
2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

Scalable Remote Memory Access
Halo Exchange with Reduced

Synchronization Cost

Maciej Szpindler
m.szpindler@icm.edu.pl

University of Warsaw
Interdisciplinary Centre for Mathematical

and Computational Modelling
http://www.icm.edu.pl

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Introduction and motivation

• Problem definition

• Synchronization costs

• Migration steps

• Preliminary results

• Summary

Agenda

2

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• This presentation describes approach on migration from message
passing to remote memory operations in complex MPI code

• The work is in-progress and results are not final

• Majority of well established scientific codes use message passing
for communication

• MPI-3 (current standard version, last update 2015) introduced
redesigned RMA (one-sided) communication model
– Most of modern HPC hardware support RMA natively

– Cray (XC line) support RMA with DMAPP interface

• How application can benefit from these mechanisms?

Introduction and context

3

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Site ID WARSAWU, joined CUG (again*) in 2016

• Interdisciplinary Centre for Mathematical and Computational
Modelling (ICM) is computational and data sciences research
institution at the University Warsaw, Poland.

• Maintains HPC centre for academic users

• Hosts Cray XC40 (approx. 1000 nodes, 24-core nodes)

• In operation from March 2016

• System name: okeanos

* Long-ago hosted Y-MP, J90, SV1, X1 Cray machines

Site Information

4

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• System evaluation – programming environment and libraries

• MPI-3 RMA seems mature and portable
– Not really usable in previous implementations (MPI-2)

• Would one-sided communication provide:

– Performance benefits (versus classic message passing)?

– Scalability?

• How much work is needed to enable it in large application
code? Is it universal?

• It is believed that RMA would not deliver better performance
than message passing
– Is it true (at least for selected case)?

– Are there bottlenecks that can be addressed?

Motivation

5

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• MPICH3 – reference implementation of MPI-3

• Cray MPI
– Is based on MPICH

– Use DMAPP layer for one-sided operations

– „Thread hot” (I was not aware)

• Other implementations
– foMPI: fast one-sided implementation (research

implementation, ETH Zurich)

– foMPI-NA: implementation of the Notified Access mechanism
on top of the foMPI

Current state
RMA – tools used

6

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Given halo exchange implementation with message passing

• Fortran module, part of the large code
– Unified Model* is a code of interest, Fortran90

– OpenMP have not been addressed

• Is it possible, and practical, to change only the module to
enable RMA?
– Need to preserve structures, buffers, etc.

– Additional initialization only at the module scope

• Similar approach can be applied to other codes in that field
– Performance advances will be translated to other weather code:

– EULAG (open-source, http://www2.mmm.ucar.edu/eulag/)

Problem definition

7

* MetOffice proprietary, used under license agreement

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

Halo exchange scheme

8

• Each process exchanges columns on its data boundary with
neighbors

• EW and NS exchanges are separated (different procedures)

• For LAM usage processes on boundaries are asymmetric in number
of neighbors

• Exchanges are local only

• Original implementation:
CALL MPI_Irecv(recv_buffer, halo_size, MPI_REAL8,

 & neighbour, tag, ew_comm, ...)

! Prepare send_buffer

CALL MPI_Isend(send_buffer, halo_size, MPI_REAL8,

 & neighbour, tag, ew_comm, ...)

CALL MPI_Waitall(...)

EW exchange flow

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

Synchronization costs

• Ideally MPI data exchange
requires*:

• For message passing –
transmission and
synchronization coupled in
send/recv pair

– Eager protocol: single
transaction (plus additional
matching)

– Randevous protocol: at least
three transactions

• For remote memory access
(RMA) – transfer and
synchronization is decoupled

– At least three transactions for
transfer (put or get) and
synchronization

9

* Taken from: Belli, Hoefler, Notified Access: Extending Remote
Memory Access Programming Models for Producer-Consumer
Synchronization

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• System setup
– 16 : 32 XC40 nodes partition, 24-core nodes

– Cray compiler, Cray MPI

– Not using HT (--hint=nomultithread)

• Application setup
– Unified Model, vn10.1

– Small regional domain (real case, not benchmark)

• Grid size: 616x448x70, LAM

• 100 s time step

• Halo width: 5 grid points

– Each model step requires about 170 halo exchanges in this
configuration

– Pure MPI setup

Migration setup

10

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Step 0: isolation of the module and use with dummy test
– Original isend/irecv/waitall implementation is fine tuned

• Step 1: RMA implementation using Post-Start-Complete-Wait
scheme (active target)
– Used guidelines on synchronization mode from:

 Remote Memory Access Programming in MPI-3, Hoefler, Dinan, Thakur
et al (paper); MPI Standard; Using Advanced MPI, Hoefler (book)

– No any changes in module structure:

• Halo buffers are used (automatic arrays)

• RMA windows created with each halo exchange

– Missing MPI RMA wrappers added (because of required interface library)

• Validation of results: reproducibility of output files

• Validation of performance: OSU Micro Bencharks, Intel PRK

Migration steps

11

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• The aim is to have fine-grained synchronization of RMA exchanges

– Not in the communicator (row/col) scope

– Only in pairs of neighbors processes

PSCW scheme

12

CALL MPI_Win_create(recv_buffer, halo_size*8, 8, info, ew_comm, win, ...)

! Initialize origin and target process groups

CALL MPL_Win_post(origin_group, MPL_MODE_NOSTORE, win, ...)

! Prepare data to stored in remote window

CALL MPI_Win_start(target_group, 0, win, ...)

CALL MPI_Put(send_buffer, halo_size, MPI_REAL8, &

 neighbour, 0, halo_size, MPI_REAL8, win, ...)

CALL MPI_Win_complete(win, ...)

! Synchronize memory windows

CALL MPI_Win_wait(win, ...)

win post

wait

start

put

complete

Target
process

Origin process

buf

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

EW AVG EW MIN EW MAX NS AVG NS MIN NS MAX

Message
Passing

0.97 0.69 1.20 1.74 0.25 2.45

RMA 1.89 1.61 2.19 7.58 5.90 9.59

1st Results

13

• Collected total time (s) from short runs – 48 model
steps on 16 XC nodes

• Why it is that bad?

• Benchmark codes on the same system performed
similarly for RMA and message passing

• Implementation is fairly the same as for benchmarks
(OSU and PRK)

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Step 2: introduction of dynamic windows
– Improved memory (windows) management

– Windows are initiated with module initialization

– Buffers are attached to existing windows (this mode is dynamic)

• In the dynamic case relative addressees of memory regions
need to be circulated across remote processes
– Requires additional communication (single MPI_AINT)

– … and synchronization

– Sendrecv used, better choices possible

– Not that scalable (in theory) as intended

Migration steps cont.

14

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Refined a lot – why really?

• Additional sendrecvs seem not affect performance that much

Results cont.

15

EW AVG EW MIN EW MAX NS AVG NS MIN NS MAX

Message
Passing

0.97 0.69 1.20 1.74 0.25 2.45

Initial
RMA

1.89 1.61 2.19 7.58 5.90 9.59

RMA
dynamic

1.09 0.74 1.29 2.11 0.56 2.75

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Step 3: introduction of dynamic windows

– Try another MPI RMA implementation

– foMPI (ETH Zurich research implementation)

– For isolated dummy test (Step 0) works quite fine
• Memory for remote access need to be aligned (how to achieve this

for automatic arrays in Fortran?)

• Significantly long startup time, but performance is good

More migration …

16

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Step 4: introduction of notified access
– Idea* implemented in foMPI(-NA)

– Targets at lower RMA synchronization cost – at two transactions per
data exchange

– Different communication scheme:

Even more migration …

17

CALL foMPI_Win_create(recv_buffer, halo_size*8, 8, info, ew_comm, win, ...)

! Initialize notification requests

CALL foMPI_Notify_init(win, neighbour, tag, count, req, ...)

! Prepare data to stored in remote window

CALL foMPI_Put_notify(send_buffer, halo_size, MPI_REAL8, &

 neighbour, 0, halo_size, MPI_REAL8, win, tag, ...)

! Synchronize memory windows

CALL foMPI_Start(req, ...)

CALL foMPI_Wait(req, stat, ...)

CALL foMPI_Win_flush(neighbour, win, ...)

* Belli and Hoefler. Notified access: Extending remote memory access programming models for producerconsumer
synchronization. In Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE International, pages 871–881.
IEEE, 2015.

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Step 4: introduction of notified access
– Idea implemented in foMPI(-NA)

– Targets at lower RMA synchronization cost – at two transactions per
data exchange

– Cray DMAPP implementation specific (although work only with GNU
compiler)

• Step 4&5: failed on the complete code
– Segmentation faults

– Difficult to debug

Even more migration … failed

18

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Rewinding to Step 3 (best working)
– Doubled the number of nodes (to 32), problem size states the same

– Results are not encouraging

– Decomposition of 24x32 should provide significant speedup while
single row fits into one node

Does it scale?

19

EW AVG EW MIN EW MAX NS AVG NS MIN NS MAX

Message
Passing

0.57
-41%

0.40
-36%

2.60
-42%

1.92
10%

0.81
224%

2.60
6%

RMA 1.76
64%

1.51
104%

2.10
54%

7.56
258%

6.43
1050%

8.22
199%

su
b

d
o

m
ai

n
s Runs on single node

EW communication
in shared memory?

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

2016, University of Warsaw

Interdisciplinary Centre for Mathematical and Computational Modelling

• Case study for message-passing to one-sided migration
– Simple halo exchange scheme with PSCW active target synchronization

– Migrating single module of the complex code

• PSCW approach
– Naive implementation produces poor performance

– Memory windows usage can improve performance a lot for small
number of nodes

– Not scales for larger node counts, in preliminary tests

– More refinement - deeper intervention in code structure required

• Notified Access
– Interesting alternative for improved RMA synchronization costs

– foMPI implementation tested

– Works for synthetic test but fails for real, complex code

Conclusions

20

