
Shifter: Containers for HPC
Richard Shane Canon

Technology Integration Group
NERSC, Lawrence Berkeley National Laboratory

Berkeley, USA
Email: scanon@lbl.gov

Doug Jacobsen
Computational Systems Group

NERSC, Lawrence Berkeley National Laboratory
Berkeley, USA

Email: dmjacobsen.gov

Abstract—Container-based computed is rapidly changing the
way software is developed, tested, and deployed. This paper
builds on previously presented work on a prototype framework
for running containers on HPC platforms. We will present a de-
tailed overview of the design and implementation of Shifter, which
in partnership with Cray has extended on the early prototype
concepts and is now in production at NERSC. Shifter enables end
users to execute containers using images constructed from various
methods including the popular Docker-based ecosystem. We will
discuss some of the improvements over the initial prototype
including an improved image manager, integration with SLURM,
integration with the burst buffer, and user controllable volume
mounts. In addition, we will discuss lessons learned, performance
results, and real-world use cases of Shifter in action. We will also
discuss the potential role of containers in scientific and technical
computing including how they complement the scientific process.
We will conclude with a discussion about the future directions
of Shifter.

Keywords-Docker; User Defined Images; Shifter; containers;
HPC systems

I. INTRODUCTION

Linux containers are poised to transform how developers
deliver software and have the potential to dramatically improve
scientific computing. Containers have gained rapid adoption
in the commercial and web space, but its adoption in the
technical computing and High-Performance Computing (HPC)
space has been hampered. In order to unlock the potential of
Containers for this space, we have developed Shifter. Shifter
aims to deliver the flexibility and productivity of container
technology like Docker [1], but in a manner that aligns with
the architectural and security constraints that are typical of
most HPC centers and other shared resource providers. Shifter
builds on lessons learned and previous work such as CHOS
[2], MyDock, and User Defined Images [3]. In this paper,
we will provide some brief background on containers. Next
we will provided an overview of the Shifter architecture
and details about its implementation and some of the design
choices. We will present benchmark results that illustrate how
Shifter can improve performance for some applications. We
will conclude with a general discussion of how Shifter includ-
ing how it can help scientists be more productive including
a number of examples where Shifter has already made an
impact.

II. BACKGROUND

Linux containers have gained rapid adoption across the
computing space. This revolution has been led by Docker
and its growing ecosystem of tools such as Swarm, Compose,
Registry, etc. Containers provide much of the flexibility of
virtual machines but with much less overhead [4]. While
containers have seen the greatest adoption in the enterprise
and web space, the scientific community has also recognized
the value of containers [5]. Containers have promise to the
scientific community for a several reasons.

• Container simplify packaging applications since all of the
dependencies and versions can be easily maintained.

• Containers promote transparency since input files like
a Dockerfile effectively document how to construct the
environment for an application or workflow.

• Containers promote collaboration since containers can be
easily shared through repositories like Dockerhub.

• Containers aid in reproducibility, since containers poten-
tially be referenced in publications making it easy for
other scientists to replicate results.

However, using standard Docker in many environments
especially HPC centers is impractical for a number of rea-
sons. The barriers include security, kernel and architectural
constraints, scalability issues, and integration with resource
managers and shared resources such as file systems. We will
briefly discuss some of these barriers.

Security: The security barriers are primarily due to
Docker’s lack of fine-grain ACLs and that Docker processes
are typically executed as root. Docker’s current security model
is an all-or-nothing approach. If a user has permissions to
run Docker then they effectively have root privileges on the
host system. For example, a user with Docker access on a
system can volume mount the /etc directory and modify
the configuration of the host system. Newer features like user
namespace may help, but many of the security issues still exist.

Kernel and Architectural Constraints: HPC system are
typically optimized for specific workloads such as MPI ap-
plications and have special OS requirements to support fast
interconnects and parallel file systems. These attributes often
make it difficult to run Docker without some modifications.
For example, many HPC systems lack a local disk. This makes
it difficult although not impossible to run Docker “out of the
box”. Furthermore, HPC systems typically use older kernel

versions. This is both for stability reasons but also because
newer kernels may lack support for parallel file systems such
as Lustre. Unfortunately, these older version often lack some
of the features that the more recent versions of Docker rely on.
For example, user namespaces requires a very modern kernels
(3.8 or later).

Scaling: Since each Docker node typically maintains its
own image cache, launching a parallel job that uses a new
image would result in every node fetching the new image.
This leads to serious scaling and start up issues.

Integration: Most HPC systems form an integrated sys-
tem that includes a resource manager (e.g. Slurm, PBSpro,
Torque/Moab) and parallel file systems (e.g. Lustre). User need
the flexibilty that Docker provides but it needs to integrate
cleanly into the larger system. This means the ability to
schedule resources using the Docker environment and the
ability to access the parallel file system. Unfortunately, Docker
is not designed to easily integrate with most batch systems
and providing access to parallel file systems can create data
security issues since users effectively have root privileges in
the container.

To address these barriers while providing the benefits of
Docker, NERSC, in partnership with Cray, has developed
Shifter. Shifter leverages key parts of the Docker ecosystem
related to image creation and image distribution, but replaces
the docker run-time engine. Shifter builds on previous work
and experience. A prototype implementation of Shifter was
previously presented [3], but significant changes and progress
has been made since then. Areas of improvement include: a
complete rewrite of the run-time tool (udiRoot) written in C; a
complete rewrite of the image gateway that is more extensible
and scalable; a number of new features; and improved inte-
gration with the SLURM workload manager. We will review
these improvements in detail below.

III. IMPLEMENTATION

In this section, we will describe the overall architecture and
details about the implementation. Much of the general design
was described in our previous work [3]. While that work was a
prototype, much of the overall design has remained. However,
several of the components have been re-written or redesigned.
We will focus our discussion on these changes, but we will
briefly describe all of the components for clarity.

A. Architecture

Shifter consists of several major parts. The main com-
ponents are: command-line user tools, an image gateway, a
run-time launcher called “udiRoot”, and workload manager
integration (WLM) components. The overall architecture can
be seen in Figure 1. We will briefly describe each component
in more detail. We will follow the general flow of how the
pieces interact when a user submits a job.

B. Command-line tools

The user typically interacts with Shifter using two tools
shifterimg and shifter. The later is the front-end to

User

Login Node

Compute Node

Compute Node

Compute Node

Compute Node

Image Gateway Node

shifterimg
pull

Lustre
 /scratch

scp/cp

qsub/sbatch

Workload Manager Integration

CRAY_ROOTFS=UDI
aprun ?

PROLOG: launch
<nodes> udiRootSetup

EPILOG: launch <nodes>
udiRootDestroy

Network
/home

DockerHub or
Private Registry

/
/var/udiLoop

/var/udi
 usr
 etc
 scratch
 home
 ?

Image Gateway Services

Fig. 1. Diagram of the various components of the Shifter prototype for User
Defined Images.

udiRoot and will be discussed below. The shifterimg tool
is used to pull images into Shifter and query the available
images. In the future, it will be extended to allow removing
an image and changing access permissions. Under the hood,
the tool is basically creating a REST call to the image gateway
which is responsible for actually performing the operations and
maintaining the image catalog.

C. Image Gateway

The image gateway has changed significantly compared
with the original prototype, however, the overall purposes is
the same. The gateway is responsible for importing images
from a variety of sources, such as a private Docker regsitry,
DockerHub, or a local file system, repacking those images into
a format that can be easily consumed by the udiRoot tool,
and transporting the packed images to a global file system
associated with the target HPC system.

The gateway in the original prototype was a very simple
xinetd script that would interact with a locally installed docker
engine. The new design is a fully RESTful service written in
Python and no longer requires a local Docker Engine instance.
Adopting a REST model gives us greater flexibility and makes
it much easier to extend and evolve the gateway over time.
The new implementation can more easily handle multiple
requests, track state, and is more extensible. The new gateway
actually consists of several distinct services and introduces
several new dependencies. Figure 2 illustrates the architecture
of the gateway. The REST interface is implemented using
the Flask framework 1. Flask provides a clean interface for
writing Web applications and web services. The flask layer
translates requests and uses an underlying Image Manager
Layer to service the requests. The image manager layer is
the heart of the gateway and is responsible for maintaining
the image catalog and dispatching requests. It stores meta-
data about the available images and operations in a Mongo

1http://flask.pocoo.org/

MongoDB
(Image)

Redis

Celery Worker
(System A)

REST Service

Image Manager

Celery

Celery Worker
(System B)

FS System A

FS System B

Login or Service
Node

MongoDB
(Celery)

SCP Images

Directly Write to FS

Gateway Node

System A

System B

Fig. 2. Diagram of the image gateway and its associated dependencies.

database. For example, when a lookup or listing operation
is issued, the image gateway will typically query the Mongo
database and return the results in a JSON format. When a
pull request is issued, the gateway queues the operation using
Celery, an asynchronous task queueing system [6]. Celery
provides a framework for queueing tasks that can be serviced
by distributed set of workers. Celery supports a number of
databases and messaging systems. In a default installation of
Shifter, the gateway uses Mongo and Redis to support the
Celery queueing system. In addition, a full deployment of
Shifter requires a Celery worker for each system (e.g. Cray
system or Cluster) supported by the gateway instance. These
workers can run on a service node that is a part of the target
system and has direct access to the parallel file system (e.g.
System A in Figure 2) or can run on the gateway node (e.g.
System B in Figure 2). In the first case, this means that the
worker can directly write to the system’s global file system
when it creates an image. In the second case, the worker must
copy the image to the target system via an scp operation.
The first model is typically more efficient, but the second can
be useful when meeting the installation requirements for the
worker is difficult.

To illustrate the flow of operation, we will describe how a
pull request is serviced. In this scenario, the gateway is running
on port 5000 of a host called gateway and the user is request
a Docker image of ubuntu 14.04 for systema. The operation
starts with a REST call to the Flask API. It looks like the
following:
POST http://gateway:5000/api/pull/systema/
docker/ubuntu:14.04.
The image gateway unpack requests and calls the appropriate
underlying method based on the request. The image manager
layer then queries MongoDB to see if this image is already
present and hasn’t been recently fetched. If not, then it queues
a request on a queue called “systema” using Celery. Behind the
scenes, Celery uses Redis and Mongo to handle control flow
and capture results. The request is eventually picked up by the
worker servicing the “systema” queue. It then proceeds to pull
down the layers for the Ubuntu 14.04 image from DockerHub.
Those are saved in a cache so that subsequent requests for the
same layer can be skipped. The pulling of these layers is done

directly by the worker. It does not need a local installation of
the docker-engine to perform these operations. Once all of the
layers are downloaded, the worker will unpack the layers to
create a copy of the image. This is done on a local temporary
space. Once the image is expanded, the work packs the image
into the target format (e.g. squashfs or ext4). This effectively
“flattens” the layers. If the worker is running directly on
the system, it can copy the image into the systems image
cache. Alternatively, it will use scp to copy the image. The
worker returns metadata about the image back through Celery.
The image manager layer then creates or updates a record in
Mongo. This record includes the status, but also metadata such
as the hash associated with the image.

D. udiRoot

The udiRoot component of Shifter is used to instantiate and
destroy Shifter containers. A Shifter container has a different
scope and meaning from other Linux-container products, ow-
ing to Shifter’s focus on scalability and HPC use-cases. At its
core a Shifter container is a set of manipulations to the Linux
Virtual Filesystem Switch (VFS) layer to construct a User
Defined Image (UDI) which is capable of supporting chroot’ed
process execution. All resource management or resource limits
aspects of containers are left to the prevailing Workload
Manager running on the system (e.g., SLURM, ALPS, torque,
etc). When constructing a Shifter UDI, the udiRoot tools
attempt to merge site-policy with the user requested image.
This means that udiRoot will manipulate the image to add
mount points the site requires, or replace specific files within
/etc. udiRoot also provides the capacity for a user to
request specific volume mounts, even the construction of new
temporary spaces, so long as they do not conflict with site
policy. Finally udiRoot provides the framework for launching
processes into a UDI which merges and translates environment
variables coming from the external environment, the desired
container environment, and site-required modifications.

udiRoot works by creating a new root filesystem, typically
tmpfs mounted on /var/udiMount. Within this temporary
space all of the base linux needs like procfs, sysfs,
/dev are mounted or, in the case of /dev, recursively
bind-mounted into place. Next some site-defined copies of
certain /etc files (like /etc/passwd, /etc/group,
/etc/nsswitch.conf) are copied into place, as well as
bind-mounting site-defined paths into the image (like home
directories). Finally the user requested image is mounted to a
different path (/var/udiLoop), and major components of
the user’s image are bind mounted into the new root space.
This, in effect, gives the site a very flexible way of combining
user-defined images with site policy, while retaining strict
control over user identities and mappings into the parallel-
shared resources copied into the image. A final stage of the
UDI preparation process to mount any user-requested volume
mounts. Those will be covered in more detail later.

The most common way that udiRoot gets access to the
user’s requested image is via loop device mounting copy
of a read-only squashfs filesystem located on a shared par-

allel filesystem. This means that the user’s image is pri-
marily read-only during the execution of the job, however
locally mounting the squashfs file has several advantages
that greatly enhance process startup times for a variety of
workloads. First, because the filesystem is locally mounted,
most metadata operations (i.e., where is /bin/ls or
/usr/lib64/libpython27.so.2) occur locally within
node memory. Second, because squashfs is compressed data is
transferred from the underlying parallel filesystem much more
efficiently. Finally, since a single copy of the UDI is used for
all MPI ranks in a “fully packed” calculation (assuming WLM
integration), the pages are transferred and cached on the node
just the first time. All this leads to much more efficient process
startup for a dynamically-linked application or an application
which reads a number of files in order to launch.

The shifter executable is solely responsibile for launch-
ing processes into a UDI. This makes shifter the strict
barrier between the external environment and the UDI environ-
ment. This separation (as opposed to allowing other agents to
chroot into the UDI), ensures that as few privileged operations
as possible are performed within the UDI, and is key to the
security of Shifter. Furthermore the shifter executable is
responsible for merging the environmental differences between
the external and UDI environments, to make the transition
from the HPC platform into the container as seamless as
possible.

Two forms of the UDI exist, one is created in a “global”
namespace, meaning that all processes can potentially access
the UDI, and the other is created in a private namespace. The
global namespace version is useful to allow many different
instances of processes to start up within the same UDI.
This is beneficial for cases such as many MPI processes
starting, since all can read from the same pre-staged UDI.
The global namespace UDI are constructed and deconstructed
using WLM integration via the setupRoot and unsetupRoot
executables. The private namespace UDI is created by the
Shifter executable at runtime if either a global UDI is missing
or the global UDI does not match the requested UDI. The
advantage of the private namespace UDI is that it allows many
different images to be used concurrently on the same node or
within the same batch job. This capability delivers maximum
flexibility to the user.

A recent improvement to the udiRoot component is the
restructuring the site and user requestable bind/volume mount
capability. The restructuring has enabled Shifter to support
new mount options to increase the flexibility and offering
of the system. In addition, support for correctly integrating
a Shifter container into recent systemd-based systems has
been achieved. This is primarily by properly marking all
Shifter mount points as either “slave” or “private“ mode
mount propagation. The integration of this feature allows
sites to mount or unmount parallel filesystems in the primary
environment of a node and have those changes propagate into
all functioning Shifter UDIs on that compute node. The recent
upgrade in volume mount capabilities also enable support for
features like integrating and mounting Cray’s DataWarp into

a container where the exact paths of the mount points are not
known a priori. Perhaps the most exciting and forward-looking
enhancement is the addition of XFS-based per-node caches,
allowing a user to create large filesystems emulating “local”
disk on diskless systems by leveraging the greater capacity
and bandwidth of their parallel filesystem. Some usage and
performance data for this feature is described in Section IV.

IV. BENCHMARKING AND COMPARISONS

While the primary motivation for Shifter has been to boost
productivity and flexibility of HPC systems by enabling end-
users to tailor their environment, Shifter also provides a
number of performance benefits as well. Shifter can provide
faster start-up time for some applications. With Shifter’s new
per-node writeable cache, Shifter can address some of the
performance penalties for applications that are designed to
interact with a local disk.

A. Start-up Time

A common complaint from NERSC users and other large
HPC sites has revolved around the poor start-up time for
some applications and scripting languages especially Python.
The source of this performance issue for Python is primarily
due to the poor scalability of the metadata service in Lustre
and the way that Python builds up its name space. When a
Python application starts up, it must traverse all of the library
paths to determine what libraries are present. In addition,
when any dynamically linked libraries are loaded, the dy-
namic shared library loader must traverse the paths defined in
LD_LIBRARY_PATH to find the libraries. As a result, single
python application may need to traverse hundreds or thousands
of directories and files to build up and load libraries. This is
amplified when the application is scaled up and hundreds or
thousands of copies of the python script are launched. On a
typical Cray system, these libraries would be stored in Lustre
or accessed via DVS to an external file system. There is latency
in talking to the remote metadata service associated with the
file system and, as the application is scaled, more clients must
talk to the same metadata server. This quickly becomes a
bottleneck. As a results, even starting a python application
at modest scales (thousands of cores) can take hundreds or
even thousands of seconds. And this load adversely impacts
other users as well. Using faster performing metadata server
can help, but any gains can quickly vanish as the application
is further scaled.

Shifter helps address this issue because of how the images
are stored and accessed by the compute nodes. The images
are typically stored in the Lustre file system but are mounted
read-only via a loop back mount. This means the kernel can
make certain assumptions about what it can safely cache in
its buffer cache and directory entry cache.

When a Shifter instance starts, the client node needs to make
a single call to the Lustre metadata server to determine the
location of the image. Once the image is mounted, the client no
longer needs to talk to the Lustre Metadata server to access the
contents of the image. When a lookup is performed, the block

holding the metadata must be fetched. But this goes directly
to the OST and that block can be safely cached in memory.
Subsequent metadata lookups that are in the cached block can
avoid talking to the Lustre file system entirely. Furthermore,
since the mount is private to that node, the directory entry
(dentry) objects can also be safely cached. Consequently,
lookups in the same directory can also be accelerated.

A final optimization can be achieved by leveraging the
shared library cache (i.e. ld.so.cache). Since the user
manages the image, can control where libraries are stored, and
can modify the ld.so.conf that is part of the image, they
have the ability to optimize the contents of the ld.so.cache
during image construction. This means that the loader can
avoided traversing the LD_LIBRARY_PATH and, instead,
directly access and load the requested library. This can dra-
matically reduce the number of metadata operations required
for an application that loads hundreds of shared libraries.

To illustrate these benefits, we ran the Pynamic benchmark
[7] on a variety of storage options available on two NERSC
Cray systems, Cori and Edison. Edison is 5,576 node Cray
XC-30 where each node has two Intel Ivy Bridge processors
and 64 GB of RAM. Cori is a Cray XC-40 that is being
delivered in multiple phases. Cori currently has 1,630 nodes
each with two Intel Haswell processors and 128 GB of
RAM. The tested configurations include storing the libraries
in the Lustre scratch file system, two different GPFS-based
file system (project and common) accessed via Cray’s DVS,
storing the libraries in Cray’s Data Warp solution which uses
NVRAM, copying the libraries to a local ramdisk, and, finally,
Shifter. The benchmark was run across 4800 nodes with the
parameters shown in Table I. Scripts for the run can be found
on github 2. Despite the fact that the Shifter image is backed
by the Lustre Scratch, it provides the best overall performance.
It even exceeds the ramdisk approach due to the use of the
ld.so.cache discussed above.

TABLE I
PARAMETERS USED FOR PYNAMIC RUNS.

Parameter Value
Shared object files 495
Average functions per shared object file 1850
Cross-module calls enabled
Math library-like utility files 215
Average math library-like utility functions 1850
Additional characters on function names 100

B. Per-node Writable Scratch

Shifter’s new per-node writeable-cache space can provide
speed up for many applications or frameworks designed to use
local disk. The reasons for the speed up are similar to the ones
described for the Startup-up improvements. However, the use
cases are different. The typical Cray XC-class system lacks
a local disk. Consequently the user is left with a small set
of options: 1) modify their application to not rely on local

2https://github.com/rcthomas/nersc-benchmarks/tree/master/pynamic

Fig. 3. Comparison of Pynamic execution times on different storage options
for Cori and Edison. Courtesy of Rollin Thomas.

disk 2) use the Lustre scratch file system or other external file
system 3) use the RAM disk-based /tmp space or /dev/shm
(which is basically equivalent). The first option can require
significant work by the user and may not be viable when
they are using an existing third-party program. For the second
approach, Lustre Scratch can often perform poorly compared
with a typical local disk setup if the I/O patterns are small
and transactional in nature. Furthermore, as the application
scales up, the performance can drop off quickly. Factors of
5x or 10x are sometimes seen in these cases. Data Warp
often suffers from the same issues since there is still protocol
overhead and data must be transferred from the client to the
Data Warp servers. The RAM disk or /dev/shm approach
typically works much better, but any usage consumes memory
which is then not available to the application and is limited to
less than the memory size of the node. Furthermore, the user
must stage the libraries before starting the applications.

To illustrate the impact of this capability, we ran a sim-
ple benchmark using the UNIX dd command. To simulate
an application doing many small writes, we ran the com-
mand with a block size of 512 bytes and issued 10,485,760
writes (e.g. dd if=/dev/zero of=targetfs bs=512
count=10M). This results in writing out approximately 5.4
GB of data. The results are summarized in Table II. As can be
seen, the approach used by Shifter provides between 7x - 10x
speed-up, even when the same backing file system is used.
Even greater differences have been observed in application
tests.

V. DISCUSSION

The goal of NERSC when it designed Shifter was to enable
its users to tap into the growing container ecosystem to
accelerate their science. As was discussed in the introduction,
container computing has the potential to revolutionize how
scientific computing is carried out. The ability to share images
through DockerHub means that another researcher can easily
and quickly replicate published approaches without spending

TABLE II
AVERAGE BANDWIDTH FOR RUNNING A DD TEST WRITING OVER 5 GB OF

DATA USING 512 BYTE WRITE OPERATIONS.

Nodes/Threads Lustre (MB/s) Shifter (MB/s)
1/1 83 594
10/10 87 625
10/20 67 616
10/40 55 589
20/40 71 627
20/80 55 588

hours or days trying to track down dependencies or struggling
with porting issues. It also makes it easier for large collab-
orations to share tools in a standard, portable way. Shifter
allows these potential benefits to be realized without sites
having to compromise or risk the security of the systems. We
are actively working to promote the adoption of Shifter and
containers. The partnership with Cray is intended to ensure
that a commercially supported version of Shifter is available
to the Cray User community. In addition, we have released
Shifter under an open-source modified BSD license and made
the code available on GitHub. Other sites have deployed
Shifter and even contributed fixes and documentation.

While the primary goal was productivity, Shifter has also
provided a number of performance advantages over conven-
tional approaches. Startup times can be 2x to 5x faster. We
have even observed orders of magnitude improvements in
some cases. Furthermore, the addition of per-node writeable
cache finally opens up the possibility to efficiently run ap-
plications and frameworks that are designed to work with
locally attached storage on systems like the Cray XC-30 that
typically lack local disk. Shifter also provides a framework to
implement other performance optimizations. For example, if
new ways of storing images or writeable temporary spaces are
found, they can be implemented into Shifter without requiring
major changes by the user.

A. Use Cases

While Shifter has only been in full production since around
September, there have already been a number of success
stories. We will briefly describe some of the examples.

LCLS: The Linac Coherent Light Source at the Stanford
Linear Accelerator (SLAC) is an one of the brightest X-ray
sources in existence. It enables scientists to image nanoscale
particles and observe at the timescales of chemical reactions.
LCLS experiments can generate terabytes of data per day
which can create challenges for analysis. Staff and users of
the LCLS are working with NERSC to use systems like Cori
to do some of their analysis. One challenge in enabling this
was getting the PSANA analysis stack developed by LCLS to
run on the Cray systems [8]. This software is a complex MPI-
enabled python application with many dependencies. Prior
to Shifter, staff spent over a month working to port the
application. Once they had it ported, they discovered extremely
slow startup times at scale due to the issues described above.
With the introduction of Shifter, they have been able to easily

port their application to a Docker image. This means it is
easier to keep the versions running at LCLS and NERSC in
sync. These same images can also be used by users to test
analysis on their workstation or laptop. Furthermore, Shifter’s
improved start up performance has helped address the slow
start times that were impacting scaling.

LHC Experiments: The Large Hadron Collider (LHC) is
the premiere High-Energy Physics facility in the world. Col-
laborators from across the globe use the facility to understand
the most fundamental processes in nature. LHC has a number
of detectors with associated collaborations. These projects
have very large, complex software stacks that are carefully
managed and distributed by the collaborations. However, these
tools have been designed to run on clusters that have been
specially configured to run their software. Attempts to use
HPC style systems for this analysis have had limited success
in the past. In many cases, it has been necessary to restrict
execution to very specific workloads that have been ported
and installed on the HPC system. Staff members from NERSC
and other division of Lawrence Berkeley National Lab have
used Shifter to demonstrate the ability to package the entire
collection of software for several projects into large images
that can be used with Shifter. Since these images may contain
nearly every package and version of software released by a
collaboration, they can be huge (e.g. over 1 TB in size). It has
been demonstrated that Shifter can provide nearly constant
startup time for these images up to scales of 24,000 cores.
ATLAS and ALICE, two detector collaborations at the LHC,
have already demonstrated the ability to run workloads on Cori
and are making plans to expand this usage in the future. Other
similar projects are making similar plans.

LSST: The Large Synaptic Survey Telescope (LSST) is the
next-generation telescope currently under construction in Chile
and will eventually produce 15 TB of data per night. The
collaboration is already engaged in simulations and developing
analysis algorithms. The project recognized the potential of
Docker containers early on and have already adopted it as
a mechanism for distributing their simulation software. Staff
members at NERSC working with the collaboration have
demonstrated coupling Shifter with workflow software to make
it easy to deploy and scale simulations on Cori.

Spark: NERSC has also evaluated using Shifter to sup-
port the Spark analysis framework. [9] Spark is an efficient
in-memory framework for doing distributed analysis. While
Spark can run outside of Shifter, using Shifter’s per-node
writeable cache space significantly improves the performance
and stability of Spark. Spark is designed to work with local
disk and uses it to store temporary data including “spills”.

B. Handling System Specific Dependencies

One of the promises of container computing and especially
Docker is portability. Portability can be straight forward for
many applications such as a single node python application
that use standard libraries. However, many cases in HPC com-
plicate portability. For example, if the user wants to use Shifter
to run an MPI application or a GPU-enabled application, there

are system specific dependencies that the application needs to
be synchronized with. For example, the MPI libraries may
need to match the version of the firmware running on the
interconnect. It is difficult in these circumstances to achieve
absolute portability, but there are a few approaches that can
be utilized to achieve some measure of portability. We will
discuss a few models that are currently being explored. It is
worth noting that these different approaches are not exclusive.
Different users or sites could potentially adopt different meth-
ods.

1) In Image: One obvious model is to have the image
contain all of the required libraries and require the image
maintainer to keep the image in sync with the target system.
This means that any required libraries should be installed
into the image (e.g. via an ADD, COPY, or RUN Dockerfile
directive). When a system change occurs, the maintainer of
the image would be responsible for updating the contents and
rebuilding the image to match the system requirements. One
benefit of this is everything is captured in the image. So the
contents and the run-time environment are well defined. The
downside is the image must be rebuilt after any system change.
The site can maintain a bundle of libraries that can be easily
added to the image to simplify the process of maintaining these
images.

2) Managed Base Images: A slightly improved model is for
the site or vendor to maintain a standard set of base images.
These images would have the appropriate system specific
libraries to match the state of the system. For example, the
image would contain MPICH or OpenMPI libraries, nVidia
libraries, etc. Users would then use Docker’s FROM directive
to base images off of these images. The site could potential
deprecate any images that are based off an out-of-date image.
Note that Shifter does not currently provide any tools to aid in
this detection. The downside to this approach is that whenever
a system change occurs, the users would need to rebuild their
image to pick up the changes in the base image. In addition,
the user is restricted to the set of base images the site or
vendor provides. For example, if the user wanted to use an
Ubuntu-based distribution but the site only provided RedHat
base images, then they would have to use another method.

3) Volume Mounting: Another option is using Shifter’s
volume mount capability to make system specific libraries
available in the Shifter container at run-time. For example,
dynamic libraries for MPICH, RDMA libraries, or nVidia
libraries can be copied into a special system specific directory
and that directory can be mapped at run-time into the Con-
tainer using a volume mount. The applications in the image
would need to be linked and executed in such a way that they
would detect and use the libraries. This method can help avoid
the need for image rebuilds after upgrades. One downside to
this approach, is detail about the run-time environment are
maintained outside of the image which means there is some
loss in provenance.

4) Better Vendor Support: This problem could be simplified
by vendors maintaining some level of backwards compatibility
in their libraries and firmware. In addition, ideally the libraries

or the firmware should detect when there is an incompatibili-
ties and fail gracefully. Ideally, an MPI library should continue
to function with newer firmware until critical interfaces or
data structures have changed that break backwards compat-
ibility. This would require additional testing and validation
during the release cycle, but Shifter could actually aid in this
process since older versions could be maintained and tested
for compatibility. In addition, vendors such as Cray could
start to provide standard base images (ideally based on a few
of the most popular distributions) as part of their standard
release process. This would help ensure that the images are
synchronized with what is installed on the system.

VI. CONCLUSION

Shifter opens up the potential of container computing to the
HPC community. The development of Shifter has advanced
significantly beyond the prototype that was first demonstrated
a year ago. Since that time, parts of Shifter have been majorly
re-written and Shifter has been formerly released under a
open-source BSD-based license and is available for download
via GitHub. Furthermore, we are working to build an active
developer community that can contribute to the development of
Shifter. Most importantly, there have been multiple examples
of users using Shifter to run applications. These users have
come from a variety of application domains including x-
ray light sources, high-energy physics, nuclear physics, and
astronomy. We have also used Shifter in the deployment of the
Spark analytics framework where the ability to create per-node
writable temporary spaces without a local disk have been key
to boosting performance and stability. In addition to NERSC,
several other sites have already successfully deployed Shifter
in their environment. We are actively promoting the adoption
of Shifter throughout the HPC community, since, ultimately,
container computing and Shifter increase in value to the HPC
user community as it becomes more ubiquitous and available
at the places they need to compute.

ACKNOWLEDGMENT

This work was supported by the Director, Office of Science,
Office of Advanced Scientific Computing Research of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

The authors also wish to acknowledge the technical input
and support from Cray staff, especially Dave Henseler, Dean
Roe, Martha Dumler, Kitrick Sheets, and Dani Connor. In
addition, thanks Miguel Gila of CSCS for contributions to
Shifter. Finally, thanks to other NERSC staff including Rollin
Thomas for the Pynamic Benchmark results, Lisa Gerhardt for
support of the LHC use cases, and Debbie Bard for support
of the LSST use cases.

REFERENCES

[1] “Docker,” https://www.docker.com/.
[2] S. Canon and C. Whitney, “Chos, a method for concurrently supporting

multiple operating system,” Computing in High Energy Physics and
Nuclear Physics, 2004.

[3] D. M. Jacobsen and R. S. Canon, “Contain this, unleashing docker for
hpc,” Proceedings of the Cray User Group, 2015.

[4] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-
mance comparison of virtual machines and linux containers,” technology,
vol. 28, p. 32, 2014.

[5] C. Boettiger, “An introduction to docker for reproducible research,” ACM
SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71–79, 2015.

[6] “Celery,” http://www.celeryproject.org/.
[7] “Pynamic: The python dynamic benchmark,”

https://codesign.llnl.gov/pynamic.php.
[8] D. Damiani, M. Dubrovin, I. Gaponenko, W. Kroeger, T. Lane, A. Mitra,

C. O’Grady, A. Salnikov, A. Sanchez-Gonzalez, D. Schneider et al.,
“Linac coherent light source data analysis using psana,” Journal of
Applied Crystallography, vol. 49, no. 2, pp. 672–679, 2016.

[9] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing,” in Proceedings of
the 9th USENIX conference on Networked Systems Design and Imple-
mentation. USENIX Association, 2012, pp. 2–2.

