
ORNL is managed by UT-Battelle
for the US Department of Energy

Balancing Particle and
Mesh Computation
in a Particle-In-Cell
Code

Patrick H. Worley
Oak Ridge National Laboratory

May 12, 2016
CUG 2016
Grange Tower Bridge Hotel
London, UK

These slides have been authored by a contractor of the U.S. Government under
contract No. DE-AC52-07NA27344. Accordingly, the U.S. Government retains a
nonexclusive, royalty-free license to publish or reproduce the published form of
this contribution, or allow others to do so, for U.S. Government purposes.

ORNL is managed by UT-Battelle
for the US Department of Energy

Alternate Title:
Issues in Maintaining
Scalability as
Application and
(Cray) Architectures
Evolve
Patrick H. Worley
Oak Ridge National Laboratory

May 12, 2016
CUG 2016
Grange Tower Bridge Hotel
London, UK

These slides have been authored by a contractor of the U.S. Government under
contract No. DE-AC52-07NA27344. Accordingly, the U.S. Government retains a
nonexclusive, royalty-free license to publish or reproduce the published form of
this contribution, or allow others to do so, for U.S. Government purposes.

3 Presentation_name

Co-Authors
•  Eduardo F. D'Azevedo (Oak Ridge National Laboratory)

•  Robert Hager (Princeton Plasma Physics Laboratory)

•  Seung-Hoe Ku (Princeton Plasma Physics Laboratory)

•  Eisung Yoon (Rensselaer Polytechnic Institute)

•  Choong-Seock Chang (Princeton Plasma Physics National Laboratory)

4 Presentation_name

Acknowledgements
•  Support for this work was provided through the Scientific Discovery through

Advanced Computing (SciDAC) program funded by the U.S. Department of
Energy (DOE) Office of Advanced Scientific Computing Research and the Office of
Fusion Energy Sciences, as part of the projects “Center for Edge Physics
Simulation (EPSi)” and “Institute for Sustained Performance, Energy, and
Resilience (SUPER)”. The work was performed at Oak Ridge National Laboratory,
which is managed by UT-Battelle, LLC under Contract No. De-AC05- 00OR22725,
at Princeton Plasma Physics Laboratory, which is managed by Princeton University
under Contract No. DE- AC02-09CH11466, and at Rensselaer Polytechnic Institute
under Contract No. DE-SC0008449.

•  This work used resources of the Oak Ridge Leadership Computing Facility
(OLCF), which is a DOE Office of Science User Facility supported under Contract
DE-AC05-00OR22725. This research also used resources of the Argonne
Leadership Computing Facility (ALCF), which is a DOE Office of Science User
Facility supported under contract DE-AC02-06CH11357. This research also used
resources of the National Energy Research Scientific Computing Center, a
DOE Office of Science User Facility supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC02-05CH11231 . Awards of
computer time at ALCF and OLCF were provided by the Innovative and Novel
Computational Impact on Theory and Experiment (INCITE) program.

5 Presentation_name

Background Science
•  Edge simulation (near outer wall) is critical for

tokamak-based fusion reactor design because the
edge plasma conditions determine (i) core plasma
quality, thus the fusion efficiency, and (ii) wall
deterioration, thus the reactor lifetime

•  Accurate simulation is difficult and requires effective
exploitation of leadership computing systems:
–  Edge plasma is in contact with wall and density

has a very steep gradient, invalidating fluid
approx. and requiring treatment of non-
equilibrium physics

–  Complicated geometry, currently addressed
using unstructured triangular mesh

–  Multiscale physics: background physics,
microturbulence, neutrals and atomic physics

⇒ Unlike for simulations of just the core plasma,
the scale-separated “delta-f” perturbation
method is invalid.

ITER fusion reactor

6 Presentation_name

Target Application: XGC1
•  Full-function (as opposed to perturbative delta-f)

gyrokinetic particle-in-cell code designed for
simulating edge plasmas in tokamaks

•  Solves 5D gyrokinetic equations via
–  ordinary differential equations for time

advance of particles in unstructured triangular
physical space grid

–  finite difference discretization of partial
integro-differential Fokker-Planck collision
operator on rectangular velocity-space grid

–  Maxwell’s (partial differential) equations on
unstructured triangular physical space grid,
solved using PETSc

•  The whole volume is simulated with a coarse
mesh in the core to capture the large scale
turbulence interaction between core and edge

Large scale
turbulence in the
whole volume
simulation in DIII-
D geometry

7 Presentation_name

XGC1: Key Features
•  diverted magnetic geometry

•  gyrokinetic ions

•  drift-kinetic electrons: small gyroradius limit (new as of 2013)

•  Monte-Carlo neutral particle with wall-recycling coefficients

•  multi-species impurity particles

•  plasma heating in the core

•  torque input in the core

•  nonlinear Fokker-Planck-Landau collision operator (new as of 2014)

•  logical Debye-sheath: code determines wall sheath from ambipolar loss constraint

•  reads in an experimental geometry and plasma data

8 Presentation_name

XGC1: Program Flow
I.  Initialization

II.  Timestep Loop:
1.  For each step of a Runge-Kutta algorithm:

a.  Collect particle charge density on underlying mesh.
b.  Solve gyrokinetc Poisson equation on mesh.
c.  Compute electric field and any derivative needed in particle equations of motion.
d.  Calculate and output diagnostic quantities.
e.  Update particle positions and velocities:

i.   For electrons, subcycle (typically at least 60 times) with a fixed electric field
(electron push).

ii.  For ions, advance one step (ion push).
f.  Move particles between processes, as required by updated positions (particle shift).

2.  Based on runtime parameter, N, every Nth timestep:
a.  Calculate particle collisions and apply this and other source terms to adjust fields.

III.  Finalization

9 Presentation_name

XGC1: Prior Art
XGC1, equipped with electrostatic turbulence capability to begin with, was further developed
during the 2005-2012 DOE project Center for Plasma Edge Simulation (CPES):

•  Lagrangian particle-in-cell code in 5D gyrokinetic phase space (3D configuration + 2D
velocity)

•  Solved gyrokinetic Vlasov equation with particle-momentum-energy conserving linear and
nonlinear Coulomb collisions

•  Used realistic geometry and boundary condition
–  World’s only kinetic code to include magnetic separatrix and material wall

•  Utilized a number of sophisticated computational methods and tools, including PETSc,
geometric hashing, Hilbert space filling curve, hybrid MPI-OpenMP parallelization, bicubic
spline, etc,

•  New computer science technologies were also developed, in particular the Adios
adaptable IO system, DataSpaces data-staging substrate, and the eSiMon dashboard, all
included in the End-to-end Framework for Fusion Integrated Simulation (EFFIS).

10 Presentation_name

XGC1: Pre-2013
This pre-2013 version of XGC1 scaled efficiently up to the full Cray XT5 at the Oak Ridge
Leadership Computing Facility at the time (up to 223,488 cores), and routinely used over
70% of the system for production runs.

 0

 5

 10

 15

 20

 25

 30

 512 1024 2048 4096 8192 16384

A
ve

ra
ge

 S
ec

on
ds

 p
er

 T
im

es
te

p

Compute Nodes

XGC1 Performance (2010): Weak Particle Scaling

Cray XT5 (12 cores per node)
ITER mesh
 10.8M ions per node
 3.6M ions per node
DIII-D mesh
 1.6M ions per node

 128

 256

 512

 1024

 2048

 4096

 8192

 512 1024 2048 4096 8192 16384

M
ill

io
n

Pa
rt

ic
le

s
/ s

ec
on

d

Compute Nodes

XGC1 performance on Cray XT5, Full-f simulation

Cray XT5 (12 cores per node)
ITER mesh
 10.8M ions per node
 3.6M ions per node
DIII-D mesh
 1.6M ions per node
Example linear scaling

11 Presentation_name

XGC1: 2013
•  The introduction of drift-kinetic electrons changed the performance characteristics of XGC1

simulations significantly. The electron mass is much smaller than the ion mass, and the
timestep for each electron push (calculating new particle positions) needs to be smaller.
–  XGC1 uses an electron sub-cycling method and ~60 electron pushes per ion push.
The actual cost of the electron push is even larger than this implies, reaching more than
90% of the computation time in CPU-only runs (and an even higher percentage of flops).
Table below is data from a 10 timestep run for a production DIII-D mesh on 32 XK7 nodes,
without and with drift-kinetic electrons. Ion/electron flop ratio is representative across
scales. On 16384 nodes (same particle count per node), ‘Main Loop’/’Electron Push’ flops
ratio is 0.98, so slightly more than here.

 Seconds Flop Count

 (Max over procs.) (Total over procs.)

Main Loop 54 1246 8.1e+12 3.9e+14

Ion Push 13 13 4.0e+12 4.0e+12

Electron Push - 1142 - 3.8e+14

12 Presentation_name

XGC1: 2013 Performance
•  The drift-electron push was an obvious target for acceleration using the GPGPU available

on the Cray XK7 architecture. This was implemented using PGI CUDA Fortran, and
achieved approximately 4X speed-up. This did require further optimizations to the
associated communication algorithms to preserve good scalability for the whole code.

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 S
ec

on
ds

 in
 P

U
SH

E
pe

r X
G

C
1

Ti
m

es
te

p

Threads per MPI Task

XGC1 PUSHE Performance
 (16 nodes, 3.2 million ions and 3.2 million electrons per node)

Cray XK7, 16 nodes
3.2M electrons and 3.2M ions per node
 CPU-only
 GPU-only
 74% GPU, 26% CPU

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000

A
ve

ra
ge

 S
ec

on
ds

 p
er

 X
G

C
1

Ti
m

es
te

p

Compute Nodes

XGC1 Performance: Weak Particle Scaling on DIII-D mesh
 (10 timesteps, 3.2 million ions and 3.2 million electrons per node)

Cray XK7 (1 16-core proc., 1 GPU per node)
Jan. 2013
 16 MPI tasks per node
 1 MPI task, 16 threads per node
July 2013
 16 MPI tasks per node
 1 MPI task, 16 threads per node
 1 MPI task, 16 threads, 1 GPU per node

13 Presentation_name

XGC1: 2013 Performance
•  XGC1 also ran and scaled well on other systems.

–  Mira: IBM BG/Q (“16”-core; 4-way HT per core; 1.6 GHz PowerPC)
–  Titan: Cray XK7 (8 FPUs, 16 integer cores; 2.2 GHz AMD; NVIDIA K20X GPU)
–  Piz Daint: Cray XC30 (8 cores, 2-way HT per core; 2.6 GHz Intel “Ivy Bridge”; NVIDIA K20X GPU)
–  Edison: Cray XGC30 (24 cores, 2-way HT per core; 2.4 GHz Intel “Ivy Bridge”)

 0

 50

 100

 150

 200

 64 256 1024 4096 16384

A
ve

ra
ge

 S
ec

on
ds

 p
er

 X
G

C
1

Ti
m

es
te

p

Compute Nodes

XGC1 Performance: Weak Particle Scaling on DIII-D mesh

DIII-D mesh
 IBM BG/Q
 3.2M elec., 3.2M ions per node
 Cray XK7
 3.2M elec., 3.2M ions per node
 Cray XC30
 4.8M elec., 4.8M ions per node
 3.2M elec., 3.2M ions per node

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5000 10000 15000 20000 25000 30000 35000

XG
C

1
Ti

m
es

te
ps

 p
er

 D
ay

Compute Nodes

XGC1 Performance: Strong Scaling on DIII-D mesh

DIII-D mesh: 32 planes, 56,980 vertices per plane
25B electrons and 25B ions
Edison: 5,576 node Cray XC30
 (24 cores, 24 FPUs per node)
Piz Daint: 5272 node Cray XC30
 (8 cores, 8 FPUs, 1 GPU per node)
Titan: 18,688 node Cray XK7
 (16 cores, 8 FPUs, 1 GPU per node)
Mira: 48,152 node IBM BG/Q
 (16 cores, 16 FPUs per node)

14 Presentation_name

XGC1: 2014
•  The nonlinear Fokker-Planck-Landau collision operator (potentially) changes the

performance characteristics of XGC1 simulations significantly (again).
–  The cost of the collision operator scales with the mesh size, not the particle count, and

is also a function of how often it is called (every timestep, every third timestep, …) and
whether axisymmetry (between the mesh planes) is assumed.

–  For 5 XGC1 timesteps of a representative science configuration (DIII-D mesh, 32
planes, 26B electrons, 8192 nodes on Titan), computing collisions every timestep, and
not exploiting axisymmetry:

–  Collision flop count would be divided by 32 if assuming axisymmetry, and by 3 if, e.g.,

computing every third timestep. However, electron push is implemented on the GPGPU
on the XK7, and achieves a higher flop rate than Collision running on the CPU.

–  Collision is also a prime candidate for porting to the GPGPU, and work on using
OpenACC for this is in progress. Currently OpenMP is used effectively for thread level
paralllelization.

Flop Count Main Loop 14.89e+15

 Electron Push 5.37e+15

 Collision 7.49e+15

15 Presentation_name

Hybrid Load Balancing
•  As ions and electrons are “pushed”, load imbalances will appear for any fixed mesh

decomposition. The particle velocity is such that load balancing in the toroidal direction is
impractical, but also of little consequence in current simulations. The movement of particles
in the radial or poloidal directions is much slower, and updating simple 1-D decompositions
of a space-filling-curve ordering of the mesh points has proven very effective for load
balancing particles, and thus both particle-related computational costs and memory
requirements.

•  The collision cost associated with a mesh cell is not uniform across the mesh, depending on
the temperature of the plasma in the cell. Because the temperature distribution evolves with
the simulation, the corresponding cost will also vary. However, temperature will generally be
higher in some parts of the domain than in others throughout the simulation, and does not
typically change its distribution very quickly.

•  The same mesh decompositions are used for both the particle pushing and for the collision
operator calculation, and what is optimal for one is not optimal for the other.

•  So, when neither particle push nor collision operator dominate the computational cost (as
measured in wallclock time), a compromise mesh decomposition must be determined, and
updated as both collision and particle cost evolve, otherwise performance will be lost.

16 Presentation_name

Collision Load Balance Diagnosis
•  Even if the collision cost was uniform across the mesh, the optimal decomposition for

particles would be inefficient.

•  For this one example problem, even at the very beginning of the run, there is a significant
discrepancy in the number of nodes (mesh vertices) assigned to each process (left curve).
The pattern is more obvious when looking at the number of nodes assigned to the subset of
processes representing each “interplane” in the grid decomposition (same process index in a
plane).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000

N
um

be
r o

f v
er

tic
es

 a
ss

ig
ne

d
to

 p
ro

ce
ss

Process

Initial vertex load imbalance
 ti195-nstx-with-col

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50 60
N

um
be

r o
f v

er
tic

es
 a

ss
ig

ne
d

to
 p

ro
ce

ss
 in

te
rp

la
ne

Interplane Id

Initial vertex load imbalance
 ti195-nstx-with-col

17 Presentation_name

Collision Load Balance Diagnosis

•  The number of iterations to convergence summed over all nodes assigned to a process or to
an “interplane” of processes, is even greater than that of the node distribution imbalance, and
the maximum cost is NOT on the processes with the maximum number of nodes.

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000

To
ta

l n
um

be
r o

f c
ol

lis
io

n
ite

ra
tio

ns

Process

Initial iteration load imbalance
 ti195_nstx_with_col

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 10 20 30 40 50 60
To

ta
l n

um
be

r o
f c

ol
lis

io
n

ite
ra

tio
ns

Interplane Id

Initial iteration load imbalance
 ti195_nstx_with_col

•  But the collision cost is not uniform. One issue is that an iterative (Picard) algorithm is used
to solve in each mesh cell, and the number of iterations required for convergence varies.

18 Presentation_name

Collision Load Balance Diagnosis
•  As mentioned earlier, there is a strong domain dependence, due to the standard

temperature profile of the plasma.

19 Presentation_name

Black Box – First Attempt
•  Diagnosis generated lots of pretty pictures, but did not lead to any physics-inspired

solutions. Started over.

•  First attempt: Simultaneous optimization
–  Can measure collision cost per cell directly. Can determine 1-D decomposition to load

balance this.
–  Can measure particle count per cell directly. Can determine 1-D decomposition to load

balance this.
–  How to combine?

Was not successful in combining particle count and collision cost metrics into a single function
to be minimized.

–  Load balancing particle distribution does load balance particle-associated cost, but the
actual function mapping count to cost is complicated.

–  Measuring cost (walltime) directly as a function of mesh cell was also infeasible
because of the large number of particle-loops and synchronization points that
exacerbate the impact of the particle count load imbalances.

20 Presentation_name

Black Box – Second Attempt
•  Second attempt: Constrained optimization

–  Add a new input parameter β that specifies the maximum permissible particle load
imbalance. (See below.)

–  Add a new input parameter to specify how often to load balance (in increments of
collision timesteps).

–  Measure number of particles per cell each ion timestep.
–  Measure collision cost per cell directly each ion timestep that collision is calculated.
–  When load balancing,

•  Determine 1-D decomposition to load balance particle count. Record associated
worst case particle load imbalance ratio (maximum over processes / average per
process). Call it α. (Typically not possible to load balance perfectly.)

•  Determine 1-D decomposition to load balance collision cost as well as possible
subject to a maximum particle load imbalance of α*β.

–  Also update load balance whenever particle load imbalance exceeds α*β*γ (where γ is
another already existing parameter, and this logic is already in the code).

This works, but is somewhat unsatisfactory in that choosing β is not obvious. It also does not
adapt to changes in the distribution of the collision operator.

21 Presentation_name

Black Box – Third and Current Attempts
•  Third attempt: Two level scheme

–  Record elapsed walltime from one collision timestep to the next, and refer to this as γ.
–  Use Golden Section Search to modify β each time load balancing algorithm is invoked,

looking to minimize γ as a function of β. (Note that the input parameter is now the initial
value used.)

This does not address the issue of the collision cost distribution varying with the simulation, so
walltime associated with a given value of β may not be accurate later in the simulation.
Performance is also variable due to external factors (interconnect contention, etc.), and so the
optimization algorithm needs to be robust with respect to perturbations.

•  Fourth attempt: Modified Golden Section Search
–  Golden Section Search keeps history (ζ) corresponding to 3 β values. If any of these

values is not replaced after three updates, reuse this β value and force an update to the
associated ζ wallclock time.

–  Add new parameter to specify the largest permissible β value.

Experience usually provides a good estimate of the appropriate search interval, especially if a
job is being restarted from a checkpoint. A tight upper bound on β accelerates convergence.

22 Presentation_name

Golden Section Search Cartoon

From http://ops.fhwa.dot.gov/trafficanalysistools/tat_vol3/sectapp_d.htm

23 Presentation_name

Black Box Results
•  Example optimal decompositions

–  Uniform mesh decomposition
–  Particle-only load balanced decomposition
–  Hybrid particle count, collision cost decomposition

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 50 100 150 200 250

N
um

be
r o

f m
es

h
ve

rt
ic

es
 s

um
m

ed
 a

cr
os

s
pl

an
es

Interplane Id

XGC1 Performance: Load Balanced Graph Partitions

DIII-D mesh: 32 planes, 105,484 vertices per plane
10B electrons and 10B ions
Titan: Cray XK7 (16-core CPU, 1 GPU per node)
4096 nodes, 8192 processes, 8-way threading

Mesh Vertex Count Load Balance
Particle Count Load Balance

Hybrid Collision Cost-Particle Count Load Balance

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0 50 100 150 200 250

R
el

at
iv

e
pa

rt
ic

le
 c

ou
nt

 s
um

m
ed

 a
cr

os
s

pl
an

es

Interplane Id

XGC1 Performance: Load Balancing Both Collision Cost and Particles

DIII-D mesh: 32 planes, 105,484 vertices per plane
10B electrons and 10B ions
Titan: Cray XK7 (16-core CPU, 1 GPU per node)
4096 nodes, 8192 processes, 8-way threading

Particle-Only Load Balancing
Hybrid Collision-Particle Load Balancing

24 Presentation_name

Black Box Results
•  Example performance impacts

–  Left: impact on collision load imbalance if only addressing particle load imbalance
–  Right: Here an initial run is followed by restart run, where the number of outer threads

used in the collision operator is increased from 1 to 8. The initial run starts with particle-
only load balancing. The restart inherits the decomposition from the previous run,
which is inefficient here, but the hybrid load balancing algorithm quickly doubles
performance in both cases.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 50 100 150 200 250

R
el

at
iv

e
co

lli
si

on
 ru

nt
im

e
su

m
m

ed
 a

cr
os

s
pl

an
es

Interplane Id

XGC1 Performance: Load Balancing Both Collision Cost and Particles

DIII-D mesh: 32 planes, 105,484 vertices per plane
10B electrons and 10B ions
Titan: Cray XK7 (16-core CPU, 1 GPU per node)
4096 nodes, 8192 processes, 8-way threading

Particle-Only Load Balancing
Hybrid Collision-Particle Load Balancing

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100 120 140

Se
co

nd
s

pe
r t

im
es

te
p

Timestep

Performance of XGC1 ITER simulation

Titan: Cray XK7 (16-core CPU, 1 GPU per node)
16384 nodes, 16384 processes, 16-way threading
ITER mesh: 1M vertices per plane, 32 planes
131 billion each electrons and ions

1 outer thread, 16 inner threads
8 outer threads, 2 inner threads

25 Presentation_name

Black Box Results: 2nd Example
Back Story: Nested OpenMP parallelism is implemented in the collision operator for
performance portability and to expose additional parallelism for future processor architectures.
Outer OpenMP is usually a little more efficient, but requires more memory, and so a mixed
strategy works best on the IBM BG/Q. On Edison (Cray XC30), both inner and outer are
equally good. For the Titan runs, we started with an Edison-like specification (all 16 inner
threads) but neglected to specify

export OMP_MAX_ACTIVE_LEVELS=2

In consequence, the job began without any OpenMP threading in the collision operator. We
noticed the problem, and adjusted the settings to 8 outer threads and 2 inner threads (still not
realizing the source of the problem), and this improved performance significantly. It also
changed the collision cost to particle cost ratio, and thus changed the optimal load balance
decomposition.

Details:
–  Collision operator computed every ion timestep
–  Hybrid load balancing scheme applied every second collision operator timestep (so

every second ion timestep)

26 Presentation_name

Black Box Results: 2nd Example
•  Left: Fraction of total runtime represented by collision operator. Using 8 OpenMP threads

almost decreases this by half. Note that hybrid load balancing also decreases this metric.

•  Right: Impact of Golden Section Search on particle load imbalance constraint. Note that
Golden Section Search History is lost when restarting, so both runs have the same first
three values. After that, the higher collision cost (blue) leads to a looser particle load
imbalance constraint when optimizing runtime.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90

C
ol

lis
io

n
C

os
t F

ra
ct

io
n

of
 T

ot
al

Timestep

Fraction Collision Cost of Total Cost

Titan: Cray XK7 (16-core CPU, 1 GPU per node)
ITER mesh (1M vertices), 131B particles (electrons, ions)

16384 nodes, 16384 processes, 16-way threading
16 inner collision threads

8 outer/2 inner collision threads

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 0 10 20 30 40 50 60 70 80 90

Pa
rt

ic
le

 L
oa

d
Im

ba
la

nc
e

C
on

st
ra

in
t

Timestep

Constraint on Collision Cost Load Balance Optimization

Titan: Cray XK7 (16-core CPU, 1 GPU per node)
ITER mesh (1M vertices), 131B particles (electrons, ions)

16384 nodes, 16384 processes, 16-way threading
16 inner collision threads

8 outer/2 inner collision threads

27 Presentation_name

Black Box Results: 2nd Example
•  Left: Impact of hybrid load balancing on collision cost load imbalance. Both initial and

restart runs start off with very large load imbalances, which are quickly addressed.

•  Right: Impact of hybrid load balancing on electron particle distribution load imbalance.
Particle load imbalance seems to be less variable than collision cost (particle load
imbalance does not change much between hybrid load balancing algorithm adjustments).

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60 70 80 90

Lo
ad

 Im
ba

la
nc

e
(M

ax
/A

vg
)

Timestep

Collision Load Imbalance

Titan: Cray XK7 (16-core CPU, 1 GPU per node)
ITER mesh (1M vertices), 131B particles (electrons, ions)

16384 nodes, 16384 processes, 16-way threading
16 inner collision threads

8 outer/2 inner collision threads

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 10 20 30 40 50 60 70 80 90

Lo
ad

 Im
ba

la
nc

e
(M

ax
/A

vg
)

Timestep

Electron Particle Load Imbalance

Titan: Cray XK7 (16-core CPU, 1 GPU per node)
ITER mesh (1M vertices), 131B particles (electrons, ions)

16384 nodes, 16384 processes, 16-way threading
16 inner collision threads

8 outer/2 inner collision threads

28 Presentation_name

Summary
•  New science capabilities are continuing to increase cost and change performance

characteristics of the XGC1 code, and characteristics are very sensitive to choice of the
many options.

•  Recent addition of new nonlinear collision operator required re-engineering load balance
scheme to address both grid-based and particle-based load imbalances simultaneous, to
respond to evolutionary changes, and to deal robustly with performance outliers (whether
due to simulation or to externally caused performance variability).

•  Current algorithm has more than doubled performance for example production runs.

•  Future work will investigate automatic determination of appropriate load balancing
frequency, and elimination of need to set upper bounds.

