
Shane Canon & Doug Jacobsen!
NERSC/Lawrence Berkeley Lab

Shifter: Containers
for HPC

-	1	-	

Cray	User	Group	2016 	 	May	12,	2016	

Agenda

•  Mo3va3on	and	Background	
•  Shi>er	Architecture	and	Design	
•  Shi>er	in	Ac3on	
•  Discussion	and	Future	Work	

-	2	-	

Acknowledgements
Cray	–	UDI	COE	and	technical	input	
Dani	Conner,	Martha	Dumler,	Rose	Olson,	
Dave	Henseler,	Dean	Roe,	Don	Bahls,	Bill	Sparks	
Kitrick	Sheets,	Alan	Mutschelknaus,	Andrew	Barry	
	
NERSC	–	Benchmarks	and	Use	Cases	
Lisa	Gerhardt,	Rollin	Thomas,	Wahid	Bhimji,	Debbie	Bard	
	
Others	–	Contributors	and	Use	Cases	
Miguel	Gila	(CSCS),	Vakho	Tsulaia	

-	3	-	

This	work	was	supported	by	the	Director,	Office	of	Science,	Office	
of	Advanced	Scien@fic	Compu@ng	Research	of	the	U.S.	

Department	of	Energy	under	Contract	No.	DE-AC02-05CH11231.	

Convergence of Disruptive Technology

•  Increasing	Role	of	Data	
	

•  Converging	HPC	and	Data	
Pla[orms	

•  New	Models	of	Applica3on	
Development	and	Delivery	

DOE Facilities Require !
Exascale Computing and Data

•  Petabyte	data	sets	today,	many	growing	exponen3ally	
•  Processing	requirements	grow	super-linearly	
•  Need	to	move	en3re	DOE	workload	to	Exascale	

Astronomy

Particle
Physics

Chemistry
and Materials Genomics

Fusion

Petascale to Exascale

Converging Data Intensive Systems and HPC
Compute	Intensive	 Data	Intensive	

Carver	

Mendel		
			Complex	

Why	Convergence?	
	
•  Scale:	Cori	will	have	the	scale	needed	to	tackle	

current	and	emerging	data	challenges	
•  Coupling:	Increasing	Need	to	Couple	Simula@on	and	

Analysis	
•  Capabili@es:	Access	to	the	Burst	Buffer	
•  Exascale:	Helps	place	data	intensive	communi@es	on	

exascale	path	

Popular features of a data intensive system
and supporting them on Cori

-	7	-	

Data	Intensive	Workload	Need	 Cori	Solu3on	

Local	Disk	 NVRAM	‘burst	buffer’	and	Shi2er	

Large	memory	nodes	 128	GB/node	on	Haswell;	
Large	memory	login	and	service	nodes		

Massive	serial	jobs	 NERSC	serial	queue	

Complex	workflows	 Shi2er	
CCM	mode	
Large	Capacity	of	interac@ve	resources	

Communicate	with	databases	from	
compute	nodes	

Advanced	Compute	Gateway	Node	

Stream	Data	from	observa@onal	facili@es	 Advanced	Compute	Gateway	Node	

Easy	to	customize	environment	 Shi2er	

Policy	Flexibility	 Improvements	coming	with	Cori:	
Rolling	upgrades,	CCM,	above	COEs	would	also	
contribute	

Docker Basic’s

•  Build	images	that	
captures	applica3ons	
requirements.	

•  Manually	commit	or	
use	a	recipe	file.	

•  Push	an	image	to	
DockerHub,	a	hosted	
registry,	or	a	private	
Docker	Registry.	

•  Share	Images	

•  Use	Docker	Engine	to	
pull	images	down	and	
execute	a	container	
from	the	image.	

-	8	-	

Why not just run Docker

•  System	Architecture:	Docker	assumes	local	disk	
•  Security:	Docker	currently	uses	an	all	or	nothing	

security	model.		Users	would	effec3vely	have	
system	privileges	

•  Integra3on:	Docker	doesn’t	play	nice	with	batch	
systems.	

•  System	Requirements:	Docker	typically	requires	a	
very	modern	kernel	

•  Complexity:	Running	real	Docker	would	add	new	
layers	of	complexity	

-	9	-	

Solution: Shifter

•  Partnership	with	Cray	to	design	a	solu3on	to	run	
containers	on	an	HPC	pla[orm.	

•  Design	Goals:	
–  User	independence:	Require	no	administrator	assistance	
to	launch	an	applica@on	inside	an	image		

–  Shared	resource	availability	(e.g.,	PFS/DVS	mounts	and	
network	interfaces)		

–  Leverages	or	integrates	with	public	image	repos	(i.e.	
DockerHub)	

–  Seamless	user	experience	
–  Robust	and	secure	implementa@on	

-	10	-	

Implementation

-	11	-	

Shifter Components

•  Shi>er	Image	Gateway	
–  Imports	and	converts	images	from	
DockerHub	and	Private	Registries	

	

•  Shi>er	Run3me	
–  Instan@ates	images	securely	on	compute	
resources	

•  Work	Load	Manager	Integra3on	
–  Integrates	Shieer	with	WLM	

-	12	-	

Shifter Architecture and Flow

-	13	-	

Image Gateway Design

•  Python	Flask	Applica3on	provides	REST	interface	
•  Mongo	Database	stores	image	metadata	and	provides	an	index	of	

available	images	
•  Python	Celery	provides	a	distributed	queueing	system	
•  Celery	“Workers”	do	the	actual	image	manipula3on	including	pulling	

Docker	Images	from	DockerHub	or	Registries	
-	14	-	

Workload Integration - Slurm

•  Custom	Plugin	using	the	Spank	plugin	architecture	
•  Allows	users	to	specify	images,	volumes	and	other	
op3ons	directly	in	the	batch	submission.	

•  Extensions	will	pre-create	a	common	Shi>er	area	
(best	for	MPI	applica3ons).	

•  See	Doug	for	more	details.	

-	15	-	

Shifter in Action

-	16	-	

Create an image with Docker

FROM ubuntu:14.04
MAINTAINER Shane Canon scanon@lbl.gov
Update packages and install dependencies
RUN apt-update –y && \
 apt-get install -y build-essential

Copy in the application
ADD . /myapp
Build it
RUN cd /myapp && \
 make && make install

-	17	-	

Dockerfile	

>	docker	build	–t	scanon/myapp:1.1	.	
>	docker	push	scanon/myapp:1.1	

Use the Image with Shifter
#!/bin/bash
#SBATCH -N 16 -t 20
#SBATCH --image=docker:scanon/myapp:1.1
#SBATCH --volume=/global/cscratch1/sd/canon/
backingFile:/mnt:perNodeCache=size=100G

module load shifter
export TMPDIR=/mnt
srun -n 16 shifter /myapp/app

-	18	-	

>	shieerimg	pull	docker:scanon/myapp:1.1	
>	sbatch	./job.sl	

Submit	script	

Shifter accelerates Python Apps

-	19	-	

Why?

•  Python	must	walk	through	the	python	libraries	to	
construct	the	namespace	

•  Python	must	load	up	any	dynamic	libraries	that	are	
required	

•  The	loader	must	traverse	the	LD_LIBRARY_PATH	to	
find	the	libraries	to	load	

-	20	-	

File System flow – Traditional vs Shifter

-	21	-	

/udi/image1	
/udi/image1/usr	
/udi/image1/etc	
…	
	

Lustre	Client	

Lustre	OST	

/udi/
image1.ext4	

Lustre	Client	

Lustre	OST	

Process	 Process	

ext4	or	
squashfs	

Lustre	
MDS	

Re
m
ot
e	

Lo
ca
l	

Shifter and Atlas

-	22	-	

•  ATLAS	soeware	built	and	maintained	by	the	interna@onal	
collabora@on.	

•  Makes	heavy	use	of	“CVMFS”	a	soeware	distribu@on	system.	
•  Complete	ATLAS	CVMFS	distro	is	O(TB)	in	size.	
•  Shieer	provides	linear	startup	@mes	and	requires	no	addi@onal	

integra@on	to	run	on	the	Cray	systems.	
•  Images	range	from	~200GB	to	3	TB!!	

Per-Node Write Cache (New Feature)

Nodes/Writers	
per	node	

Lustre	(MB/s)	per	
writer	

Shi>er	(MB/s)	per	
writer	

Real	Local	Disk	(MB/s)	
per	writer	

1/1	 83	 594	 416	

10/10	 87	 625	 416*	

10/20	 67	 616	 165*	

10/40	 55	 589	 53*	

20/40	 71	 627	 165*	

20/80	 55	 588	 53*	

-	23	-	

Per-Node	Write	Cache	provides	local	disk	like	func@onality	but	is	backed	
by	the	Parallel	File	System.	

Results	of	a	simple	“dd”	test	to	simulate	wri@ng	~5GB	of	small	transac@on	I/O	
(dd if=/dev/zero of=$TARGET bs=512 count=10M)	
*	Extrapolated	from	a	single	node	test	

Per-Node Write Cache (IOPS)

-	24	-	

0.0	

20.0	

40.0	

60.0	

80.0	

100.0	

120.0	

140.0	

0	 50	 100	 150	 200	 250	 300	

IO
PS
	(M

)	

Nodes	

IOPS	vs	Writers	

Results	of	an	IOR	File	per-process,	2	tasks	per	node,	512B	transfer	size,	2GB	
write.		100x	faster	than	Lustre	at	the	same	scale.			

Spark

•  “Big	Data”	high	produc3vity	analy3cs	
Framework	

•  Designed	around	commodity	clusters	
(Ethernet	network	and	local	disk)	

•  Shi>er	image:	lgerhardt/spark-1.6.0	
•  Uses	per-Node	write	cache	for	spills	and	

other	temporary	per-node	file	caches.	
•  Tested	up	to	full	scale	of	Cori	Phase	1	

(1600	nodes)	with	mul3ple	Spark	
applica3ons.	

-	25	-	

Shifter and MPI

•  In	Image	
–  Add	required	libraries	directly	into	image.	
–  Users	would	have	to	maintain	libraries	and	rebuild	images	aeer	
an	upgrade.	

•  Managed	Base	Image	(Golden	Images)	
–  User	builds	off	of	a	managed	image	that	has	required	libraries.	
–  Images	are	built	or	provided	as	part	of	a	system	upgrade.	
–  Constrained	OS	choices	and	a	rebuild	is	s@ll	required.	

•  Volume	Moun3ng	
–  Applica@ons	built	using	ABI	compa@bility.	
–  Appropriate	libraries	are	volume	mounted	at	run	@me.	
–  No	rebuild	required,	but	may	not	work	for	all	cases.	

-	26	-	

See	Cray	
talk	at	4:30		

Advanced example with MPI support
FROM cern/slc6-lite:latest
update packages and install dependencies
RUN yum upgrade -y && \
 yum –y install csh tar numpy scipy matplotlib gcc
WORKDIR /
replace mpi4py with cray-tuned one
ADD optcray_cori.tar /
ADD mpi4py-1.3.1.tar.gz /usr/src
ADD mpi.cfg /usr/src/mpi4py-1.3.1/
RUN cd /usr/src/mpi4py-1.3.1 && \
 chmod -R a+rX /opt/cray && chown -R root:root /opt/cray && \
 python setup.py build && \
 export MPI4PY_LIB=$(rpm -ql $(rpm -qa | grep mpi4py | head -1) | egrep "lib$") && \
 export MPI4PY_DIR="${MPI4PY_LIB}/.." && \
 python setup.py install && \
 cd / && rm -rf /usr/src/mpi4py-1.3.1 && \
 echo "/opt/cray/wlm_detect/default/lib64/libwlm_detect.so.0" >>/etc/ld.so.preload && \
 (echo "/opt/cray/mpt/default/gni/mpich2-gnu/48/lib\n/opt/cray/pmi/default/lib64”;\
 echo “/opt/cray/ugni/default/lib64\n/opt/cray/udreg/default/lib64”;\
 echo “/opt/cray/xpmem/default/lib64\n/opt/cray/alps/default/lib64”) \
 >> /etc/ld.so.conf && \
 ldconfig

-	27	-	

>	docker	build	–t	scanon/myapp:1.1	.	
>	docker	push	scanon/myapp:1.1	

Dockerfile	

Advanced example with Golden Image
FROM nersc/cori:latest

ADD . /myapp
RUN cd /myapp && \
 make

-	28	-	

>	docker	build	–t	scanon/myapp:1.1	.	
>	docker	push	scanon/myapp:1.1	

Dockerfile	

Discussion and Future Work

-	29	-	

Why Users will like Docker and Shifter

•  Develop	an	applica3on	on	your	desktop	or	laptop	
and	easily	run	it	on	a	Cray	or	other	Supercomputer	

•  Enables	the	user	to	solve	their	dependency	
problems	themselves	

•  Run	the	(Linux)	OS	of	their	choice	and	the	so>ware	
versions	they	need	

•  Improves	applica3on	performance	in	many	cases	
•  Improves	reproducibility	
•  Improves	sharing	(through	sites	like	Dockerhub)	

-	30	-	

Roadmap
•  16.05	Release:		

–  Support	for	RHEL	6/7,	SLES	11/12,	Rhine/Redwood	
–  RPM	builds	
–  Improved	scaling	
–  UI	Improvements	
–  Per-node	write	cache	
–  Bug	Fixes	

•  16.08	Release	
–  ACL	support	(private	and	authen@cated	images)	
–  Image	expiry	and	removal	
–  Image	usage	sta@s@cs	and	metrics	
–  Overlayfs	support	(stretch)	
–  Debian	packages	for	Ubuntu	LTS	

-	31	-	

Future Work (beyond the roadmap)

•  Con3nue	to	simplify	installa3on	and	increase	test	
coverage	

•  Expand	support	for	other	image	types	and	batch	
systems	(with	outside	help)	

•  Create	a	base	image	for	running	MPI	applica3ons	in	
a	NERSC	private	Docker	registry	

•  Con3nue	to	promote	Docker	and	Shi>er	within	the	
HPC	community	to	increase	access	

-	32	-	

Conclusions

•  Shi>er	is	enabling	and	improving	support	for		Data	Intensive	
Workloads	

•  “Shi>er”	implementa3on	demonstrates	that	centers	can	
provide	the	flexibility	of	Docker	without	sacrificing	security,	
scalability	or	performance.	

•  Shi>er	opens	the	door	to	the	many	benefits	of	Docker	
including	easy	sharing	of	images,	reproducibility,	etc.	

-	33	-	

National Energy Research Scientific Computing Center

-	34	-	

