
Scalable Remote Memory Access Halo Exchange
with Reduced Synchronization Cost

Maciej Szpindler
ICM

University of Warsaw
Warsaw, Poland

Email: m.szpindler@icm.edu.pl

Abstract—Remote Memory Access (RMA) is popular tech-
nique for data exchange in the parallel processing. Mes-
sage Passing Interface (MPI), ubiquitous environment for
distributed memory programming, introduced improved model
for RMA in the recent version of the standard. While RMA
provides direct access to low-level high performance hardware,
MPI one-sided communication enables various synchroniza-
tion regimes including scalable group synchronization. This
combination provides methods to improve performance of
commonly used communication schemes in parallel computing.
This work evaluates one-sided halo exchange implementation
on the Cray XC40 system. Large numerical weather prediction
code is studied. To address already identified overheads for
RMA synchronization, recently proposed extension of Notified
Access is considered. To reduce the cost of the most frequent
message passing communication scheme, alternative RMA
implementation is proposed. Additionally, to identify more
scalable approaches, general active target synchronization,
Notified Access modes of RMA and original message passing
implementation are compared.

Keywords-RMA, Parallel programming, Message passing

I. INTRODUCTION

Remote Memory Access (RMA) is one of the principal
techniques for data exchange in the parallel processing.
It provides direct access to hardware communication fea-
tures and enables high performance for data exchanges in
distributed memory computing. While programming envi-
ronments and computing hardware provide mature support
for RMA it gains interest and popularity. It is a general
approach for the Partitioned Global Address Space (PGAS)
programming languages such as UPC and Co-array Fortran
or Global Arrays library. Recently support for RMA based
one-sided communications from Message Passing Interface
(MPI) standard was extended as a part of MPI-3 effort [3].
These extensions of the RMA model include support for
various levels of synchronization. This re-design addresses
scalability challenges for massively parallel applications that
use process based execution and one-sided communications.

Although scalable group synchronization functions are
available in MPI-3 RMA model, there are overheads that
may limit the performance of applications. These syn-
chronization schemes are associated with additional mes-
sage exchange. Specifically, this overheads are recognized

for parallel applications using halo swapping pattern for
communication. In this cases traditional two-sided message
passing usually delivers better performance than one-sided
schemes. Recently a proposal of the Notified Access that
extends RMA synchronization primitives was described [1].
Proposed communication mechanism provides synchroniza-
tion of remote memory accesses with less communication.
This enables improved performance of RMA halo exchange
patterns. It was already shown that this approach outper-
forms message passing implementations for select classes
of problems including halo exchange schemes.

The aim of using RMA model is to benefit from fast
remote direct memory access provided by specialized hard-
ware. Combined with improved synchronization schemes,
RMA provide high performance data exchange for stencil
pattern computation and communication schemes that are
core kernels for wide range of scientific applications. The
motivation of this work is to experiment with described
RMA schemes beyond typical communication performance
benchmarks and to study performance on real complex
scientific code. Spectrum of problems that are solved nu-
merically with stencil scheme data processing is very wide.
This work concentrates on the numerical weather prediction
where stencil computations are heavily used. Incremental
migration from legacy point-to-point message passing to
one-sided halo exchange is analysed. The focus of the data
exchange method is on scalability of the communication.

The one-sided halo exchange scheme with eventual noti-
fied access usage was evaluated on the Cray XC40 system.
Data exchange was incrementally implemented in a large
numerical weather prediction code. Transitional steps and
implementation choices are discussed. The aim of this ap-
proach was to reduce the cost of the most frequent commu-
nication routines and to identify more scalable approaches.
Part of message passing communication routines for halo
swapping was isolated and switched to one-sided imple-
mentation. To find performance improvements for RMA
implementation, Notified Access based synchronization was
considered. Open source MPI-3 RMA library with Notified
Access extension, described in [1], was tested.

RMA programming with MPI gains more interest with



MPI-3 standard adoption. Most of available MPI libraries
provide support for the current generation of the standard.
Performance of the common RMA data exchange schemes
are found to have lower performance (in case of operation
per second) comparing to traditional message passing. One
of the efforts to answer identified limitations of MPI’s RMA
model is Notified Access proposal. Early implementations
show improved performance that already exceed message
passing. Although these benefits are demonstrated only for
mini benchmark codes (including stencil scheme) as reported
in [1]. Extending this performance improvements to more
complex application codes is original contribution of the
reported work.

Problem addressed with this work describes section II.
General assumptions and applied methods are described in
section III. Implementation details are discussed in section
IV and results of its evaluation are discussed in section V.

II. STENCIL SCHEME AND HALO EXCHANGE

Stencil scheme is common iterative procedure which
updates given element of the matrix or array with a fixed pat-
tern. Dependency of newly computed matrix element value
with its neighbours values follows this pattern called stencil.
Most finite difference methods for numerical differential
equations are formulated as stencil schemes. In case when
numerical solver is parallelized, input matrix (or domain) is
decomposed into parts that are solved in parallel. Running
stencil codes on distributed memory computers requires
extended boundary elements to be cached and exchanged
to satisfy stencil pattern locally. This elements of the sub-
domain boundary are called halo. Halo exchange is often
used jargon in computational sciences. It means data move-
ment between two parallel processes holding neighbouring
parts of the decomposed domain.

Numerical weather prediction (or atmospheric dynamics
simulations) often use finite difference solvers and stencil
schemes. To achieve accuracy and interesting simulation
time scales often significant number of solver iterations
are required. Moreover each iteration step usually use it-
erative method internally. This gives large number of halo
exchanges that contributes to total simulation runtime. When
scaling the solvers to thousands and hundreds of thousands
of parallel processes is considered, halo exchange becomes
limiting feature of the code.

In this work complex atmospheric code, the Unified
Model is considered. It is proprietary of the MetOffice, UK
meteorological service. Although specific code is studied,
most of the methods, described here, are common for such
class of codes. Methods described here are applicable to
other codes as well. The code uses regular (or semi regular)
grid and finite difference solvers. Its current dynamical
solver is described in [5]. Two dimensional decomposition
(horizontal) is used and each process holds atmospheric
column sub-domain. It is written in Fortran 90 and has

Figure 1. Schematic view of halo exchange in east-west direction

modular structure. The main interest of this work is on halo
exchange module which is self contained. That allows to
limit code intervention to that module only.

The module implements legacy and best performance MPI
point-to-point communication. Message passings are divided
into east-west and north-south exchanges and associated
communicators are used. Schematic view of east-west halo
exchange is depicted on figure 1. It is based on send and
receive scheme between neighbouring processes in non-
blocking mode:

CALL MPI_Irecv(recv_buffer, halo_size, MPI_REAL8, &
neighbour, tag, ew_comm, ...)

! Prepare send_buffer
CALL MPI_Isend(send_buffer, halo_size, MPI_REAL8, &

neighbour, tag, ew_comm, ...)
CALL MPI_Waitall(...)

III. SYNCHRONIZATION COST

One-sided communication depends on memory regions
that are exposed for other processes for remote accesses.
Owner of the remote memory is referred to as target process.
MPI RMA model provides two general synchronization
modes depending on the target process involvement. In
active target synchronization mode, the target process explic-
itly participate in the communication exposing its memory
while in passive target mode memory exposure is permanent.
In passive target mode, the target process is not responsible
for the synchronization.

Active target synchronization uses fence synchronization
which is best suited for dynamic memory access patterns and
general synchronization which provides more fine-grained
memory exposure model. The latter general active target
synchronization is often called scalable group synchroniza-
tion. It allows to define the group of participating processes
for each memory exposure epochs and relax synchronization
to these groups only. This scheme is implemented with
Post-Start-Complete-Wait (PSCW) sequence of RMA oper-
ations. This kind of memory access is considered best for
computations that rely on relatively static communication
schemes such as stencil pattern with halo exchange between
neighbour processes.

Belli and Hoefler in [1] define stencil scheme as a
case of generic producer-consumer communications. This
communications require two basic steps: data transmission
and process synchronization. In the message passing model,
both steps are realized by the receive operation. In the
RMA model these two steps are separated. In their work
authors identify minimal cost of RMA synchronization as at



least three message transactions, no matter which protocol
is considered. Introduction of the Notified Access aims at
reducing the number of message transactions required for
synchronization. Details of this proposal are described in
[1].

IV. IMPLEMENTATION

Following recommendations from [2] general active target
synchronization (PSCW scheme) was chosen to implement
RMA version of halo exchange. Two reference implementa-
tion of PSCW synchronization were considered: Ohio State
University (OSU) Micro Benchmarks - put latency test and
Intel Parallel Research Kernels (PRK) [4] - Synch p2p
kernel. The latter one was studied in [1] as stencil code
application for notified access performance evaluation. In-
cremental approach of the one-sided halo exchange module
migration was used. That allowed to keep code accuracy
monitored and to collect performance changes. Experimental
implementation was required to preserve bit-reproducibility
of results with original message passing version of the halo
exchange.

Naive RMA implementation of the module simply updates
message passing send-receive scheme with remote memory
post-start-complete-wait scheme:

CALL MPI_Win_create(recv_buffer, halo_size*8, 8, info, &
ew_comm, win, ... )

! Initialize origin and target process groups
CALL MPL_Win_post(origin_group, MPL_MODE_NOSTORE, win, &

... )
! Prepare data to stored in remote window
CALL MPI_Win_start(target_group, 0, win, ... )
CALL MPI_Put(send_buffer, halo_size, MPI_REAL8, &

neighbour, 0, halo_size, MPI_REAL8, win, ... )
CALL MPI_Win_complete(win, ... )
! Synchronize memory windows
CALL MPI_Win_wait(win, ... )

To minimize changes in the module send and receive
memory buffers are re-used. These buffers are used to create
memory windows for remote accesses. That choice requires
creation of a new window for each halo exchange as halo
sizes are changing. First optimizations included memory
windows and processes groups to be created once as com-
munication is initialized. For this purpose dynamic memory
windows are introduced. Every change of the exchange
buffers requires now only attaching and detaching memory
buffer to the window. That improves code structure and
clarity but without significant effect on performance.

Improved version of the module targets at weak syn-
chronization mode. In this case of PSCW scheme, start
and complete operations can return while access to remote
window is delayed unit corresponding post call is issued.
This is allowed by the MPI standard but requires put
operation to be buffered on the origin process. Such semantic
may lead to more efficient synchronization, as suggested in
[3].

Notified Access version is standard MPI incompatible but
aims at better scalability. Including Notified Access RMA
does not require much changes. What need to be modified
is initialization of notification requests objects with a call
to MPI Notify init and usage of MPI Put notify (these
functions are not a part of MPI Standard). More difficult
is switching to MPI library that supports Notified Access
functions. The only available implementation of such library
is foMPI-NA from ETH Zurich, described in [1]. This library
is a light-weight MPI implementation and is a research
prototype.

V. RESULTS

This section summarises experimental results gathered
on the Cray system. While the first steps of the RMA
implementation of halo exchange were more targeted on
correct data exchange and synchronization that not change
model results, successive migration steps were focused on
performance improvement.

A. System and application setup

Experiments were run on Cray XC40 system with 24-
core Intel Haswell nodes connected with a Dragonfly Aries
network. Cray programming environment was used with:
PrgEnv-cray (5.2.82), cce (8.4.5), cray-mpich (7.3.2) and
craype (2.5.3).

Code of the Unified Model was based on version 10.1.
Evaluation was using real model setup with a regular grid
of dimension 448x616x70.

foMPI-NA library version 0.2.2 (first release) was used.

B. Evaluation results

The model code was running in the same configuration
for each test. Each step of the dynamical solver requires, in
the test case, at average 170 full halo exchanges in each of
east-west (EW) and north-south (NS) direction. As expected
naive implementation of the RMA halo exchange performs
worse that message passing version due to windows initial-
ization in every exchange and synchronization costs. Results
of total runtime of 48 model steps, with average, minimal
and maximal time over processes running on 16 XC nodes
are shown in table I.

Table I
RESULTS FOR THE FIRST MIGRATION STEP, TOTAL TIME IN SECONDS

EW EW EW NS NS NS
AVG MIN MAX AVG MIN MAX

Message Passing 0.97 0.69 1.20 1.74 0.25 2.45

One sided 1.89 1.61 2.19 7.58 5.90 9.59

First update of the RMA implementation introduce dy-
namic windows. In this mode, memory windows are dy-
namically attached to already allocated memory buffers.
This approach allows to eliminate window initialization



costs. Still it is requires to compute local buffer relative
addresses and to circulate them across remote processes. De-
spite additional synchronization, this update much improved
implementation. Analogous test results for 48 model steps
are shown in table II. For the given node number (16 24-
core nodes), final performance of the PSCW scheme is still
slower that original message passing implementation. For
the east-west (EW) exchange the implemented scheme is
comparable in performance while for the north-south (NS)
part has more complicated pattern and is significantly slower.

Table II
RESULTS FOR VERSION WITH DYNAMIC WINDOWS, TOTAL TIME IN

SECONDS

EW EW EW NS NS NS
AVG MIN MAX AVG MIN MAX

Message Passing 0.97 0.69 1.20 1.74 0.25 2.45

One sided 1.09 0.74 1.29 2.11 0.56 2.75

Second update of the RMA implementation employ
foMPI fast one-sided MPI library. In a first step it switches
from Cray MPI (MPICH derivative) to foMPI (ETH research
implementation) during code building. Next step is over-
loading MPI RMA calls with specific foMPI calls (basically
changing MPI_ prefix to foMPI_ in one-sided calls). This
change enables use of direct DMAPP implementation of the
RMA functions.

Final update use Notified Access mechanism for RMA
halo exchange. It follows the scheme:

CALL foMPI_Win_create(recv_buffer, halo_size*8, 8, info, &
ew_comm, win, ... )

! Initialize notification requests
CALL foMPI_Notify_init(win, neighbour, tag, count, req, &

...)
! Prepare data to stored in remote window
CALL foMPI_Put_notify(send_buffer, halo_size, MPI_REAL8, &

neighbour, 0, halo_size, MPI_REAL8, win, tag, ...)
! Synchronize memory windows
CALL foMPI_Start(req, ...)
CALL foMPI_Wait(req, stat, ...)
CALL foMPI_Win_flush(neighbour, win, ...)

Both implementations with foMPI and foMPI-NA im-
prove performance on the isolated halo exchange kernel.
Complete model application fails when running with foMPI.
This issue still needs to be investigated.

VI. CONCLUSION

This paper describes early work on substituting message
passing halo exchange with RMA version in a complex
atmospheric application. Described migration from MPI
message passing to RMA one-sided model is applied to the
Unified Model code and evaluated on Cray XC40 system.
Different implementations based on MPI-3 RMA model are
discussed. Performance of described RMA implementation,
on a given system partition, is comparable with orginal
message passing approach. Reported work is on early stage,
issues affecting scalability are identified but not addressed.
Notified Access approach is not successfully adopted while
is not fully supported on the target system.

ACKNOWLEDGMENT

The code of the Unified Model is used under the licence
agreement between the MetOffice and the University of
Warsaw.

REFERENCES

[1] Roberto Belli and Torsten Hoefler. Notified access: Extending
remote memory access programming models for producer-
consumer synchronization. In Parallel and Distributed Pro-
cessing Symposium (IPDPS), 2015 IEEE International, pages
871–881. IEEE, 2015.

[2] Torsten Hoefler, James Dinan, Rajeev Thakur, Brian Barrett,
Pavan Balaji, William Gropp, and Keith Underwood. Remote
Memory Access Programming in MPI-3. ACM Transactions
on Parallel Computing, 2(2):9, 2015.

[3] MPI Forum. MPI: A Message-Passing Interface
Standard. Version 3.1, June 4 2015. Available at:
http://www.mpi-forum.org.

[4] Rob F Van der Wijngaart and Timothy G Mattson. The Parallel
Research Kernels. In HPEC, pages 1–6, 2014.

[5] Nigel Wood, Andrew Staniforth, Andy White, Thomas Allen,
Michail Diamantakis, Markus Gross, Thomas Melvin, Chris
Smith, Simon Vosper, Mohamed Zerroukat, et al. An in-
herently mass-conserving semi-implicit semi-lagrangian dis-
cretization of the deep-atmosphere global non-hydrostatic
equations. Quarterly Journal of the Royal Meteorological
Society, 140(682):1505–1520, 2014.


