
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National 

Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-1497 C

ACES and Cray Collaborate on 
Advanced Power Management for 
Trinity (and beyond)

Alliance for Computing at Extreme Scale (ACES)
Sandia National Laboratories and Los Alamos Laboratory

in collaboration with Cray Inc.

Presented by: Steve Martin, Cray Inc.

CUG 2016



2

TEAM

 Sandia:
James H. Laros III, Kevin Pedretti, Ryan E. Grant, 

Stephen L. Olivier, Michael Levenhagen, David DeBonis

 Los Alamos:
Scott Pakin, Jonathan Woodring

 Cray:
Steven Martin, Matthew Kappel, Paul Falde

* Host of others, see acknowledgments in paper

2

CUG 2016



3

“Cray has a long history working with the Sandia National 
Laboratories and a strong partnership around developing new 
technologies and advanced solutions. The foundation for Cray’s 
roadmap in Advanced Power Management was built on the 
pioneering research jointly conducted at Sandia Laboratories on 
the first Cray XT platform, Red Storm. In addition, Cray wants to 
acknowledge Sandia’s leadership role in driving vendors to use 
common API’s for power management and control,”

- Peter Ungaro, President and CEO of Cray Inc.

CUG 2016



4

Background

4

2006

 Initial research on first Cray XT 
platform - Red Storm

2012:

 Use case study conducted

2014

 Power API specification

2015

 Trinity Power NRE Project

CUG 2016



5

CUG 2016



2006: Initial Research

6

Measure Control

Facility

Manager

HPCS User

HPCS Admin
HPCS 

Accounting

HPCS 

Application

HPCS

Manager

HPCS

Resource

Manager

HPCS

Monitor &

Control

HPCS

Operating

System

CUG 2016



7

2012: Use Case Study

7

Diagram is the result of a UML study of the target space
• Goal: Define Scope, Roles and Interfaces

Arrows indicate interfaces or interaction between an Actor 
(Role) and System

• Each interaction represents an interface that is defined in the 
specification

• Specification is structured from the user or Role perspective

Notice that an Actor (Role) can also be a System

CUG 2016 https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/UseCase-powapi.pdf

https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/UseCase-powapi.pdf
https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/UseCase-powapi.pdf
https://cfwebprod.sandia.gov/cfdocs/CompResearch/docs/UseCase-powapi.pdf


8

2014:Power API Specification

• Version 1.0, 1.1, 1.1a and 1.2 delivered

• Community needed a portable API for measuring and controlling power and energy

• Sandia developed Power API specification to fill this gap

• Provides portable power measurement and control interfaces
• Covers full spectrum of facility to component

• First production implementation will be Trinity (ATS1)

• Continued (increasing) community involvement and influence

8

CUG 2016 http://powerapi.sandia.gov

http://powerapi.sandia.gov/
http://powerapi.sandia.gov/
http://powerapi.sandia.gov/


 Broad Scope

 High-level: end user and applications

 Low-level: hardware and operating system

 Roles (actors)

 Systems

 Interfaces

 Roles interacting with Systems

9

The “High Performance Computing –

Power Application Programming Interface 

Specification” a.k.a. Power API

CUG 2016



10

Power API Goals

 Portability for the HPC community

 Wouldn’t it be nice to develop tools that worked on all your machines with little to no modification?

 Same desire exists no matter what Role you play

 Forecast emerging needs of HPC community

 As a group, inform the vendors of how we want to use systems now and in the future

 Specification acts as a basis of collaboration

 Expose new capabilities developed by  vendors and community

 Leverage vendor and community innovations in this and related spaces

 E.g. Geo and Redfish

 Most important, want something out there to throw stones at

 Need a starting point!

CUG 2016



11

What is the Power API?

 A comprehensive API for power MEASUREMENT and CONTROL of HPC platforms

 Comprehensive = Facility to Component

 API = Define the interface not the mechanism

 HPC platforms = Facility (or datacenter) and all the platforms within

 Core (Common) among all “users” Includes: 

 Roles, Initialization, Navigation, Objects and Groups, 

 Attributes (Get/Set),  Metadata and Statistics

 High-Level Common

 Higher level of abstraction but still potentially common among multiple Roles

 Role/System Specific

 Higher level abstraction specific to how Role interfaces with system

CUG 2016



12

System Description

12

CUG 2016



13

Foundation: Measurement and Control

 Monitor:

int PWR_ObjAttrGetValue( PWR_Obj object,

PWR_AttrName attr,

void* value,

PWR_Time* ts );

 Control:

int PWR_ObjAttrSetValue( PWR_Obj object,

PWR_AttrName attr,

const void* value );

13

CUG 2016



14

Cray PM on XC system

 First released in 2013
 System Management Workstation (SMW) 7.0.UP03

 Cray Linux Environment (CLE) 5.0.UP03

 Power Management Database (PMDB)

 System Power Capping

 PM Counters /sys/cray/pm_counters

 Resource Utilization Reporting (RUR) 

 Online documentation:
 http://docs.cray.com/books/S-0043-7204/S-0043-7204.pdf

CUG 2016

14

http://docs.cray.com/books/S-0043-7204/S-0043-7204.pdf
http://docs.cray.com/books/S-0043-7204/S-0043-7204.pdf
http://docs.cray.com/books/S-0043-7204/S-0043-7204.pdf


15

Cray Advanced Platform Monitoring and Control 
(CAPMC)

 Cray Advanced Power Platform Monitoring and Control 
 CAPMC, much more than just power

 Released in the fall of 2014
 SMW 7.2.UP02 and CLE 5.2.UP02 

 New features in upcoming release

 Enabling Workload Managers (WLM)
 Secure, authenticated, off-smw, monitoring and control interfaces

 Supported by major WLM partners on XC systems

 CAPMC online documentation:
 http://docs.cray.com/books/S-2553-11/S-2553-11.pdf

CUG 2016

15

http://docs.cray.com/books/S-2553-11/S-2553-11.pdf
http://docs.cray.com/books/S-2553-11/S-2553-11.pdf
http://docs.cray.com/books/S-2553-11/S-2553-11.pdf


16

Trinity NRE: Three Areas of Focus

1. Cray: Power Management Database interface (PMDB)
 Python (coming in Version 2.0 of Power API specification)

 Implementation of PowerAPI in Python providing access to Cray’s PMDB

2. Cray: Compute node interface
 Node level C interface

 Implementation in C on Cray Compute Nodes for Trinity systems

3. Adaptive: Power Aware Scheduling
 Focusing on features that will enable use cases

 Exercise capabilities implemented as part of #2 and potentially #1 above

16

CUG 2016



17

Trinity NRE: PowerAPI access to PMDB

# INIT

myPwrCntxt = pwr.Cntxt(pwr.CntxtType.DEFAULT, pwr.Role.RM, "Default") 

myPwrObj = myPwrCntxt.GetObjByName(objName) 

attrName = pwr.AttrName.POWER

# Get Point in Time

measInfo = myPwrObj.AttrGetValue(attrName) 

measurementValue = measInfo.value

measurementTime = measInfo.timestamp

# Average over time single object

attrStat = pwr.AttrStat.AVG

endTime = Time(time.time()) # current time. 

timePeriod = timePeriod(start=(endTime-3600.0), end=endTime) # one hour. 

statInfo = myPwrObj.GetStat(attrName, attrStat, timePeriod) 

statisticValue = statInfo.value

statisticTimePeriod = statInfo.timestamp

CUG 2016

17



18

Trinity NRE: Compute Node

PWR_Cntxt myPwrCntxt;

PWR_Obj myPwrObj;

double orig_freq, io_freq;

PWR_Time my_ts;

/* Init context, and entry point... w/out error checking/handling */

rc = PWR_CntxtInit(PWR_CNTXT_DEFAULT, PWR_ROLE_RM, "foo", &myPwrCntxt);

rc = PWR_CntxtGetEntryPoint(myPwrCntxt, &myPwrObj);

…

/* Get the current frequency for myPwrObj */

rc = PWR_ObjAttrGetValue(myPwrObj, PWR_ATTR_FREQ, &orig_freq, &my_ts);

…

/* Set new frequency */

io_freq = MY_IO_FREQ;

rc = PWR_ObjAttrSetValue(myPwrObj, PWR_ATTR_FREQ, &io_freq);

CUG 2016

18



Trinity NRE: Compute Node

 Leverage potential power savings using 
application hints

 Onload (CPU involved) – communication 
performance is effected by processor 
frequency changes – Ignore hint

 Offload – communication performance 
maintained in addition to significant power 
savings

 Application (or run-time) provides the hint

 Underlying hardware can choose to leverage 
hints based on circumstances

19

Onload

Offload

CUG 2016



Trinity NRE: Power Aware Scheduling

P-State Sweep

Fixed Performance, Variable Power

Power Cap Sweep

Fixed Power, Variable Performance

20

Power capping appealing due to max power draw “guarantee”

Recapture (WallPlate – Pcap) headroom and reallocate elsewhere

Potentially useful for doing power aware scheduling

P-state control appealing due to predictable performance, power unknown

CUG 2016



21

Trinity NRE: Power Aware Scheduling


1.8 Ghz Execution, 322 W Cap (10 of 96 nodes),

Does NOT Hit Cap, All Nodes Run at Same Speed   

Turbo (Max Speed) Execution, 322 W Cap (10 of 96 nodes),

Cap is Hit Frequently => Performance Variability across Nodes

Observed

Frequency

Observed

Frequency

• S3D CPU 0 Frequency 

over time for 10 nodes

• Hitting Power Cap 

Leads to Frequency 

Oscillation

• Performance variability 

is a problem for bulk 

synchronous 

applications

• Only as fast as the 

slowest node

CUG 2016



22

Who is Behind PowerAPI?

<Your logo here!>

CUG 2016



23

Thank you – Questions?

http://powerapi.sandia.gov/

Acknowledgments:

This work was funded through the Computational Systems and Software Environment sub-program of the Advanced 

Simulation and Computing Program funded by the National Nuclear Security Administration

CUG 2016



BACKUP

CUG 2016



25

96 Countries

25

http://powerapi.sandia.gov
CUG 2016

http://powerapi.sandia.gov/


Node-Level Power Capping

26

64 GB Memory

DDR4 2133, 4 Ch.

68 GB/s

64 GB Memory

DDR4 2133, 4 Ch.

68 GB/s

Haswell

Xeon E5-2698V3

16 Cores, 2.3 GHz

588 GFLOPS

QPI x2,

9.6 GT/s

Platform Controller Hub,

Runs Intel Node 

Manager Firmware

Haswell

Xeon E5-2698V3

16 Cores, 2.3 GHz

588 GFLOPS

DMI2

Compute Node

Blade Controller,

Runs Embedded Linux,

Controls 4 Nodes

SMBus / I2C

System 

Management 

Workstation

(SMW)

Cray Aries

NIC / Router

GigE

PCIe3

x16

Node

Power 

Meter

Trinity “Haswell” Compute Node
 Blade controller receives power cap command 

from management network

 Blade controller relays command to Intel PCH

 PCH runs Intel’s Node Manager firmware, which 
enforces the power cap

 Cray node-level power meter provides feedback 
to Node Manager

 Node manager makes use of each socket’s RAPL

 Power capping algorithm not disclosed by Intel

Specification: Intel Intelligent Power Node Manager 3.0, March 2015, Doc# 32200-001US 
CUG 2016



Job/System-Level Power Capping

27

Compute Nodes

System 

Management 

Workstation

(SMW)

Set Node Power-Cap

Commands

Workload 

Manager / Job 

Scheduler

CAPMC

Power-Cap

Commands

User Front-End

Nodes

Launch Application at

Static P-state Commands

Job Allocation

Requests

See: Monitoring and Managing Power Consumption on the Cray XC System, April 2015, S-0043-7203 

 A single management workstation controls system, 
the SMW

 Node-level power caps set from SMW, distributed 
to compute nodes via out-of-band management 
network

 Admins use xtpmaction command to set power 
caps manually

 Workload managers use Cray’s CAPMC web API to 
set power caps

 Users may launch their job at a fixed p-state, 
default is P0 (turbo on)

Cray XC40 Power Management Architecture

CUG 2016



28

Trinity NRE: PowerAPI access to PMDB

# INIT

myPwrCntxt = pwr.Cntxt(pwr.CntxtType.DEFAULT, pwr.Role.RM, "Default") 

myPwrObj = myPwrCntxt.GetObjByName(objName) 

attrName = pwr.AttrName.POWER

# Point in Time

measInfo = myPwrObj.AttrGetValue(attrName) 

measurementValue = measInfo.value

measurementTime = measInfo.timestamp

# Maximum overTime Multiple objects

attrStat = pwr.AttrStat.MAX

statInfo = myPwrObj.GetStat(attrName, attrStat, timePeriod) 

statisticValue = statInfo.value

statisticTimePeriod = statInfo.timestamp

statisticPwrObj = statInfo.obj 

CUG 2016

28


