
Dynamic RDMA Credentials

James Shimek, James Swaro

Cray Inc.

Saint Paul, MN USA

{jshimek,jswaro}@cray.com

Abstract—Dynamic RDMA Credentials (DRC) is a new sys-
tem service to allow shared network access between different
user applications. DRC allows user applications to request
managed network credentials, which can be shared with other
users, groups or jobs. Access to a credential is governed by
the application and DRC to provide authorized and protected
sharing of network access between applications. DRC extends
the existing protection domain functionality provided by ALPS
without exposing application data to unauthorized applications.
DRC can also be used with other batch systems such as
SLURM, without any loss of functionality.

In this paper, we will show how DRC works, how to use DRC
and demonstrate various examples of how DRC can be used.
Additionally, future work for DRC will be discussed, including
optimizations for performance and authorization features.

Keywords-Cray; DRC; Cray XC; Dynamic RDMA Creden-
tials;

I. INTRODUCTION

On Cray XC R© systems [1], interconnect network ac-

cess is not easily shared between applications running in

different job reservations. ALPS provides a protection do-

main(pdomain) feature that allows applications running with

job reservations to share network access within two different

contexts: system-wide or user. A protection domain is a

network-level security mechanism used to prevent unautho-

rized access to network-mapped memory regions on a node.

A system-wide pdomain is accessible by any application in

any job reservation, which is inherently insecure. A user

pdomain is accessible by any application run by a specific

user in any job reservation, which is more secure but less

flexible than a system pdomain. Both types of pdomain do

not provide flexible sharing of network resources that also

provide security to the applications using them. Additionally,

Cray XC R© systems may use SLURM [2] instead of ALPS.

The pdomain feature is not present on SLURM, so sharing

of network resources between different job reservations is

not possible. To provide a secure and flexible solution to

the problem of sharing network resources, we propose a

system for sharing network resources called Dynamic RDMA

Credentials (DRC).

Dynamic RDMA Credentials is a new system service to

allow shared network access between different user appli-

cations using a managed network credential. DRC allows

user applications to request managed network credentials,

which can be shared with other users, groups or jobs. The

credential provided by DRC is an object created by applica-

tions and managed by DRC to provide security by routing

access requests to a credential through the DRC system.

DRC consists of three new system services (DRCC, DRCS,

and DRCJEDI), a library (libdrc), and a command-line

utility (DRCCLI). Libdrc is used by user applications

for run-time control of managed network credentials. User

applications use library API functions to acquire, modify or

release credentials. Credentials can also be managed outside

of the run-time context using the DRC command line utility,

DRCCLI1.
Access to a credential is governed by the application and

DRC to provide authorized and protected sharing of network

access between applications. The libdrc API provides

functions for acquiring new credentials and modifying ac-

cess permissions for existing credentials. DRC maintains a

list of authorized users, groups or jobs for each credential

to prevent unauthorized access. User applications can grant

access to other users, groups or jobs using the API during

run-time, or through DRCCLI.

DRC extends the existing ALPS protection domain func-

tionality without exposing application data to unautho-

rized applications. DRC solves existing privacy problems

with protection domains by only allowing authorized users,

groups or jobs to use a DRC managed network credential,

so that only authorized applications may interact using the

shared credential. Of further benefit, DRC is not dependent

on ALPS and therefore can be used with other workload

managers (WLM) such as SLURM. DRC extends the exist-

ing features found on systems using ALPS or SLURM to

provide the same authorized and protected network access

between applications.

In the following sections, we will show how DRC works,

how to use DRC and demonstrate various examples of how

DRC can be used. Examples will be given to show how

users might interact with DRC to acquire, modify or release

a managed network credential. More examples will be given

to demonstrate the administrative capabilities of DRCCLI.

Lastly, future work for DRC will be discussed including

optimization work for scaling and performance, upcoming

administrative features, and authorization enhancements.

1DRCCLI has a broader functionality than libdrc as it is intended to
be a utility program for administrators. However, DRCCLI does not have
all of the functionality of libdrc either.

Credential

Credential ID

Cookie
References
ACLs

User Facing

Internal
Representation

Figure 1. Representation of a DRC credential

II. BACKGROUND

To explain how DRC functions as a system, it is important

to understand how applications behave with and without

DRC. In the next sections, we will discuss how a simple

uGNI application would behave without DRC, then briefly

cover the architecture of the DRC system, and finally,

discuss how the same application would behave using the

DRC system.

A. Simple uGNI application without DRC

A simple application that utilizes the uGNI library to

communicate with the high-speed network (HSN) has many

steps to perform before a message is ever sent. The first step

in this process occurs outside of the application at the time

when the job containing the application is scheduled with

the work load manager (WLM). When the job is started by

the WLM, the WLM supplies a private protection tag (ptag),

and cookie for the job2. Once the application is started from

within the job, the application can communicate with the

WLM to retrieve the ptag and cookie. Once ptag and cookie

is retrieved, the application uses the ptag cookie to create

a uGNI communication domain (CDM). Once the CDM is

created, any underlying objects created with the CDM are

associated with ptag and cookie that the CDM was created

with. At this point, the application creates the underlying

objects that are needed to communicate across the HSN,

and proceeds normally3.

B. DRC architecture

To understand the changes made to the process that a

simple application uses to access the HSN, we first need to

discuss what DRC introduces to the system. DRC introduces

2At the time that the job is scheduled, a user can supply a protection
domain ID that changes the supplied ptag and cookie to the ptag and cookie

associated with the protection domain.
3By ‘normally’, we mean that the application continues execution as

defined by the program itself. Applications may choose to interact with the
HSN as they choose

DRCC

Application
Requests

DRCS DRCJEDI

Client
Requests

Job
expiration

DRC Work Load Manager

Request Cookie

Job Exit
Events

Node-local

Remote
Server

Application

LibDRC uGNI

User App

Service
(ALPS/SLURM)

Figure 2. DRC system architecture as seen from a top-down perspective

multiple components to a system, as described in section I,

that work together to provide secure, managed credentials.

The credential provided by DRC is provided to the user as

a uint32_t identifier that maps internally to a credential

object4 in the DRC system, as shown in figure 1. The DRC

system, shown in figure 2, is composed of a client daemon

(DRCC), server daemon (DRCS), job expiration detection

daemon (DRCJEDI), and a library (libdrc).

The library, libdrc, is responsible for handling requests

from the user applications. Libdrc is the portion of the

DRC system that must be linked with the user application.

Using libdrc, user applications may make requests for

new credentials, modify permissions for existing credentials,

or release resources5. Libdrc allows user applications to

execute the following actions:

• acquire a credential (acquire)

• grant permission to a credential (grant)

• revoke access to a credential (revoke)

• access a credential (access)

• release credential reference (release)

These requests are processed wholly within the library,

then forwarded as-needed to the DRC client daemon, DRCC.

DRCC services requests from libdrc for every appli-

cation running on a node. When receiving the request,

DRCC authenticates the user request before any processing

occurs, preventing user applications from masquerading as

other users, groups, or jobs. After authentication, DRCC

will service any part of the request that can be processed

locally. Some requests can be wholly satisfied within DRCC,

preventing unnecessary network traffic and allowing the

response to the application to be returned immediately.

4In the case of tokenization(See section III-F), the credential can also
be represented by a character string that contains encoded credential
information.

5Libdrc provides two different functions for releasing resources:
drc_release_local and drc_release. The former releases refer-
ences to the credential and local uGNI resources, while the latter only
releases the local uGNI resources.

If DRCC cannot fully satisfy the request, the request is

forwarded to the DRC server daemon, DRCS.

DRCS services requests from DRCC and the DRC

command-line interface, DRCCLI. DRCS is responsible for

processing all requests for new credentials, modifications

to existing credentials, or the release of system-wide re-

sources6. To create a new credential, DRCS must commu-

nicate with the WLM to provision a new cookie(s)7 for the

credential. Releasing a credential follows a similar process

where DRCS must inform the WLM that the cookie(s)

are no longer needed and can be freed to a pool of free

resources. Additionally, DRCS must communicate with the

job expiration director, DRCJEDI, in the event that an

application exits without calling the appropriate functions

in libdrc.

The primary function of DRCJEDI is to inform DRCS of

job exit events from the WLM. In the event that an appli-

cation exits unexpectedly, the application may not inform

libdrc (and by proxy, DRCS) that it has finished with its

credentials. To ensure that DRCS knows when an application

within a job has exited, DRCJEDI monitors the WLM for

the events and forwards event notifications to DRCS. The

job exit notifications allow DRCS to reconcile credential

references and properly return credentials to the pool of free

credentials when they are no longer in use.

C. Simple uGNI application with DRC

The same application running without DRC changes very

little when running with DRC. An application compiled with

libdrc can still use the WLM-provided ptag and cookie.

However, the application can now request new credentials or

access credentials that it has been granted access. The appli-

cation first requests a new credential or attempts to retrieve

a credential ID from another application through an out-of-

band channel for which the application has requested and

been granted access. Next, the application attempts to access

the credential through libdrc using the access function.

If the access is successful, the application can then use the

libdrc helper functions to access the cookie information

contained in the drc_info_handle_t returned from

the access function. Once the cookie associated with the

credential have been retrieved, the application can create a

CDM that can be used to register uGNI communication ele-

ments necessary for inter-application communication8. Once

finished with the uGNI communication elements associated

with a credential, the credential should be released via the

libdrc release function.

6System-wide resources from the perspective of DRC are protection
domains, DRC credentials, ptags, and cookies.

7ALPS-based systems will provide two cookies, while SLURM systems
only provide a single cookie

8The steps of creating and/or accessing a credential, then setting up
the necessary uGNI communication elements can be done repeatedly for
creating multiple shared communication domains.

III. FEATURES

The basic functions of DRC need to supplemented to

provide a robust and high-performance solution. To enhance

DRC, the following features were implemented:

• Job expiration detection

• Administrative credential limits

• Persistent credentials

• Service restart reconciliation

• Node-local credential caching

• Credential tokenization

• Node-insecure mode

Job expiration detection is implemented as a resource

monitoring feature, while other features such as credential

tokenization are directly related to scalability and perfor-

mance. In this section, we will discuss the various features

available in DRC.

A. Job Expiration Detection

Typically, when an application exits, it should call the

release API function in libdrc. However, in the event

of unexpected application termination, the application may

not make the appropriate calls to libdrc to manage

the credential properly. Without releasing the application

reference to the credential, it may remain allocated and

holding network resources. To address this concern, DRC

uses a feature called job expiration detection. Job expiration

detection is a DRC feature that monitors the WLM for

termination of job reservation and notifies the DRC server,

DRCS, of these events.

DRC has a two-step approach to job expiration detection.

The first step is to detect which applications are running

within a job reservation, and using reference counting,

associate them with credentials as necessary by taking a

reference. References to a credential are taken when neces-

sary during application calls to the acquire and access API

functions. If an application is running from a job context,

then DRC determines that the association with the credential

is transient. Since jobs are limited in duration, the associa-

tion of the application with the credential is also limited in

duration, or transient. Given that the association is transient,

DRC must take additional steps to ensure references to the

credential are dropped when the associations are no longer

present. Otherwise, no further action is necessary.

The second step is to detect and remove references

of application associations with credentials when the job

reservation expires. Irrespective of the WLM, DRC records

the job reservation ID associated with an application when

the application associates itself with a credential. The as-

sociation becomes invalid after the application uses the

release API function. Since DRC cannot detect abnormal

termination, DRC instead coordinates with the WLM to

determine what jobs have expired. Using the job reservation

ID recorded earlier, DRC can remove the expired references

and determine whether the credential and its resources can

be deallocated.
This feature is fully implemented within the DRC job ex-

piration director service, DRCJEDI. The DRCJEDI service

is fully compatible with ALPS and SLURM, and may be

easily extended to other WLMs as needed.

B. Administrative Credentials Limits

Since DRC extends the existing pdomain functionality,

credentials are limited by the same constraints. To ad-

dress potential abuse by users or groups9, DRC imposes

administrator-controlled limits that are highly configurable.
Four different types of global limits exist: per-user, per-

group, per-job and a global credential limit. A ‘global

credential’ limit is a limit on the number of allocated creden-

tials across the entire system. This allows administrators to

effectively limit the portion of protection domains that DRC

may consume out of the global pool. A ‘per-user’ limit is

applied to each user on the system, regardless of any specific

user limit. A ‘per-group’ limit is applied to each group on the

system, regardless of any specific group limits. Lastly, a ‘per-

job’ limit is applied to each job on the system, regardless

of any specific job limits.
Outside of global limits, specific limits can also be set.

Specific limits are user, group, or job limits. A ‘user’ limit

is specific to the provided UID, a ‘group’ limit is specific

to the provided GID, and a job reservation limit is specific

to the provided job reservation ID.
All limits are independently verified. This means

that if any one limit has been exceeded for a given

UID/GID/WLM ID tuple, a request for a new credential will

be denied. This will allow administrators to easily set limits

across a number of different parameters to encourage fair

use of resources.

C. Persistent Credentials

By default, DRC credentials are created as temporary

objects, existing only as long as there are outstanding

references to the credential via access. If no references

to the credential exist, then the credential is cleaned up

and all allocated resources are freed. However, if the

DRC_FLAGS_PERSISTENT is provided as a flag to the

acquire call, then the credential will exist until release is

explicitly called from the acquiring job or process. The cre-

dential will not go away immediately. Instead, the credential

will exist until there are no remaining references to the

credential, behaving in the same manner as normal creden-

tial. This is an optimization for applications that intend to

share the credential over extended periods of time without

requiring strict reference counting. Persistent credentials can

survive reboots, and are functionally equivalent to system

protection domains with access control.

9On systems utilizing ALPS, administrators may set a limit to the number
of protection domains that may be allocated globally. This global limit may
interfere with fair-use policies regarding network resources in some cases.

D. Service Restart Reconciliation

As part of the job expiration detection feature, DRCJEDI

notifies DRCS when a job reservation has terminated so that

DRCS may take necessary action for resource management.

However, if the DRCJEDI service has stopped or is in

the process of restarting, notifications from DRCJEDI to

DRCS may be lost. Since credential information must persist

between restarts of the service, DRCS uses a persistent

database to store credential information and lost notifications

may cause the persistent store to become out-of-sync with

the WLM job information. In order to ensure that resource

management of credentials is done properly, DRCJEDI will

attempt to reconcile the persistent credential information

with DRCS by actively requesting job reservation informa-

tion for existing credentials.

The process for reconciliation is simple. In the event of

a process restart or node reboot, DRCJEDI sends a request

to DRCS for a list of job reservation IDs that are associated

with existing credentials. Next, DRCJEDI requests the list

of active job reservations from the WLM, then compares

the list from the WLM with the list of “outstanding” job

reservation IDs from DRCS. A list of expired job reservation

IDs is built from the set of job container IDs that do not

exist in the active list from the WLM but exist in the list

of “outstanding” job reservation IDs from DRCS. Finally,

the list of expired job reservation IDs are sent to DRCS

to reconcile the database records. The end result of the

reconciliation is the re-synchronization of WLM information

with the DRCS database information about job reservations.

The reconciliation allows DRCS to release network resources

held by a DRC credential if the credential was transient and

no references to the credential exist.

To support the persistent credentials feature, service restart

reconciliation has been expanded to cover DRCC as well. In

the event that the DRCC service is stopped or restarted, DRCC

will attempt to reconcile any persistent credential references

with the DRCS server. In the event that the node running

the DRCC service has rebooted, DRCC will notify DRCS that

the node was rebooted and any references held by the node

should be dropped. In the event that only the DRCC service

was restarted, DRCC can check the process list against an

internal credential cache to verify which applications have

exited. This type of operation has much less impact to DRCS

and may not require any notification at all. In either case,

DRCS is notified of changes to the references so that network

resources can be released if no longer needed.

E. Node-local Credential Caching

A naı̈ve approach to handling access requests would

require each instance of an application using libdrc to

coordinate with the DRC server, DRCS. Unfortunately, this

approach is not scalable, especially for small jobs where the

number processes per node is high.

To provide scalability on a per-node basis, DRC utilizes

a cache of credential information within DRCC to prevent

spurious communication with DRCS. When an application

makes an access request via the API, it first checks the

credential cache within DRCC. If the inbound credential

access request has been sent before and the credential

association hasn’t been released, then DRCC does not need

to forward the access request. This optimization reduces the

number of requests to the server by the number of processes-

per-node for a given job. This reduces the overall request

processing done by DRCS and allows DRC to scale better

on larger systems.

F. Credential Tokenization

Node-local credential caching is of little benefit for the

traditional HPC use case in which jobs span large numbers

of nodes with one or very few processes per node. For this

scenario, further involvement is required from the client soft-

ware. To address this case and further improve scalability,

DRC provides credential tokenization.

Credential tokenization is a method of encoding DRC-

specific credential information into a buffer and returning

it to the client. The client can then distribute the token to

other processes within the same job. Once another process

has the token, it can use a variant of the access API

with the token. The variant of the access API function

accepts credential tokens and does not require coordination

with DRCS, eliminating traffic on the network and further

reducing the amount of request processing done.

G. Node-insecure mode

Node-insecure mode is a feature that allows applications

from multiple jobs on the same node to use the same

credential. DRC credentials are created with the perspective

of one job reservation or application set per node, which

allows DRC to tightly control access to the credential.

By allowing only a single job reservation ID per cookie,

DRC can prevent unauthorized jobs from attempting to

bypass DRC access control. This type of security violation

could could occur on systems using multiple-user,multiple-

job(MAMU) capable WLMs if the cookie is not bound to a

job reservation. If the cookie were passed to an application in

a different job reservation on the same node, the application

could directly configure uGNI using the cookie and access

the HSN, even if they had not been granted access via DRC.

As a flag to acquire, DRC provides the ability to change

the default behavior and provide the ‘Node-insecure mode’

feature.

Node-insecure mode creates a credential that is not bound

to a specific job reservation. Since the credential is not

bound to a job container, any job may configure using the

cookies returned in the credential. Any job may do this,

and thus it is unnecessary to use DRC further. This feature

is provided as an exception to the process for use cases

which require multiple applications on the same node to use

the same credential. Users of this feature are recommended

to use caution to when passing credential information for

credentials allocated with node-insecure mode and to never

pass cookie information in an unsecured manner. DRC

cannot control cookie-level information and as such cannot

protect against unauthorized access to the network if security

measures are bypassed when using node-insecure mode.

Access control through DRC is still possible if cookies are

only retrieved using the DRC access API function.

IV. USAGE

In this section, we will discuss how to interact with the

DRC system, provide an overview of the API and command-

line interface, and provide examples of simple uses of DRC.

A. Functions

DRC provides a set of functions for manipulating the

managed credentials that may be used from the API or

command-line interface. This section will briefly define the

behavior of each action and how it interacts with the DRC

system. At the time of this paper, the following core func-

tions have been provided: ACCESS, ACQUIRE, GRANT,

LIMIT, LIMIT, REVOKE, and RELEASE. The ACCESS

function is specific to libdrc and is not available from

the command-line interface, DRCCLI. The LIST and LIMIT

functions are specific to DRCCLI and are not available from

libdrc.

ACQUIRE requests a managed credential from DRC.

Credentials may be acquired up to the credential limit for

the calling user. If the credential limits for the calling user

have not been exceeded and available credentials exist, a

credential identifier will be returned. See section III-B for

more details on limits.

GRANT modifies the credential access control lists for

a specific credential ID to add a new user, group, or job

reservation to the list of entities which may access the

credential.

REVOKE modifies the credential access control lists for a

specific credential ID to remove a user, group, or job reserva-

tion from the list of entities which may access the credential.

This does not terminate access for existing references to a

credential, but prevents new access requests from the denied

entity.

RELEASE removes a reference held by the calling ap-

plication for a specific credential ID. Once all references

to a credential have been dropped, any network resources

held by a credential will be released to the underlying

provider. Libdrc provides a ‘local’ RELEASE in addition

to the standard RELEASE. The libdrc local release allows

applications to return node-local network resources in the

event that the credential is still needed but the node-local

resources are not.

ACCESS requests access to a specific credential ID. Ac-

cess to a credential is accepted if the user, group, or job

reservation has been granted permission to the credential.

The user or job reservation that acquired the credential via

ACQUIRE is implicitly granted access to the credential. On

success, ACCESS configures the node for HSN access and

provides information to the application needed to configure

uGNI access for the ARIES NIC.

LIST requests information about DRC credentials. The

information provided by this function can be used by admin-

istrators for diagnostic purposes. This function is provided

as a way to get an overview of the current state of a DRC

system.

LIMIT allows administrators to configure credential limits

in a DRC system. See section III-B for more details on

limits.

B. Application Programming Interface

DRC provides a C library API via libdrc. Libdrc pro-

vides the ability to ACQUIRE, GRANT, REVOKE, ACCESS,

RELEASE to applications that are linked with libdrc.

Libdrc also provides a set of helper functions that allow

applications to retrieve additional information about creden-

tials. By using libdrc, applications can create new creden-

tials, grant/revoke access to existing credentials, release local

resources or credential references, and access existing cre-

dentials. After accessing an existing credential, applications

can retrieve the shared cookie from the credential and use

the cookie to configure HSN access. This process allows for

easy setup of a shared network domain between applications

running in different contexts.

To improve user experience, the API is stable between

point releases and the library can be updated without re-

quiring applications to recompile between updates10.

C. Command-line Interface

A command line utility, DRCCLI, is provided for manip-

ulation of the DRC system outside of the context of the C

library. DRCCLI was created to allow for administrators to

control DRCS. Using DRCCLI an administrator can use the

following verbs: ACQUIRE, RELEASE, GRANT, REVOKE,

LIST, and LIMIT.

D. Examples

In this section, we cover different examples of how to use

the API from different perspectives and use cases, such as

tokenization. Additionally, we show an example use case for

DRCCLI to achieve some of the same behavior performed

in the API examples, and demonstrate ways that DRCCLI

can be utilized by the administrator. As these examples are

primarily for demonstrating how a user might interact with

10Major API changes may require recompilation if function definitions
for existing functions are modified. Where possible, existing functions will
be preserved and alternative functions will be provided.

1 # i n c l u d e ” rdm acred . h ”

i n t main (i n t argv , c h a r ∗∗ argv) {
d r c i n f o h a n d l e t c r e d i n f o ;
u i n t 3 2 t c r e d e n t i a l , cook ie1 , c o o k i e 2 ;

6 u i n t 8 t ptag1 , p t a g 2 ;
p t a g 1 = p t a g 2 = GNI FIND ALLOC PTAG ;

d r c a c q u i r e (& c r e d e n t i a l , 0) ;
d r c a c c e s s (c r e d e n t i a l , 0 , &c r e d i n f o) ;

11 c o o k i e 1 = d r c g e t f i r s t c o o k i e (c r e d i n f o) ;
c o o k i e 2 = d r c g e t s e c o n d c o o k i e (c r e d i n f o) ;

GNI GetPtag (0 , cook ie1 , &p t a g 1) ;
GNI GetPtag (0 , cook ie2 , &p t a g 2) ;

16

/ / C o n f i g u r e Normal UGNI A p p l i c a t i o n h e r e
/ / Gran t a c c e s s t o c l i e n t a p p l i c a t i o n s u s i n g

f o l l o w i n g
d r c g r a n t (c r e d e n t i a l , i n c d a t a . cred wlmid ,

DRC FLAGS TARGET WLM) ;
/ / Do A p p l i c a t i o n Work

21 d r c r e l e a s e (c r e d e n t i a l) ;
}

Figure 3. Example Acquiring Program

i n c l u d e ” rdm acred . h ”

3 i n t main () {
d r c i n f o h a n d l e t i n f o ;
u i n t 3 2 t c r e d e n t i a l , cook ie1 , c o o k i e 2 ;
u i n t 8 t ptag1 , p t a g 2 ;

8 / / Acqu i re c r e d e n t i a l i d and p e r m i s s i o n t h r o u g h
OOB s e r v i c e

r c = d r c a c c e s s (c r e d e n t i a l , 0 , &i n f o) ;
c o o k i e 1 = d r c g e t f i r s t c o o k i e (i n f o) ;
c o o k i e 2 = d r c g e t s e c o n d c o o k i e (i n f o) ;

13 g r c = GNI GetPtag (0 , cook ie1 , &p t a g 1) ;
g r c = GNI GetPtag (0 , cook ie2 , &p t a g 2) ;
/ / C o n f i g u r e uGNI and p r o c e e d n o r m a l l y

}

Figure 4. Example basic client

DRC, examples will not show proper error handling for the

sake of brevity.

The first example, shown in figure 3, demonstrates how an

application might acquire a credential, then grant access to

applications in another job reservation. The first step to allo-

cating a DRC credential is the call to drc_acquire. Then,

the application calls drc_access to access the credential.

At this point, the application can use the information passed

back in cred_info and the helper functions provided by

libdrc to extract information necessary to configure HSN

access using uGNI within the application itself. Next, the

application grants access to any application running in a

different job reservation using the job reservation ID given

i n c l u d e ” rdm acred . h ”

i n t main (i n t a rgc , c h a r ∗∗ argv) {
4 u i n t 3 2 t c r e d e n t i a l ;

d r c i n f o h a n d l e t i n f o ;
c h a r ∗ t o k e n ;

i f (s e r v e r) {
9 / / Acqu i re c r e d e n t i a l i d and p e r m i s s i o n

t h r o u g h OOB s e r v i c e
d r c a c c e s s (c r e d e n t i a l , 0 , &i n f o) ;
d r c g e t c r e d e n t i a l t o k e n (c r e d e n t i a l , &t o k e n) ;
/ / Send t o k e n t h r o u g h OOB t o o t h e r r a n k s

} e l s e {
14 / / Get Token t h r o u g h OOB s o u r c e

d r c a c c e s s w i t h t o k e n (token , 0 , &i n f o) ;
}
/ / Do normal a p p l i c a t i o n work h e r e . . . t h e n

r e l e a s e a t end
d r c r e l e a s e (c r e d e n t i a l , 0) ;

19 }

Figure 5. Example client scaling using tokenization

1 user@machine> module l o a d rdma−c r e d e n t i a l s
user@machine> c r e d e n t i a l =$ (d r c c l i a c q u i r e)
user@machine> d r c c l i g r a n t −u $ (i d −u o t h e r u s e r)

$ c r e d e n t i a l
user@machine> d r c c l i l i s t
C r e d e n t i a l Sys Id u i d g i d wlmid

Cookie1 Cookie2 S t a t e Refs
6 1 d r c s 1 0 0 0 0

x2c20000 0 x2c30000 READY 1
user@machine> d r c c l i r e l e a s e 1
user@machine> d r c c l i l i s t −c $ c r e d e n t i a l
C r e d e n t i a l Not Found

Figure 6. Example DRCCLI usage

by inc_data.cred_wlmid11 in the example, before

proceeding on to other work that application might need

to do. Finally, as the application closes, the reference to the

credential should be released with drc_release.

The second example, shown in figure 4, demonstrates how

client application would access credentials that have already

been acquired but not shared. As only one application in a

job needs to acquire a credential, this example shows how

other ranks of a job might behave when attempting to access

the credential. In this example, the client application has

knowledge of an external server, service or application that

holds information about a DRC credential that the client

application wishes to use. In an out-of band channel, the

client application requests permission for the credential and

retrieves a DRC credential ID. Next, the client application

uses the received credential ID and drc_access to attempt

to access the credential through DRC. If successful, the

client application can use the libdrc helper functions

11The variable in the example is not one that is provided by DRC. The
WLM ID to be granted access, as well as any other identifiers, should be
communicated via an out-of-band channel or known in advance.

and the info handle to retrieve the cookie information

necessary to configure the application’s HSN access with

the uGNI library. Once uGNI is configured with the informa-

tion provided from the credential, the application proceeds

normally. As mentioned in section III-A, client applications

should release the credential before exit.

As part of the scaling optimizations, applications utilizing

DRC may opt to use the credential tokenization feature

described in section III-F.The next example, shown in figure

5, demonstrates how an application might use the credential

tokenization feature. Similar to the previous example, this

example shows how an application would access credentials

that have already been acquired and not shared, but with the

additional caveat that this example will use tokenization to

achieve the same end goal. Starting in the same manner, the

client application must request permission to use the cre-

dential from the credential owner and retrieve the credential

ID through the out-of-band channel. With tokenization, only

one rank of a job needs to call drc_access, a function that

requires some communication to the DRCS service. So in this

example, one rank serves as a ‘server’ to the rest of the ranks

by calling drc_access, then proceeds to get the credential

token by calling drc_get_credential_token. The

token acquired by the ‘server’ rank must then be communi-

cated to the other ranks of the job through an out-of-band

channel. Switching to the ‘client’ context, clients must wait

for the credential token to arrive from the out-of-band chan-

nel. Once the credential token has been received, ‘client’

ranks can call drc_access_with_token in the same

manner that drc_access was used in prior examples,

but without the extra communication to the DRCS service.

Finally, both the ‘client’ and ‘server’ ranks can proceed to

use the information provided by info and the libdrc

helper functions to configure HSN access with uGNI and

proceed normally12. Similarly to all other examples, the

client application should call drc_release before exit.

The last example, shown in figure 6, demonstrates how

an administrator might use the DRCCLI utility13. In this

example, the rdma-credentials module is loaded prior

to executing any commands14. Next, a credential is requested

using the DRCCLI and the acquire verb, and the credential

ID is printed and stored in the ‘credential’ variable. Next,

the access to the new credential is granted to a user via

the grant verb, and then the contents of the DRC credential

list is displayed using the list verb. Finally, the credential

is released via the release verb, and the list verb is used to

12Once the access function calls are complete, application behavior
between ranks be identical with respect to the DRC system. DRC imposes
no distinction between ranks of a job.

13As of the initial release, DRCCLI is limited to users with root access.
This limitation may be addressed in a future release depending on feedback

14This step is only required where the module is not loaded by default.
Administrators may choose to add the module load step where appropriate,
and may choose to include the step in the default profile initialization.

confirm that the credential was fully released15.

V. CONCLUSION

In this paper, we have presented the implementation of

the DRC system and component parts of the system. DRC

provides a secure solution for sharing network access on

ALPS and SLURM-based systems that was not previously

available on Cray XC systems. On ALPS-based Cray sys-

tems, DRC enhances existing capabilities to provide secure

shared credentials using the ALPS protection domain fea-

ture. Additionally, DRC provides secure shared credentials

for SLURM based systems, which was not previously avail-

able on Cray XC systems. As part of the first release, many

features will be introduced that provide users with a scalable,

highly configurable, and secure solution for managing the

shared network credentials that DRC offers. Features such

as job expiration detection ensure that network resources

are managed with proper accounting to prevent unintentional

resources leaks and security violations. Examples have been

given to demonstrate the various ways that DRC can be

used from a user’s perspective. Sample code snippets and

script executions have been provided to show potential uses

of libdrc and DRCCLI.

VI. FUTURE WORK

As the DRC system is further developed, we will provide

additional features and enhancements to promote scaling,

performance, and functionality. Specific features might in-

clude multi-threading the DRCC service, fail-over for DRCS,

and multi-node/multi-process DRCS. Enhancements such

load-distribution for the DRCS service may serve to increase

performance and promote scaling goals. Expanding the

capabilities of the command-line interface is another feature

that might serve to increase the functionality of the DRC

system. It would involve allowing non-administrative users

to allocate credentials outside of the application context, and

allow them to administer those credentials.

Currently, persistent credentials can only be allocated

by the administrator or system services. We would like to

expand this feature to users or groups that an administrator

specifically permits, allowing administrators to provide more

control of DRC to the users while still maintaining full

control over the system.

We will also take user feedback into account once the

service is delivered to customers, as we would like to make

it as useful as we can.

ACKNOWLEDGMENT

The authors would like to thank Cray Inc. for providing

an excellent place to work and create new technologies. We

15Credentials may still be present in the list if an application owned a
reference to the credential and was still using the credential. Credentials
will be deallocated automatically once the last reference to the credential
has been released.

would also like to thank our families for their love and

support.

REFERENCES

[1] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray XC
Series Network,” Cray Inc., White Paper WP-Aries01-1112,
2012.

[2] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux
utility for resource management,” in Job Scheduling Strategies
for Parallel Processing. Springer, 2003, pp. 44–60.

