for OFED,
GNBD, and Lustre.

Outside of the images, anything involving the CLFS or
ACE management servers are directly supported by Cray.
The documentation of ACE says that it should be treated as
an appliance. This means the underlying system is pretty
much locked to changes. For system vulnerabilities this has
meant filing a case with Cray requesting if a package change
will be safe. ACE itself is in an odd state where fixes have
been immediately provided after reporting problems. These
fixes have build dates months in the past, but no notifications
had been received that there was a new version prior to our
reporting running into the issue.

CLFS is identical to the product supplied to the large
XE/XK/XC systems. Right now it is running the out of
support CentOS 6.4 with no real roadmap for an update
known.

V. CONCLUSION
While there have been a few initial problems and getting

accustomed to a new system of configuration and support,
overall the experience with these systems have been positive.
It would be nice if there were a bit more in the way of
defined support and documentation for this product line.

There has definitely been a learning curve to the
management of these machines, but with some
modifications, customizations, and fixes they have turned out
to be quite capable and powerful machines which has
allowed MeteoSwiss a much improved resolution for their
forecasts, which are now in production.

REFERENCES
[1] “Resources Affinity Can Impact Performance: How to Choose The

Right Affinity?”, M. Ospici, Y. Georgiou, GTC2014

