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Abstract—This paper describes the architecture, design, use,
and performance of Cray DataWarp. DataWarp is an infras-
tructure that uses direct-attached solid-state disk (SSD) storage
to provide more cost-effective bandwidth than an external
parallel file system (PFS), allowing DataWarp to be provisioned
for bandwidth and the PFS to be provisioned for capacity and
resiliency. Placing this storage between the application and the
PFS allows application I/O to be decoupled from PFS I/O and
in some cases avoiding it altogether. This reduces the time
required for the application to do I/O, while also increasing
the overlap of computation with PFS I/O, typically reducing
application elapsed time. DataWarp allocates and configures
SSD-backed storage for jobs and users on demand, providing
many of the benefits of both software defined storage and
storage virtualization.
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I. INTRODUCTION

Although hard disk drive (HDD) capacity has increased
significantly in recent years, HDD bandwidth increases have
been much more modest. In contrast, solid-state disk (SSD)
devices provide high bandwidth and their prices have been
declining. At the present time, SSD bandwidth ($ / GB / sec-
ond) is less expensive than HDD bandwidth. This leads
to SSDs being the economically preferable device for use
cases dominated by bandwidth considerations. Placing SSD
storage between the application and a HDD-backed Parallel
File System (PFS) such as Lustre [1] or GPFS [2] can
allow the PFS to be more cost-effective as it only needs
to be provisioned for capacity and resiliency rather than
peak bandwidth. This also reduces the cost of connectivity
from the supercomputer to the PFS. Placing this storage
between the application and the PFS allows application I/O
to be decoupled from PFS I/O and in some cases avoiding it
altogether. This reduces the time required for the application
to do I/O, increases the overlap of computation with PFS
I/O, and typically reduces application elapsed time.

Cray DataWarp software allocates and configures SSD-
backed storage for jobs and users, providing many of the
benefits of both software-defined storage [3] and storage
virtualization. This includes automation, standard APIs, vir-
tualized data path, scalability, and transparency. DataWarp is

an implementation of the burst buffer concept [4] for Cray
systems, and more.

Automated tasks include on-demand allocation, config-
uration, and migration of data to and from a PFS. Users
request use of DataWarp primarily through simple job script
directives and then use DataWarp through POSIX APIs.
If desired, a C library provides an additional way for
applications to make use of DataWarp. Command line tools
expose functionality in a RESTful interface that is capable
of showing status and requesting a particular configuration.
DataWarp configures compute nodes to interact with their
assigned storage and provides for per-instance metadata.
Striping across multiple server nodes allows DataWarp to
have access to additional capacity and bandwidth. Use of
DataWarp is optional and job script directives specify the
degree to which data is intended to be exposed and shared to
other jobs. Workload Managers (WLMs) manage the lifetime
of storage allocations to jobs and ensure that requested
capacity remains dedicated to jobs for as long as is needed.

PCI-attached SSDs are located on Cray XC service nodes
connected directly to the Aries high speed network. The SSD
bandwidth is closely matched to the Aries bandwidth, taking
maximum advantage of the Aries network and avoiding the
additional cost of provisioning connectivity and bandwidth
to external SSDs.

DataWarp will be released in four phases. Each phase
introduces new features and refines or replaces the func-
tionality present in prior phases.

A. Phase 0

Phase 0 supports statically configured compute node swap
and single server scratch file systems. Cray released Phase 0
in CLE5.2.UP02 in Fall 2014.

B. Phase 1

Phase 1 supports dynamic allocation and configuration of
DataWarp storage to jobs. This includes requests for swap,
and job- and application-controlled explicit data movement
between DataWarp and PFS storage. An instance of storage
that supports explicitly moving data is described hereafter



as a scratch instance. Applications interact with scratch
instances through mount points and explicitly request data
to be copied between the scratch instance and PFS via job
script-accessible and application-accessible APIs. Scratch
instances also support policies intended to detect and halt
excess I/O activity that would otherwise lead to premature
SSD failure. Phase 1 supersedes Phase 0, though DataWarp
server nodes can still be used with the Phase 0 infrastructure
by isolating them from the Phase 1 configuration. Cray
released Phase 1 in CLE5.2.UP04 in Fall 2015.

C. Phase 2

Phase 2 adds implicit movement of data between Data-
Warp and PFS storage, described hereafter as a cached
instance. It also includes accounting support and Data
Virtualization Service (DVS) [5] client-side caching. With
a cached instance, job scripts and applications are only
required to switch from using a PFS mount point to using
a DataWarp mount point. When using the DataWarp mount
point, I/O between the application and PFS is transparently
buffered on the DataWarp server nodes. Jobs and appli-
cations may additionally interact with the cached instance
through other APIs to further improve performance. Cached
instances support excess I/O activity detection as in Phase 1.
The accounting functionality works with scratch and cached
instances and measures I/O interactions between compute
nodes and DataWarp nodes. DVS client-side caching im-
proves performance for workloads with small reads and
writes. Cray plans to release Phase 2 in Summer 2016.

D. Phase 3

Phase 3 adds the ability to run applications directly on
DataWarp server nodes. It also includes improved resiliency
and recovery support, and allows jobs to request multiple job
instances per job. Cray plans to release Phase 3 in Winter
2016.

II. USE CASES

The following is a list of anticipated use cases that will
leverage the functionality of DataWarp.

A. Parallel File System Cache

DataWarp can be used to cache PFS data. Unlike SSD
caching infrastructures that provide a block-based cache
between a file system and a hard disk, DataWarp provides
a file-based cache between the application and a PFS. The
DataWarp server software is fully integrated with both the
kernel page cache and the PFS client.

Some examples of PFS cache use cases are:
• Checkpoint/Restart: In order to tolerate both compute

node and system failures, applications can periodically
write checkpoint files. All checkpoints are first written
to DataWarp to take advantage of the high bandwidth.
Some of those checkpoints reside only on DataWarp

and support fast restart in the event of a compute
node failure. Other checkpoints will be asynchronously
copied by DataWarp to the PFS to support restart in
the event of a system failure. Job script directives and
C library functions allow users to specify the policy
behind which files are copied to the PFS and when.

• Periodic output: Applications that produce periodic
output (for example time series data) can write those
results to DataWarp and then resume computation while
DataWarp copies that data to the PFS asynchronously.

• Application libraries: Some applications reference a
large number of libraries from every rank, for exam-
ple Python-based applications. Those libraries can be
copied from the PFS to DataWarp once and used by all
ranks directly from DataWarp storage.

When using a DataWarp scratch instance, movement of data
between DataWarp and the PFS is explicitly requested by the
job and/or the application and is performed by the DataWarp
service. When using a DataWarp cached instance, movement
of data between DataWarp and the PFS can also be done
implicitly (read ahead and write behind) by the DataWarp
service without any intervention from the application.

B. Application Scratch

DataWarp can provide storage that functions like a big
/tmp file system for each compute node in a job. Applica-
tions that use “out-of-core” algorithms could use DataWarp
storage this way. Typically this data never reaches the PFS,
but it can if desired by using job script directives or C library
functions.

C. Shared Data

DataWarp can provide storage for data that is shared by
multiple jobs over long periods of time. The jobs may be
related or not, and may run concurrently or serially. Use
cases include:

• Shared input: This would usually be a read-only input
file or database, for example a bioinformatics database
used as input by multiple analysis jobs. The data can
be copied from PFS to DataWarp once and then shared
by many jobs.

• Ensemble analysis: This is often a special case of the
shared input case for a set of similar runs with different
parameters on the same inputs, but could also allow for
some minor modification of the input data across the
runs in a set. Many simulation strategies make use of
ensembles.

• In-transit analysis: This refers to passing the results
of one job to the input of a subsequent job, typically
using WLM job dependencies. The data can reside only
on DataWarp storage and never touch the PFS. This
includes various types of workflows that go through a
sequence of processing steps, transforming the input
data along the way for each step. This can also be



used for processing of intermediate results while an
application is running, for example visualization or
analysis of partial results, potentially even for steering
the main application.

D. Compute Node Swap

DataWarp can provide compute node swap for jobs that
require it. This is often needed by pre- and post-processing
jobs that cannot fit in compute node memory and therefore
need to swap during execution. If only unused system
libraries and services are swapped out (i.e., the application
only needs a small amount of additional compute node
memory) the performance penalty to the application is
limited to the initial swap out and application performance
may improve.

As with any swap implementation, swap performance is
only acceptable for limited or transient overcommitments of
node memory. For swap to SSD, excessive swapping can
reduce the SSD endurance disproportionate to other uses.

E. Applications Running On DataWarp Server Nodes

DataWarp can allow applications to run directly on Data-
Warp server nodes, giving the applications direct access
to the local performance of the SSD storage. Specifically,
the high input/output operations per second (IOPS) rate for
small transfers, file creation, and file deletion. This will place
specific ranks/PEs on the DataWarp server nodes running in
the same MPI COMM WORLD communicator as ranks on
compute nodes.

The DataWarp server nodes used to host applications are
dedicated for this purpose only. They are treated as compute
nodes, requested explicitly by a job and allocated exclusively
to a job by the WLM. Administrators can manually move
DataWarp server nodes between this use and normal Data-
Warp use.

III. ARCHITECTURE, DESIGN, AND IMPLEMENTATION

This section describes the architecture, design, and imple-
mentation of DataWarp. See Figure 1 for a pictorial repre-
sentation of the hardware architecture. Compute nodes (CN)
access DataWarp (DW) over the high-speed Aries network.
DataWarp nodes access PFS resources, such as Lustre, via
a path that traverses both the Aries network and non-Aries
network, such as Infiniband.

Figure 2 shows the software architecture component dia-
gram. WLMs work with DataWarp to ensure compute node
applications have access to DataWarp resources. Files can be
staged between DataWarp and a PFS via job script requests
or application requests routed to DataWarp through DVS.
Application I/O is routed to DataWarp servers through DVS.
Application data is temporarily stored on DataWarp server
SSDs in order to accelerate application I/O operations.

A. Instances

When requested, DataWarp storage space is assigned
dynamically and in the amount requested. This is referred
to as an instance. The space is allocated on one or more
DataWarp server nodes and is dedicated to the instance for
its lifetime. The space taken on each node for the instance
is referred to as a fragment. The requested capacity is used
as a job scheduling constraint by the WLM.

The bandwidth associated with an instance is dedicated
to it if there is only one instance present on the assigned
DataWarp server nodes. For example, if two jobs each
request half the total DataWarp capacity and each job gets
exclusive access to all the capacity on half the DataWarp
server nodes, then each job gets half the total DataWarp
bandwidth. Conversely, if each job gets half the capacity
on all DataWarp server nodes, each job gets all of the total
DataWarp bandwidth when their I/O does not overlap. In
the first example, performance is more deterministic, but
depending on the degree of I/O overlap, the second example
application’s I/O may perform up to twice as fast.

A DataWarp instance has a lifetime that is specified when
it is created and can be one of:

• Job instance: A job instance lifetime is the same as
the lifetime of the job that created it (created at job
start, destroyed at job end), and is accessible only by
the compute nodes allocated to the job that created it.
A job instance is relevant to all use cases except shared
data.

• Persistent instance: A persistent instance lifetime is
not tied to the lifetime of any single job. Access can
be requested by any job, but file access is authenticated
and authorized based on the POSIX file permissions of
the individual files and directories. Jobs request access
to a persistent instance by providing the persistent
instance’s name in a job script directive. A persistent
instance is relevant to the shared data use case. Persis-
tent instances are explicitly created by a user, typically
outside of a job, since their lifetime is not associated
with any job’s lifetime.

When an instance is destroyed, DataWarp will ensure that
any data that needs to be written to the PFS has been before
it releases the space for reuse. In the case of a job instance,
this can delay the completion of the job.

B. Application I/O

The DataWarp service dynamically configures access to
DataWarp instances on all compute nodes assigned to a
job using a given instance. Application I/O is forwarded
from compute nodes to the instance’s DataWarp server nodes
using the Data Virtualization Service (DVS). DVS provides
POSIX-based file system access to the DataWarp storage.

A DataWarp instance can be configured as one of three
types:
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Figure 1. DataWarp hardware architecture overview.
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Figure 2. DataWarp software architecture component diagram.

• Scratch: When using a scratch instance (i.e., DataWarp
Phase 1) all movement of data between the instance
and the PFS must be explicitly requested using the
DataWarp API. The actual data transfers are performed
directly between the DataWarp nodes and the PFS.

• Cached: When using a cached instance (i.e., DataWarp
Phase 2) all movement of data between the instance and
the PFS is done implicitly. The instance configuration
and application-accessible C API can change the im-
plicit behavior.

• Swap: When using a swap instance, swap files are
created on a DataWarp instance that compute nodes
access over iSCSI.

An instance can be scratch, cached, swap, scratch+swap,
or cached+swap, but never scratch+cached. A single instance

used for scratch+cached would lead to scratch usages of the
instance running out of space, as the cached usage would
fill up the instance in order to maximize cache hits. Phase 3
will allow for jobs to request multiple job instances which
will allow for a job to request both a scratch and a cached
instance.

A scratch or cached instance can be accessed in one or
more of the following ways:

• Striped: In striped access mode, individual files are
striped across multiple DataWarp server nodes (aggre-
gating both capacity and bandwidth per file) and are
accessible by all compute nodes using the instance.

• Private: In private access mode, individual files are
striped across multiple DataWarp server nodes (aggre-
gating both capacity and bandwidth per file) but the files



are only accessible to the compute node that created
them (e.g. like /tmp). Private access is not supported
for persistent instances because a persistent instance
can be used by multiple jobs with different numbers of
compute nodes; it is not supported for cached instances
because all files are visible in the PFS.

• Load-balanced: In load-balanced access mode, in-
dividual files are replicated (read-only) on multiple
DataWarp server nodes (aggregating bandwidth but not
capacity per instance), and compute nodes choose one
of the replicas to use. Load-balanced mode is useful
when the files are not large enough to stripe across a
sufficient number of nodes.

Each permutation of instance (job or persistent), type
(scratch or cached), and access mode (striped, private, or
load-balanced) maps to unique mount points on the compute
nodes. The mount point for each is provided to the job via
environment variables. See Table I for the valid combina-
tions of access mode, configuration, and instance type.

Table I
ACCESS MODE SUPPORT FOR SCRATCH AND CACHED CONFIGURATIONS

Job Instance Persistent Instance

access mode scratch cached scratch cached

striped yes yes yes yes
private yes no no no

load-balanced yes yes yes yes

Within a scratch instance, the directory structure (and
associated directory overhead) for the instance is managed
differently depending on the access mode: for striped access,
one of the DataWarp servers manages the directory for
the instance; for private and load-balanced access, each
DataWarp server manages the directories for files assigned
to it. Within a cached instance, the directory structure resides
on the PFS itself, and every DataWarp server can access it
directly.

Every DataWarp server performs PFS I/O for the files
and stripes that reside on it. This provides parallel access to
the PFS, but from fewer nodes than if it had been directly
accessed from compute nodes. For a scratch instance, PFS
I/O is explicitly initiated by the job or application, and it
transfers an entire file to or from the DataWarp server nodes.
For a cached instance, PFS I/O is implicitly initiated by
the DataWarp service based on modified data thresholds,
the DataWarp file system becoming full, or reads of data
not currently present. The DataWarp service manages space
using least-recently-used tracking and provides read-ahead
and write-behind functionality. As a result, the file system
never becomes full since it is always able to flush modified
data to, or to reclaim data from, the PFS.

C. Workload Manager Integration

Multiple workload managers (WLMs), including
Moab/TORQUE [6], [7], PBS [8], and Slurm [9], support
DataWarp on Cray systems. DataWarp directives are
specified in the job script file and passed to the DataWarp
infrastructure by the WLM at various points in a job
lifetime. These callouts allow DataWarp to:

• Create/configure instances on DataWarp server nodes
• Stage files between a PFS and DataWarp instances

(without compute nodes assigned if the WLM supports
it), at both the beginning and end of a job

• Configure/unconfigure compute node access to Data-
Warp instances

• Unconfigure/clean-up instances on DataWarp server
nodes

The DataWarp job script directives include the ability to:
• Create and configure compute node access to a

DataWarp job scratch instance:
#DW jobdw type=scratch

access_mode=[striped,private,loadbalance]

capacity=n ...

• Create and configure compute node access to a
DataWarp job cached instance:
#DW jobdw type=cache

access_mode=[striped,loadbalance] capacity=n

pfs=path ...

• Configure compute node access to a DataWarp persis-
tent instance:
#DW persistentdw name=xxx

• Create swap space for each compute node in a job:
#DW swap nGiB

• Stage files from the PFS to DataWarp storage before a
job runs:
#DW stage_in type=file|directory|list
source=path destination=path

• Stage files from DataWarp storage to the PFS after a
job completes:
#DW stage_out type=file|directory|list
source=path destination=path

The #DW jobdw directive takes many additional optional
parameters that allow users to specify I/O limits and set
additional type-specific attributes. For detail refer to the
DataWarp User Guide [10].

The capacity requested for a DataWarp instance is a
consumable resource, used by the WLM as a scheduling
constraint. This means that jobs requesting DataWarp capac-
ity will only start execution when that capacity is available
and can be dedicated to the job.

If the WLM supports it, stage-in may be done before
compute resources are assigned to the job and stage-out
after those compute resources have been released. This
enhancement can significantly decrease the amount of time
compute nodes are assigned; see Figure 3.
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#!/bin/sh
#DW jobdw type=scratch access_mode=striped,private capacity=100TiB
#DW persistentdw name=rrr
#DW stage_in type=file source=/pfs/user/input destination=$DW_JOB_STRIPED/input
#DW stage_out type=directory source=$DW_JOB_STRIPED/results/ destination=/pfs/user/results/

export TMPDIR=$DW_JOB_PRIVATE
aprun -n 5000 a.out --tmpfiles=$DW_JOB_PRIVATE \

--database=$DW_PERSISTENT_STRIPED_rrr/abc \
--parameter-file=$DW_JOB_STRIPED/input \
--resultsdir=$DW_JOB_STRIPED/results

Figure 4. Example job script with DataWarp #DW directives. This batch job requests a 100TiB scratch instance with access modes striped and private. It
also requests access to the persistent DataWarp instance named rrr. The user’s parameter file input is staged into the job scratch instance before the aprun
executes, and the result files are staged back out to the PFS after the aprun completes.

D. Job Example

See Figure 4 for an example of a job that requests
a 100TiB capacity DataWarp job instance, references an
existing DataWarp persistent instance, requests staging-in of
a file, and requests staging-out a directory.

The DataWarp-enabled job file is submitted to the WLM
just like any job file, e.g., for Slurm one would use
sbatch job.sh. Each compute node has striped ac-
cess to the persistent instance named rrr via the path
defined by $DW_PERSISTENT_STRIPED_rrr, striped
access to the job instance via the path specified by
$DW_JOB_STRIPED, and private access via the path ref-
erenced at $DW_JOB_PRIVATE.

E. Application Programming Interfaces

DataWarp provides command-line clients to query and
control the DataWarp configuration. In addition to the job
script directives discussed previously, there are commands
to create and destroy persistent instances, list instances, list
job references to instances, query server node state, and
more. Some commands or their functionality are limited to

administrators only. In general, administrative users can see
all DataWarp configuration and non-administrators can only
see persistent instances and any configuration data associated
with their userid.

All command-line clients interact with the DataWarp
RESTful API over HTTPS. All requests for DataWarp
status, set up, job-directed staging, and teardown go through
this API. Users are authenticated with MUNGE [11] and
authorized in accordance with site configuration.

DataWarp also provides a C library API for use by
applications which includes starting, querying, waiting, and
terminating stage activity between a PFS and a DataWarp
instance. It also allows for retrieving or setting the stripe
configuration of a file. For cached instances, the library addi-
tionally supports getting and setting the modified threshold,
read-ahead policy, and sync behavior policy. Staging can
be asynchronous with respect to an application or job, is
performed concurrently from all DataWarp servers assigned
to an instance, and can be done immediately or deferred
until the end of a job. A user might stage out only the last
successful application-directed checkpoint-restart files.



In addition, some POSIX API calls have unique semantics
when used with DataWarp:

• statfs: will return the aggregate size of the DataWarp
instance, with the free space computed as the product
of the number of servers and the current free capacity
of the server with the least currently free space since
that server will likely fill up first.

• stat: stat information is only guaranteed to be accurate
when a file is not open for write (i.e., it is updated at
close).

• sync: (only for type=cache) The behavior of a POSIX
sync, fsync, or fdatasync call is controlled by the
value of the sync to pfs attribute for a file, where the
default is specified per instance. If true then it will
sync data from DataWarp storage to the PFS. If false,
a sync operation will just sync modified data cached in
the DataWarp server’s node memory to the DataWarp
instance’s storage file system.

• close: (only for type=cache) The behavior of a POSIX
close is controlled by the value of the sync on close
for a file, where the default is specified per instance.
If true then the close will sync data to the PFS. If
false, close will just sync modified data cached in
the DataWarp instance’s server node memory to the
DataWarp instance storage file system.

• unlink: (only for type=cache) A POSIX unlink opera-
tion will remove the PFS file and remove all DataWarp
instance state and data related to the file. If the file is
open, the invalidate and removal is deferred until the
last close.

• POSIX permissions: (for type=cache and staging with
type=scratch) The ability to access files (e.g. open,
create, unlink, read, write, etc.) is controlled by the
PFS permissions on directories and files.

F. Storage Management

A DataWarp server node contains one or more PCI SSD
cards. Architecturally, any block storage device could work
but only qualified SSDs are supported. The Logical Volume
Manager (LVM) software [12] is used to aggregate the SSD
cards on a server into a volume group and to partition
the volume group into striped logical volumes on demand.
When creating an instance, the DataWarp service configures
the instance by creating logical volumes from the currently
unallocated storage on as many server nodes as are needed
to satisfy the requested capacity. Depending on the site
configuration and request preference, capacity can be chosen
optimizing for bandwidth (use more servers) or minimal
interference (use fewer servers). Each piece of an instance on
each server is called a fragment. See Figure 5 for an example
with three instances and varying numbers of fragments
spread across up to three servers.

An XFS file system is created on each logical volume to
manage the storage space [13]. XFS is a reliable and high

performance file system for use with DataWarp. It provides:
• integration with striped LVM volumes
• SSD TRIM
• configurable allocation sizes
• scalable space allocation, file creation, and file deletion
• extended attributes, and
• space management APIs

The DVS stripe size is managed by the DataWarp service,
taking into consideration the:

• SSD erasure block size to minimize write amplification
• LVM stripe size to maximize device concurrency
• XFS allocation and stripe unit sizes, and
• PFS stripe size to minimize lock conflicts on shared

files
Each DataWarp server node on a system can be configured

either for use by the DataWarp infrastructure (described in
this paper) or by the customer for other use. An administrator
associates each DataWarp server node with a DataWarp pool.
Storage is allocated by DataWarp to jobs (if supported by
the WLM), and to users from a specific DataWarp pool
with a common allocation granularity. Figure 6 shows the
status of four DataWarp server nodes belonging to the pool
wlm_pool, and two DataWarp server nodes belonging to
the pool admin_pool, from the perspective of dwstat,
one of the DataWarp command line tools. Figure 7 shows a
graphical representation of the association.

There are tradeoffs in picking a pool allocation granu-
larity. Picking a smaller allocation granularity will allow re-
quests for smaller capacity instances to span more DataWarp
servers, but then they have to share server bandwidth with
other instances. Picking a larger allocation granularity can
reduce the degree to which servers are shared but also result
in a high compute-to-server ratio and limited bandwidth.
Pool allocation granularity equal to the capacity of each
server node prevents sharing of servers. Requests are then
sized in such a way that the number of servers, and thus
bandwidth, can be guaranteed.

The DataWarp service provides instance- and application-
based I/O accounting and configurable I/O limits. Account-
ing data is collected using RUR [14] and includes statistics
such as reads/writes performed per compute node and per
server node.

To prevent a runaway application from consuming too
much of the remaining device endurance, excess I/O activity
detection is determined using three different user- and site-
configurable policies:

• Maximum Files Created: Users that know how many
files their application will create can specify an upper
bound to DataWarp and have subsequent creates fail.

• Maximum File Size: Users that know the maximum
file size to ever be read or written by their application
can specify an upper bound to have reads and writes in
violation of the policy fail.
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A1, A2, and A3 on servers x, y, and z, respectively. Instance B consists of fragments that map to LVM logical volumes B1 and B2 on servers y and z,
respectively. Instance C consists of a single fragment that maps to LVM logical volume C1 on server x.

crayadm@login:˜> module load dws
crayadm@login:˜> dwstat pools nodes

pool units quantity free gran
wlm_pool bytes 24TiB 24TiB 1TiB

admin_pool bytes 12.8TiB 12.8TiB 16MiB

node pool online drain gran capacity insts activs
nid00022 wlm_pool true false 16MiB 6.4TiB 0 0
nid00023 wlm_pool true false 16MiB 6.4TiB 0 0
nid00024 wlm_pool true false 16MiB 6.4TiB 0 0
nid00025 wlm_pool true false 16MiB 6.4TiB 0 0
nid00048 admin_pool true false 16MiB 6.4TiB 0 0
nid00049 admin_pool true false 16MiB 6.4TiB 0 0

Figure 6. Sample dwstat command output for pools and nodes

wlm_pool
1TiB granularity

24TiB free

DW Server DW Server DW Server

DW Server

LVM VG 

6.4TiB

DW Server

LVM VG 

6.4TiB

DW Server

LVM VG 

6.4TiB

admin_pool
16MiB granularity

12.8TiB free

LVM VG 

6.4TiB

LVM VG 

6.4TiB

LVM VG 

6.4TiB

Figure 7. Six server nodes belonging to two DataWarp storage pools.
The pool wlm pool has four nodes worth of storage in it, and instance
fragments are created that are multiples of 1TiB. The pool admin pool has
two nodes worth of storage in it, and instance fragments are created that
are multiples of 16MiB. The larger allocation granularity associated with
wlm pool means that 0.4TiB of space per server node is inaccessible.

• Maximum Writes Over Time: Users that know how
much data their application will write over a period of
time (e.g., entire batch job, every 2 hours, etc.) can
specify a time window and a byte value to establish an
upper bound on writes in a rolling window that, when
exceeded, will prevent future writes from succeeding.
As time progresses, the window slides forward and
writes that occurred outside of the window are no
longer counted against the byte threshold.

G. Resiliency

If a DataWarp server node fails, only jobs using instances
on the failed node are affected. Those jobs will see I/O
errors. New instance creation requests will avoid failed
server nodes. The WLM will reduce available capacity by
that of the failed nodes.

DataWarp periodically monitors the remaining SSD en-
durance and will stop assigning a server node to new
instances when the remaining endurance falls below a con-
figurable threshold. DataWarp server nodes can be drained
for maintenance, in which case they do not get assigned new
instances and existing job instances are allowed to complete
normally. SSDs can also move to new DataWarp server
nodes and existing persistent instances on those SSDs will
still be usable by future batch jobs.

DataWarp does not provide any data redundancy. While it
would be possible to replicate data across multiple DataWarp
servers, the increased HSN and SSD traffic would cause a
significant reduction in the effective DataWarp bandwidth
(and to a lesser extent, a reduction in capacity and en-
durance), reducing the cost effectiveness of DataWarp.

IV. PERFORMANCE

DataWarp bandwidth is proportional to the number of
DataWarp servers used for the instance. See Figure 8a for
the maximum sequential read rate for a scratch instance
when using 1 or 2 DataWarp server nodes vs. Lustre OSTs
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Figure 8. Maximum sequential read rate (8a) and write rate (8b) between DataWarp and Sonexion 2000 with one or two servers or OSTs, respectively.

on Sonexion 2000. We performed measurements on Cray-
owned XC systems running CLE 5.2.UP04 with Phase 1
software. We used the IOR benchmark running in POSIX file
per process mode accessing 192GiB of data. The DataWarp
experiment used 2 ranks per node on 8 or 16 compute nodes
for the 1 or 2 servers, respectively. The Lustre experiment
used 2 ranks per node on 16 compute nodes. Performance
suffers at small transfer sizes due to the lack of client-
side caching in Phase 1, but exceeds Lustre performance
for 64-128KiB and larger transfer sizes. See Figure 8b for
the maximum sequential write rate for the same setup. For
DataWarp, read and write performance peaks at 512KiB
transfer size before decreasing and leveling off. At 512KiB,
the transfer size is large enough to make good use of the
Aries network and amortize the fixed RPC cost overhead
while being small enough to perform well when the server
is low on free memory.

A single compute node can saturate an entire DataWarp
server node for both reads and writes if enough streams are
used. See Figure 9a for reads and Figure 9b for writes. For
reads, saturation occurs at around 8 streams per node. For
writes, saturation occurs at around 16 streams per node.

The MSC Nastran structural analysis software [15] ex-
hibits an I/O pattern on some data files that is challeng-
ing for spinning disk hardware. Data files are repeatedly
read sequentially both forward and backward. On forward
passes, prefetching enables fast performance. On backward
passes, prefetching is bypassed and the storage hardware
must be involved with every read operation. DataWarp’s
SSD hardware allows for these reads to complete without
access penalty, whereas PFS spinning disk hardware must
frequently perform expensive seeks. Figure 10 shows a
comparison using MSC Nastran between a DataWarp en-

vironment and a Lustre environment. This example displays
file position over time accessing the SCR300 file, showing
the forward and backward passes of reading the factored
matrix. DataWarp performance in the forward and backward
passes is consistent and fast. On sequential backwards reads,
Lustre performance performs well at first due to cache hits
in the client cache from spatial locality, but suffers once the
spinning disk hardware is accessed. The end result is the
DataWarp environment performs twice as fast.

DataWarp performance scales to larger environments.
Figure 11 shows the results of running the IOR benchmark
on a customer installation with 264 DataWarp servers, each
with 2 Intel P3608 SSDs [16]. The test was IOR POSIX
file per process running on 5280 compute nodes, 2 ranks
per node, and 10560 ranks running Phase 1 DataWarp on
CLE5.2.UP04. Additional parameters include a transfer size
of 512KiB with 16GiB of data per file, and all files striped
across all servers. In aggregate, the write rate achieved 1.54
TB/sec and the read rate achieved 1.66 TB/sec.

V. CONCLUSION

Provisioning a PFS for both bandwidth and capacity on
large HPC systems is cost-prohibitive. DataWarp introduces
a storage layer between user applications and the PFS to
handle the application’s bandwidth needs, which allows the
PFS to be provisioned primarily for capacity and resiliency
requirements. Interaction between DataWarp and the PFS
can happen asynchronously to applications, which reduces
the quantity of time that compute nodes need to be allocated
to jobs while allowing them to spend more time being used
for computation. DataWarp instances can be created on de-
mand per batch job, or they can be shared amongst multiple
batch jobs in order to further minimize PFS interaction.
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Figure 9. Maximum sequential read rate (9a) and write rate (9b) from one compute node to one DataWarp server node for varying numbers of file
streams.

Figure 10. NASTRAN performs sequential reads forwards and backwards multiple times. Traditional spinning disks suffer while reading sequentially
backwards due to expensive seeks while DataWarp SSD hardware does not suffer the same penalty. Image courtesy of I/O Doctors, LLC.
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Figure 11. Results from running the IOR benchmark in POSIX file per process mode on 5280 compute nodes with 2 ranks per node against 264 DataWarp
servers.

DataWarp accelerates many use cases. As a PFS cache, it
accelerates applications that perform checkpoint/restart, have
periodic output, or use lots of application library files. As a
/tmp replacement, it allows for applications to dump state
without ever performing PFS I/O or consuming valuable
compute node memory. Users can use persistent instances
to access frequently used shared data files or have multiple
jobs manipulate data before eventually writing final results
to a PFS. Using DataWarp for swap files on compute nodes
enables applications needing more memory than is present
on those nodes to complete successfully. If applications are
run directly on DataWarp server nodes they have access to
the high IOPS rate provided by the SSD hardware.

DataWarp is capable of providing superior bandwidth
compared to a traditional PFS due to the use of high-
performance SSDs and a shorter path between compute
nodes and DataWarp servers. A single compute node is
capable of saturating a single DataWarp server node, and
DataWarp scales to hundreds of servers.
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