

Rank	Workload Manager	System
1	Slurm	Tianhe-2
2	-	Titan
3	Slurm	Sequoia
4	-	K Computer
5	-	Mira
6	-	Trinity
7	Slurm	Piz Daint
8	-	Hazel Hen
9	Slurm	Shaheen II
10	Slurm	Stampede

Data Warp Overview

- A cluster-wide high-performance storage resource
- Data Warp allocations are managed by Slurm
- Two types of allocations:
 - Persistent allocations used by multiple jobs or
 - Associated with a specific job
- Data Warp allocations can exist before, during and/or after a job is allocated compute resources
 - Used to stage-in data, scratch storage, and/or stage-out data

Data Warp Workflow

Trackable RESources (TRES)

Method for accounting what resources are really being used

• What happens if I used one CPU and all of memory on a node?

Accounting & Limits on more resources other than just CPU

- Data Warp, CPU, Energy, GRES, License, Memory and Node
- For each partition this option is used to define the billing weights of each TRES type that will be used in calculating the usage of a job.

Fair Share

TRES contributes to the job's priority and fair share calculations

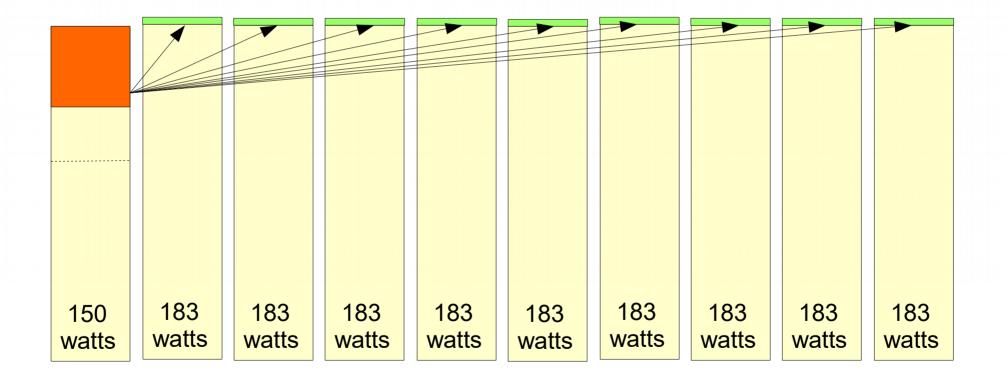
Single User Per Node

Compute nodes can be allocated to multiple jobs, but restricted to a single user

- New partition configuration parameter "ExclusiveUser=yes"
- New job option "--exclusive=user"
- Used for security and higher system utilization

Power Management Overview

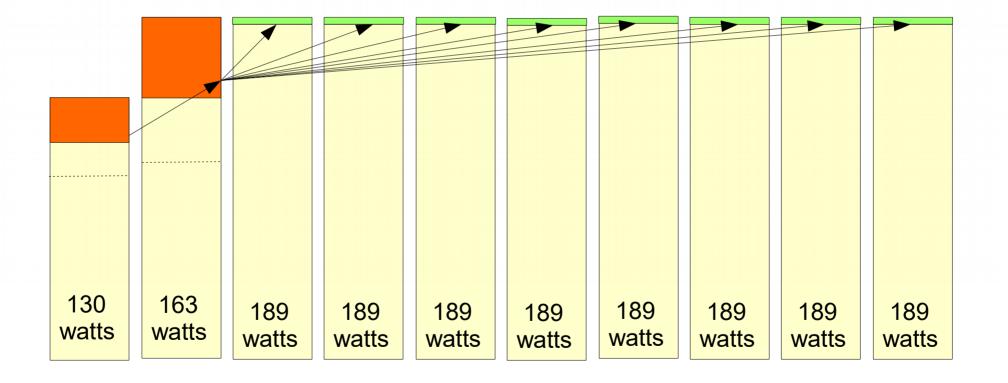
- Provides mechanism to cap a cluster's power consumption
- Starts by evenly distributing power cap across all nodes, periodically lowers the cap on nodes using less power and redistributes that power to other nodes
- Configuration options to control various thresholds and change rate options
- Example with 10 nodes and 1800 watts


Example: Time 0, Initial state

180	180	180	180	180	180	180	180	180	180
watts									

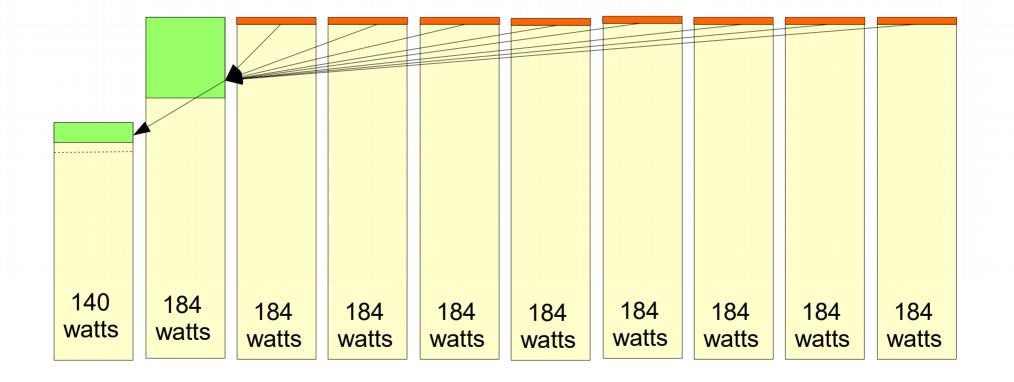
Example: Time 60 seconds

- Node one is using 110 watts, others at 180 watts
- That 110 watt node is below the 90% lower_threshold
 - 180 watts x 90% = 162 watts
- Reduce cap
 - (Max watts Min watts) x Decrease Rate% = reduce by watts
 - (200 watts 100 watts) x 30% = 30 watts
 - (Current watt allocation Current watts usage) / 2 = reduce by watts
 - (180 watts 110 watts) / 2 = 35 watts
 - Use the lessor of these two calculations
 - Node's cap is reduced from 180 watts to 150 watts.
- We now have 1650 watts available to distribute over the remaining 9 nodes
 - 183 watts per node


Example: Time 60 seconds

Example: Time 120 seconds

- Node 1 is using 110 watts
 - Reduced power by the decrease_rate
 - Now at 130 watts
- Node 2 is using 115 watts
 - Reduced power by the decrease_rate
 - Now at 163 watts
- Eight nodes at 183 watts
 - Remaining 1517 watts
 - Evenly distribute to remaining 8 compute nodes
 - 189 watts per node


Example: Time 120 seconds

Example: Time 180 seconds

- Node 1 is now consuming 128 watts
 - Over upper_threshold of 98% power utilization
 - 130 watts x 98% = 127 watts
 - Increased cap by increase_rate
 - Node 1 power cap set at 140 watts
- Node 2 is allocated a new job
 - Set power cap to the same as other nodes consuming all available power
- Remaining 1660 watts evenly distributed across 9 nodes or 184 watts per node

Example: Time 180 seconds

Slurm 16.05

- Knights Landing Integration
- Job stats email
- PMIX Integration
- Deadline scheduling
- Data Warp
 - Manage multiple file systems
- scontroltop
 - User can change job priorities
 - Admin can change any job priority
- Disable memory allocation on a per partition basis
- Manage node sharing by account
- Topology aware GPU Scheduling

Slurm 17.02

- Federated Cluster
 - Enable multiple clusters to act as a single cluster
 - Each cluster runs its own scheduler
 - Users can submit jobs to the federation or a specific cluster
 - The Federated Cluster solution will balance the load between clusters
 - Mix Cray and non-Cray clusters

Email questions to

jacob@schedmd.com