
On Enhancing 3D-FFT Performance in VASP
Florian Wende?, Martijn Marsman??, Thomas Steinke?

?Zuse Institute Berlin, Takustrasse 9, 14195 Berlin, Germany: {wende, steinke}@zib.de
??Universität Wien, Sensengasse 8, 1090 Wien, Austria: martijn.marsman@univie.ac.at

Abstract—We optimize the computation of 3D-FFT in VASP in
order to prepare the code for an efficient execution on multi- and
many-core CPUs like Intel’s Xeon Phi. Along with the transition
from MPI to MPI+OpenMP, library calls need to adapt to
threaded versions. One of the most time consuming components
in VASP is 3D-FFT. Beside assessing the performance of multi-
threaded calls to FFTW and Intel MKL, we investigate strategies
to improve the performance of FFT in a general sense. We
incorporate our insights and strategies for FFT computation into
a library which encapsulates FFTW and Intel MKL specifics and
implements the following features: reuse of FFT plans, composed
FFTs, and the use of high bandwidth memory on Intel’s KNL
Xeon Phi. We will present results on a Cray-XC40 and a Cray-
XC30 Xeon Phi system using synthetic benchmarks and with the
library integrated into VASP.

I. INTRODUCTION

The Fast Fourier Transform (FFT) is relevant to many
scientific codes. Besides those shipping with their own, maybe
problem specific, FFT implementation, many codes draw on
library based solutions like the widely used FFTW [1]—in-
cluded within Cray’s LibSci—or Intel’s MKL. As FFT code
optimization is close to the hardware, the integration of FFT
into codes using external libraries can be expected the “more
portable” way in the sense of maintaining the code base
over longer periods of architectural changes of the computer
hardware. However, with the transition from multi-core to
many-core CPUs as well as the integration of additional layers
in the memory hierarchy, like the high bandwidth memory on
Intel’s upcoming Knights Landing (KNL) platform, the way
how the FFT library itself is called from within the program
needs to be reconsidered.

For (legacy) MPI-only codes, adaptions towards MPI+X,
e.g., MPI+OpenMP, require to either call into the FFT library
from within a multi-threaded program context or to use a
multi-threaded version of the library. In both cases the scaling
of the FFT computation with the number of threads will affect
the partitioning of the execution streams into MPI ranks and
threads per rank. On Intel’s KNL with its 60+ cores and up to
4 hardware threads per core, the minimization of MPI ranks
together with thread count maximization should be targeted to
leverage its compute resources most effectively. In the VASP
application (as a representative of a widely used HPC code), it
is challenging to scale FFT computations beyond significantly
more than a handful of threads per MPI rank, resulting in
more than 1 rank per KNL node—with its rather low per-core
performance and its low core frequency, MPI on the KNL can
be expected to slow down with an increasing number of MPI

ranks. As 3D FFT computation consumes massive amounts of
time for many VASP inputs, optimizing its usage within VASP
is necessary in order to make the code ready not just for KNL,
but for future computer platforms as well.

This paper contains the following contributions in the con-
text of FFT computation on modern computer platforms:
• We evaluate the threading performance of widely used

FFTW (Cray LibSci) and Intel’s MKL on a current Cray-
XC40 with Intel Haswell CPUs and a Cray-XC30 Xeon
Phi (Knights Corner, KNC) system.

• We investigate strategies to improve the FFT performance
including plan reuse, composed FFT computation, skip-
ping of data transpose operations between successive
FFTs, and the use of high bandwidth memory (as a
preparation for Intel’s KNL).

• We introduce the C++ template library FFTLIB which
encapsulates our findings and provides them to the user
in a transparent way by intercepting calls to FFTW.

Related Work: Being used in a large variety of computa-
tional workflows and data processing, FFT has been subject to
optimizations for a long time already. It is well-known that for
Density Functional Theory (DFT) computations with plane-
wave basis sets, the 3D-FFT is one of the time-critical compu-
tational steps [8]. For computations on moderately sized grids,
as is the case for many VASP inputs, for instance, domain-
specific optimized FFTs exist. Our work focuses on optimizing
the 3D-FFT for plane-wave DFT methods. With peta-scale
compute systems available, most of the related work is focused
on scalable, distributed 3D-FFT implementations [4], [6]. In
this paper, we focus on on-node 3D-FFT computation. Our
findings regarding composed FFT computation, however, can
be used in the context of distributed 3D-FFT computation as
well.

II. FFT COMPUTATION WITH FFTW (LIBSCI) AND MKL

A. The Fast Fourier Transform

The FFT is an efficient way to calculate the Fourier Trans-
form [9]

f̂ (k) : f̂ (kn) =
N−1

∑
j=0

f (x j)e
2πinj

N , kn =
2nπ

L
, n = 0, . . . ,N−1

(1)
of a periodic function f (x) with period L, defined on N discrete
points x = {x j = j L

N | j = 0, . . . ,N − 1}, with computational
complexity O(N log2(N)) opposed to O(N2) in case of doing
it straightforwardly. FFT uses the fact that eikx has the same

value for different combinations of x and k, thereby reducing
the number of computational steps.

Note that Eq. 1 describes the one-dimensional FFT of f (x)
(or 1D-FFT for short). However, n-dimensional FFTs can be
thought of as being composed of n successive 1D-FFTs.

B. FFTW and MKL

Both FFTW [1] and Intel MKL provide to the user a
common C and Fortran interface for 1D-, 2D- and 3D-FFT
computation on complex and real data. On Cray machines,
FFTW (possibly with some Cray specific optimizations) is
accessible through LibSci. Additionally, MKL provides an ex-
tended feature set that is available through its DFTI interface,
which is a superset of what is accessible through its FFTW
compatibility layer. All of these libraries will be available on
Intel’s KNL platform due to its x86 compatibility which allows
for non-Intel software stacks. Users hence will have the choice
to either use FFTW (through LibSci) or MKL on KNL.

In this paper, we use the following FFT library versions:
a self-compiled version of FFTW,1 a Cray-optimized version
of FFTW (rev. 3.3.4) through LibSci 13.2.0, and FFT through
Intel’s FFTW wrappers coming with MKL 11.3.2. General
code compilation happened with the Intel 16.0.2 (20160204)
C/C++/Fortran compiler. We use Cray’s iobuf library (rev.
2.0.6) and craype-hugepages8M. Our hardware configu-
ration comprises: Cray-XC40 compute nodes with dual-socket
Intel Xeon E5-2680v3 Haswell CPUs (24 cores per node, and
cores clocked at 1.9 GHz—AVX base frequency), and a Cray-
XC30 test system with Intel Xeon Phi 5120D coprocessors
(59 cores per device, and 4-way hardware multi-threading per
core).

Using the FFTW Interface: The usual pattern when calling
FFTW (or MKL through its FFTW interface) is as follows:

0. (optional) Initialize threading via
fftw_init_threads() and
fftw_plan_with_nthreads(nthreads).

1. Create plans for FFT computations, e.g., via
fftw_plan p=fftw_plan_dft_3d(..).

2. Perform FFT computation using that plan (as often
as needed) via
fffw_execute(p) or
fftw_execute_dft(p,in,out).

3. Clean up plans via
fftw_plan_destroy(p) and
fftw_cleanup() or

1The source code has been taken from the official FFTW GitHub reposi-
tory https://github.com/FFTW/FFTW, and has been compiled using
Intel’s C/C++/Fortran compiler 16.0.2 (20160204) with configure options
--enable-avx2 --enable-fma --enable-openmp for Haswell
CPU, and --enable-kcvi --enable -fma --enable-openmp for
Intel Xeon Phi (KNC). Compile options: -O3 and -xcore-avx2 for
Haswell and -mmic for Xeon Phi (KNC). For Xeon Phi, we additionally
built the official FFTW library (rev. 3.3.4) due to significantly reduced planner
performance of FFTW from GitHub—not so on Haswell. However, the official
FFTW library (rev. 3.3.4) does not incorporate Xeon Phi optimizations and
hence gives poor performance.

fftw_cleanup_threads().

Before the actual FFT computation, a plan p needs to be
created. Any plan p can be used as often as needed until either
fftw_plan_destroy(p), fftw_cleanup() or fftw_
cleanup_threads() is called. It is recommended to use
plans as often as possible to amortize for their creation costs.

Plan creation with FFTW can happen with differently ex-
pensive planner schemes:

FFTW_ESTIMATE (cheap),
FFTW_MEASURE (expensive),
FFTW_PATIENT (more expensive) and
FFTW_EXHAUSTIVE (most expensive).

Except for FFTW_ESTIMATE plan creation involves testing
different FFT algorithms together with runtime measurements
to achieve best performance on the target platform. With MKL,
these schemes can be specified for compatibility reasons, but
none of them affect the internal planner.

To speed up the plan creation step, FFTW implements the
so-called “wisdom” feature which is used when planning with
FFTW_MEASURE or any of the more expensive schemes. For
each plan requested from FFTW, an internal data structure
is created that holds a “minimal” set of information for fast
plan recreation in case of compatible successive requests.
When doing lots of FFTs for certain grid geometries, it is
recommended for each of them to first plan with any of the
expensive schemes and then to use the same scheme again
or FFTW_ESTIMATE. Wisdom then will be used to get the
“good” plans much faster:

// first planner call: expensive
p=fftw_plan_dft_3d(64,72,68,in,out,

FFTW_FORWARD,FFTW_MEASURE)

// successive planner call(s): wisdom is used
p=fftw_plan_dft_3d(64,72,68,in,out,

FFTW_FORWARD,FFTW_MEASURE).

C. 3D-FFT in VASP (Initial Setup)

In the VASP application the following pattern is used for all
kinds of FFT computation: “create plan – execute(n) – destroy
plan,” where n = 1 in most cases. Table. I summarizes for
one particular input (PdO2: Palladiumdioxide on a Paladium
serface) the total execution time of VASP using 24 MPI ranks
on 4 Cray-XC40 compute nodes. Each MPI rank uses either 1
or 4 OpenMP threads, with all MPI ranks and threads evenly
distributed across the two CPU sockets per node.

For runs with MKL, the 3D-FFT performance increases by
about factor 2.2 when using 4 instead of 1 OpenMP thread.
With FFTW, we observe the opposite, that is, the time spent
in 3D-FFT computation increases with the number of threads.
The effective performance loss can be traced to the planner
of the FFTW library—VASP strictly follows the proposed
proceeding: plan with FFTW_MEASURE in the first instance,
and then use FFTW_ESTIMATE [1]. The 3D-FFT execution
time, on the other hand, decreases with the number of threads.

TABLE I
VASP PROGRAM EXECUTION TIME FOR THE PDO2 SETUP ON 4
CRAY-XC40 COMPUTE NODES WITH INTEL XEON E5-2680V3

(HASWELL) CPUS. IN ALL CASES 24 MPI RANKS ARE USED, EACH WITH
T=1 OR T=4 OPENMP THREADS. ADDITIONALLY, THE TIME SPENT IN

3D-FFT PLANNING AND EXECUTION IS GIVEN.

Setup: PdO2

MKL 11.3.2 FFTW FFTW (LibSci)

T=1 T=4 T=1 T=4 T=1 T=4

Total 146.6s 78.0s 162.1s 122.5s 162.3s 121.9s

3D-FFT 23.4s 10.7s 38.2s 43.3s 38.6s 41.9s
+ planner 1.0s 1.0s 10.0s 32.9s 9.8s 31.1s
+ execute 22.4s 9.7s 28.2s 10.4s 28.8s 10.8s

FFTW Planner: To further investigate our observations regard-
ing the FFTW planner, we determine the time spent in the
first and successive planner call(s) using FFTW_MEASURE.
The costs for the FFTW planner step on an Intel Haswell 12-
core CPU using 1 MPI rank and up to 12 OpenMP threads
are given in Fig. 1 for complex 3D-FFTs on three differently
sized grids—even though MKL does not support the different
FFTW planner schemes, we included the respective data for
comparison reasons. Costs for the FFTW planner step on KNC
are given in Fig. 2 for up to 56 OpenMP threads spread across
the physical CPU cores in “scatter” fashion.

Planner Costs for Complex 3D-FFT (Haswell CPU)

1e-6
1e-4
1e-2

1.0

1 2 4 8 12

Pl
an

ne
rC

os
ts

[s
]

Number of Threads

Planner Scheme: FFTW_MEASURE + FFTW_MEASURE

Grid: 70x70x70 } first call
FFTW3

FFTW3 (rev. 3.3.4, LibSci)
MKL 11.3.2

costs per successive call

1e-6
1e-4
1e-2

1.0

1 2 4 8 12

Pl
an

ne
rC

os
ts

[s
]

Number of Threads

Planner Scheme: FFTW_MEASURE + FFTW_MEASURE

Grid: 72x72x72 } first call
FFTW3

FFTW3 (rev. 3.3.4, LibSci)
MKL 11.3.2

costs per successive call

Fig. 1. Planner costs for 3D-FFT computation for different grid sizes and
different numbers of threads on an Intel Xeon E5-2680v3 Haswell CPU.
The patterned bars display the costs for the first planner call. All successive
calls, represented by the light gray bars, make use of wisdom in case of
FFTW (no equivalent for MKL) and are much faster. For all plan creations
FFTW MEASURE is used.

Planner Costs for Complex 3D-FFT (Xeon Phi, KNC)

1e-6
1e-4
1e-2

1.0

1 2 4 8 16 32 56

Pl
an

ne
rC

os
ts

[s
]

Number of Threads

Planner Scheme: FFTW_MEASURE + FFTW_MEASURE

Grid: 70x70x70 }first callFFTW3 (rev. 3.3.4)
MKL 11.3.2

costs per successive call

1e-6
1e-4
1e-2

1.0

1 2 4 8 16 32 56

Pl
an

ne
rC

os
ts

[s
]

Number of Threads

Planner Scheme: FFTW_MEASURE + FFTW_MEASURE

Grid: 72x72x72 }first callFFTW3 (rev. 3.3.4)
MKL 11.3.2

costs per successive call

Fig. 2. Same as for Fig. 1, but for an Intel Xeon Phi 5120D instead.

For FFTW, the initial planner costs are the most expensive
ones (patterned boxes), whereas all successive planner calls
(gray boxes) requesting a plan for exactly the same grid are
significantly faster by at least two orders of magnitude. Thus,
we conclude that wisdom is functioning as expected. However,
comparing the cost for any of the successive planner calls
against those for MKL’s planner, there is still up to two
orders of magnitude discrepancy to the disfavor of FFTW.
Additionally, the costs seem to increase with the number of
threads to be use for the FFT computation.

Unlike FFTW, the planner costs for MKL remain constant
almost independently of the problem size. As the MKL library
is closed source, it is not clear to us what actually happens
within MKL at this point: it might be possible that there is
no equivalent to FFTW’s planner step, and MKL just suffices
the FFTW interface—explaining the constant costs. If the latter
proves right, MKL, however, seems not to be at a disadvantage
compared to FFTW. On the contrary, looking at the FFT
execution times listed in Tab. I, MKL uses an FFT algorithm
that performs better than FFTW.

The question that might arise in that context is “does it pay
off to spend that much time in the planner phase when using
FFTW?” Instead of using FFTW_MEASURE, we could switch
to FFTW_ESTIMATE so as to have costs close to those for
the successive calls in Fig. 1 and 2 right from the beginning.

Effectiveness of Expensive Planner Schemes (FFTW only): To
assess the effect of planning with FFTW_MEASURE instead
of FFTW_ESTIMATE, we simply run a synthetic kernel that
creates plans with the different planner schemes and then

Planner Effect for Complex 3D-FFT (Haswell CPU)

0
10
20
30
40
50
60
70
80

1 2 4 8 12

G
Fl

op
s/

s

Number of Threads

Planner Schemes: FFTW_MEASURE vs. FFTW_ESTIMATE

Grid: 70x70x70

FFTW3, ESTIMATE
FFTW3 (rev. 3.3.4, LibSci), ESTIMATE
FFTW3, MEASURE
FFTW3 (rev. 3.3.4, LibSci), MEASURE
MKL 11.3.2

0
10
20
30
40
50
60
70
80

1 2 4 8 12

G
Fl

op
s/

s

Number of Threads

Planner Schemes: FFTW_MEASURE vs. FFTW_ESTIMATE

Grid: 72x72x72

FFTW3, ESTIMATE
FFTW3 (rev. 3.3.4, LibSci), ESTIMATE
FFTW3, MEASURE
FFTW3 (rev. 3.3.4, LibSci), MEASURE
MKL 11.3.2

Fig. 3. Performance of a complex 3D-FFT computation for different grid
sizes and planner schemes, and different numbers of threads on an Intel Xeon
E5-2680v3 Haswell CPU.

measures the time for the complex 3D-FFT computation.
Figures 3 and 4 give for different grid sizes and thread counts
the approximated Flops/s according to what is proposed on
the FFTW webpage for FFTs on complex data [1]:

Flops/s = 5n log2(N)/t , (2)

where N is the number of grid points and t is the execution
time in seconds.

While on the Xeon Phi planning with FFTW_MEASURE
has only minor effect on the FFT performance (at least for
the grid sizes considered), the execution on the Haswell CPU
can benefit significantly from the more expensive planner
scheme. Up to a factor 2 performance gain over planning with
FFTW_ESTIMATE can be noted for both single- and multi-
threaded execution.

Figures 3 and 4 additionally show the scaling of the complex
3D-FFT computation with the number of threads. For both
FFTW and MKL, the scaling is quite acceptable for up to
8 threads on Haswell, and up to 32 threads on the Xeon
Phi. However, on the Xeon Phi the FFTW performance is
significantly behind MKL, and in some cases shows elusive
drops, e.g., 8 and 16 thread processing of the 723 FFT, or
56 thread processing of the 643 FFT. We assume that FFTW
optimizations for the Xeon Phi do not come into effect for the
small problem sizes considered in this paper. This might be
different for larger grids.

Remark: Do not wonder about the low performance on the
Xeon Phi. Running with 12 threads on Haswell, one entire

Planner Effect for Complex 3D-FFT (Xeon Phi, KNC)

0

5

10

15

20

25

1 2 4 8 16 32 56

G
Fl

op
s/

s

Number of Threads

Planner Schemes: FFTW_MEASURE vs. FFTW_ESTIMATE

Grid: 64x64x64

FFTW3, ESTIMATE
FFTW3, MEASURE
MKL 11.3.2

0

5

10

15

20

25

1 2 4 8 16 32 56

G
Fl

op
s/

s

Number of Threads

Planner Schemes: FFTW_MEASURE vs. FFTW_ESTIMATE

Grid: 70x70x70

FFTW3, ESTIMATE
FFTW3, MEASURE
MKL 11.3.2

0

5

10

15

20

25

1 2 4 8 16 32 56

G
Fl

op
s/

s
Number of Threads

Planner Schemes: FFTW_MEASURE vs. FFTW_ESTIMATE

Grid: 72x72x72

FFTW3, ESTIMATE
FFTW3, MEASURE
MKL 11.3.2

Fig. 4. Same as for Fig. 3, but for an Intel Xeon Phi 5120D instead.

CPU socket is used. With 56 threads on the Xeon Phi, however,
it is just 1/4th of the device. Due to the 2-cycle instruction
fetch issue on the Xeon Phi, it can be expected to get at least
a factor 2 gain over what is given in Fig. 4 when using 2 or
more threads per CPU core. Further performance gains can
be achieved when using multiple MPI ranks per device—each
of which doing its own FFT computation: throughput oriented
approach—, and by placing OpenMP threads not in scatter, but
in “compact” fashion. The latter results in better per-core cache
utilization. However, the same also applies to FFT computation
on the Haswell compute node.

TABLE II
OVERALL PERFORMANCE (IN FLOPS/S) FOR M COMPLEX 643 FFTS
EXECUTED BY M MPI RANKS, EACH OF WHICH USING n THREADS.

Grid: 64x64x64

Haswell CPU Xeon Phi

MPI/OpenMP (M/n) → 2/12 6/4 12/2 7/32 14/16 56/4

MKL 11.3.2 129 171 182 76 76 83
FFTW 92 155 155 70 71 69
FFTW (rev. 3.3.4, LibSci) 100 154 161 – – –

Table II lists the overall performance for M complex 643

FFTs executed by M MPI ranks, each of which using n threads.
For each “M/n”-combination the “entire” compute node or
device is used.2 Compared to Fig. 4, we could gain the overall

2On the Xeon Phi we use only 56 of the 59 CPU cores, as it allows for
a better partitioning of the device and because one CPU core is reserved for
OS processes and Cray services running on the Xeon Phi.

(d)fftw_init_threads()
(d)fftw_plan_width_nthreads()

(d)fftw_plan_dft_1d()
(d)fftw_plan_dft_1d_r2c()
(d)fftw_plan_dft_1d_c2r()
(d)fftw_plan_dft_2d()

(d)fftw_plan_many_dft()
(d)fftw_plan_many_dft_r2c()
(d)fftw_plan_many_dft_c2r()

(d)fftw_cleanup_threads()

...

template<int D, trafo T, backend B>
class fft {
 public:
 static fft& get_instance();
 ...
 pair<plan<D,T,B>::conf*,plan<D,T,B>*> find_plan(plan<D,T,B>::conf& c) {
 // look up plan for 'c', first in cache, then in the hash map.
 // return (NULL,NULL) if not found.
 }
 pair<plan<D,T,B>::conf*,plan<D,T,B>*> create_plan(plan<D,T,B>::conf& c) {
 // create plan for configuration 'c'.
 plan<D,T,B> p;
 dynamic_lib& dl = dynamic_lib::get_instance();
 p.p = dl.create_plan<T>(D,c.n,c.howmany,...);
 // add pair(c,p) to the hash_map and pointers pointing into the hash
 // map to the cache, and return these pointers.
 }
 private:
 fft();
 ...
 hash_map<plan<D,T,B>::conf,plan<D,T,B> plans;
 pair<plan<D,T,B>::conf*,plan<D,T,B>*> cache[CACHESIZE];
};

template<backend B>
class dynamic_lib;

template<>
class dynamic_lib<FFTW> {
 public:
 static dynamic_lib& get_instance();
 int init_threads();
 ...
 template<trafo T>
 fftw_plan create_plan(int,int*,...);
 private:
 dynamic_lib() {
 // use dlopen() and dlsym() to assign function pointers.
 }
 int (*xxx_init_threads)(void);
 ...
 fftw_plan (*xxx_plan_many_dft)(int,int*,...);
};

Program (Fortran/C/C++) fftlib.hpp

#include "fftlib.hpp"

extern "C" int fftw_init_threads(void) {
 dynamic_lib<FFTW>& dl = dynamic_lib<FFTW>::get_instance();
 return dl.init_threads();
}
...
hash_map<unsigned long,unsigned long> fft_plans;
...
extern "C" fftw_plan fftw_plan_many_dft(int d,int* n,fftw_complex* in,...) {
 // implementation uses an opaque plan object that is casted to fftw_plan (see text)
}
...
extern "C" void fftw_execute(fftw_plan p) {
 // implementation uses an opaque plan object (see text)
}
...

fftlib.cpp (fftlib C-Interface)

FFTW3, MKL libraryuse
fftlib

no

yes

Fig. 5. FFTLIB call interception scheme.

performance for the complex 643 FFT by about a factor 4 when
using 56 MPI processes together with 4 threads per process.
However, there is still a gap of at least 2x between Haswell and
Xeon Phi. Seemingly, MKL’s FFT optimization for the Xeon
Phi does not target small problem sizes. This might change
with upcoming MKL releases.

III. FFTLIB

The main issue when using FFTW in VASP remains to be
the planning phase. In the previous section, we convinced
ourselves of the meaningfulness of planning at least with
FFTW_MEASURE. Using plans for a certain grid geometry
hundreds or thousands of times can compensate for the time
spent in plan creation. However, we also observed that request-
ing plans again and again also consumes an amount of time
which is of the order “tens of seconds,” as demonstrated in
Tab. I. The main issue with FFTW wisdom is the circumstance
that plans are not permanently stored as objects within FFTW,
but are created every time they are requested. Using wisdom,
the plan creation happens much faster, but it is still very
expensive.

Our approach within FFTLIB—a C++ template library, de-
veloped at ZIB—is to permanently hold the plans (or pointers
to the plans) in an internal data structure that allows for fast
access. The general idea is illustrated in Fig. 5. From the user

perspective nothing changes, that is, in case of using FFTW,
all calls (d)fftw_xxx() remain the same. When compiling
the application with FFTLIB, however, a subset of these calls
is intercepted and uses our library.

Dynamic Library (Loader): To eventually redirect FFT calls
to the dynamic FFTW or MKL/DFTI library libxxx.so
from within FFTLIB, we need to manually load that library at
runtime, and read those symbols for which FFTLIB provides
an alternative/enhanced implementation—otherwise, we would
end up in a name conflict. This can be easily done with the
dlopen() and dlsym() system calls.

The dynamic_lib template class (Fig. 5) implements that
functionality using a singleton pattern. The latter guarantees
that at every point in time there is just one instance of that
class within the process context. It is instantiated within the
static get_instance() method and can be accessed/used
as follows (with the FFTW library as back-end, for instance):

// request instance of dynamic_lib:
dynamic_lib<FFTW>& dl=

dynamic_lib<FFTW>::get_instance();
// create a plan for a complex 3D-FFT:
dl.create_plan<C2C_64>(3,..);

Beside the template parameter FFTW, it is planned to provide
specializations for DFTI (with some MKL specifics). Within

the dynamic_lib class, we provide a set of template
functions that use the dynamically loaded symbols, and if
needed implement different behavior depending on which kind
of FFT should be performed. Our current implementation
includes R2R_64, R2C_64, C2R_64 and C2C_64 covering
any combination of real and complex FFTs with 64-bit double
precision.

Plan Reuse: The actual functionality of FFTLIB is imple-
mented in the fftlib template class (also using the singleton
pattern for instantiation). Template parameters are the dimen-
sionality D of the FFT, the type T (=R2R_64|. . .) of the FFT,
and the FFT back-end B (=FFTW|DFTI). One of the library’s
core components is a hash-map (we use STL’s unordered map)
that stores plans (template class plan<D,T,B>) that were
created using either the FFTW or MKL/DFTI back-end. For
each entry in the hash-map, we use the configuration c of
the FFT (template class plan<D,T,B>::conf) as the key
and the plan p as the value. The hash value is deduced from
the configuration. In addition to the hash-map, FFTLIB uses
a cache that holds pointers to those configurations and plans
in the map that were recently accessed—pointers to keys and
values in the hash-map are not invalidated when altering the
map. The size of the cache can be configured.

Every time a plan is requested from within the user pro-
gram, FFTLIB creates the configuration c that is looked
up first in the cache, and afterwards in the hash-map if
not found in the cache already. The lookup is implemented
in find_plan(plan<D,T,B>::conf& c). If the plan
cannot be found in any of the two, a new hash-map entry is
generated, requesting the plan from the back-end library using
create_plan(plan<D,T,B>::conf& c).

Plans p returned to the user are equivalent to the ad-
dress of an opaque plan object, which, beside the actual
plan pp—residing in FFTLIB’s hash-map—holds additional
information such as the input and output pointers in and
out for the FFT computation. This is conform to what is
returned by the FFTW library and MKL. When executing the
plan p, for instance, via (d)fftw_execute(p), FFTLIB
detects whether p has been created by FFTLIB or not.
If so, it recovers pp as well as in and out, and calls
fftw_execute_dft(pp,in,out). If the plan has not
been created by FFTLIB, it is forwarded to the back-end FFT
library using the dynamic_lib class.

Plan Creation using FFTLIB (Performance): Figure 6 illus-
trates the costs for requesting a plan for a complex 643 FFT
computation using FFTLIB with FFTW and MKL as back-
end libraries. Compared to Figs. 1 and 2, the costs for the
first planner call remain the same except for a small overhead
due to accessing the hash-map—as for the first request the plan
is not in the map, the call is forwarded to the back-end library,
and the returned plan is inserted into the map. All successive
plan requests, however, are served by FFTLIB within 0.3 to 0.4
micro seconds on the Haswell CPU, and 3 to 4 micro seconds
on the Xeon Phi. We can note a performance gain of about
40x and 20x for MKL on the Haswell CPU and Xeon Phi,

Planner Costs for Complex 3D-FFT (Haswell CPU)

Planner Costs for Complex 3D-FFT (Xeon Phi, KNC)

Fig. 6. Planner costs for a complex 643 FFT using FFTLIB on Haswell CPU
and Intel Xeon Phi. The costs for the first planner call equal those given
in Figs. 1 and 2, but all successive planner calls are significantly faster due
FFTLIB’s cache and hash-map lookup.

respectively, and about three orders of magnitude for FFTW
on both of the two platforms.

All values given in Fig. 6 are for requesting the same plan
again and again, hence reflecting the time to access FFTLIB’s
cache. In order to assess the hash-map lookup costs, we set
the cache size to 1, placed n > 1 plans in the map, and
continuously requested them one after another. For n = 50,
we measure access times between 0.5 and 0.7 micro seconds
on the Haswell CPU, and 5 to 6 micro seconds on Xeon Phi,
respectively.

Figure 7 illustrates the fraction of i) the first planner call,
ii) all successive planner calls, iii) plan execution, and iv) plan
destruction on the total execution time for 100 complex 723

FFTs on the Haswell CPU. For plan creation with FFTW, the
FFTW_MEASURE planner scheme has been used. It can be
seen that the time spent in plan creation (first and successive
planner calls) dominates if multiple threads are used (total
execution times are noted on top of the stacked bars). With
FFTLIB, the fraction of the time spent in all successive planner
calls—now served by FFTLIB—however, can be reduced sig-
nificantly, which for the 8 and 12 thread execution gives about
1.3x and 1.45x overall performance gain, respectively. For
real-world applications using FFTW together with FFTLIB,
the fraction of the planner step can be further reduced when
plans are reused several thousands of times. Without FFTLIB,
the costs for all successive planner calls would sum up to a
non-negligible value.

Using FFTLIB in VASP: Table III lists the VASP program

Complex 3D-FFT using FFTLIB (Haswell CPU)

25

50

75

100

1 2 4 8 12

Fr
ac

tio
n

on
To

ta
lE

xe
cu

tio
n

Ti
m

e
[%

]

Number of Threads

Profile: 100 Times 3D FFT, 72x72x72 Grid

1.
80

s

1.
78

s

0.
93

s

1.
44

s

1.
37

s

0.
47

s

1.
18

s

1.
04

s

0.
24

s

1.
15

s

0.
87

s

0.
12

s

1.
30

s

0.
89

s

0.
09

s

destroy
execute

all successive planner calls
first planner call

FF
T

W
3

FF
T

W
3

+
FF

T
L

IB

M
K

L
11

.3
.2

Fig. 7. Fraction of i) the first planner call, ii) successive planner calls, iii) plan
execution, and iv) plan destruction on the total execution time for a complex
723 FFT w/ and w/o FFTLIB on Haswell CPU.

execution times using FFTW (self-compiled and LibSci) to-
gether with FFTLIB. A direct comparison against values given
in Tab. I shows that the planner costs now include only those
for the first planner call(s). For runs with MKL, the effect
is insignificant. In case of using 4 OpenMP threads per MPI
rank, it seems that FFTLIB introduces overheads that result in
a small performance degradation. However, runs with FFTW
show performance gains for the entire application ranging from
1.05x to 1.4x when multiple threads are used. Furthermore,
FFTW+FFTLIB runs can close up to runs with MKL.

Ball↔Cube-FFT: The central quantities in plane-wave
electronic structure codes like VASP are the so-called one-
electron orbitals ψn(r), and the electronic density ρ(r) =
∑n ψ∗n (r)ψn(r). The one-electron orbitals are expressed in
terms of a basis set of plane-waves, and their Fourier com-
ponents ψn(k) are stored. This basis set is commonly limited
to those Fourier components with a reciprocal space vector
below a certain cutoff length G (chosen by the user, as a input
parameter of the calculation): ψn(k) = 0 ∀ |k|> G.

TABLE III
VASP PROGRAM EXECUTION TIME FOR THE PDO2 SETUP ON 4 CRAY
XC40 COMPUTE NODES WITH INTEL XEON E5-2680V3 (HASWELL)

CPUS. 3D-FFT COMPUTATION HAPPENS EITHER WITH FFTW OR MKL
TOGETHER WITH FFTLIB. IN ALL CASES 24 MPI RANKS ARE USED, EACH

WITH T=1 OR T=4 OPENMP THREADS. COMPARE THE RUNTIMES (AND
TIME SPENT IN 3D-FFT COMPUTATION) AGAINST THOSE GIVEN IN TAB. I.

Setup: PdO2

MKL 11.3.2 FFTW FFTW (LibSci)

T=1 T=4 T=1 T=4 T=1 T=4

Total 145.5s 84.8s 152.6s 86.5s 153.3s 90.0s

3D-FFT 23.4s 10.0s 29.0s 11.3s 29.6s 11.7s
+ planner 0.3s 0.3s 0.8s 0.9s 0.8s 0.9s
+ execute 22.4s 9.7s 28.2s 10.4s 28.8s 10.8s

Consequently, the electronic density has Fourier compo-
nents with reciprocal space vectors up to a length of 2G (the
density is constructed from products of ψn). This situation
is illustrated by Fig. 8A: the ball represents the Fourier
components of ψn (non-zero only for reciprocal vectors up to
a length G), centered at the origin of a (4G×4G×4G) cube.
This cube represents the regular FFT grid that is large enough
to contain all non-zero Fourier components of the electronic
density. It encompasses a sphere with radius 2G.

In the course of an electronic structure calculation both
quantities are repeatedly shuffled back and forth between real
space and reciprocal space by means of FFTs. To limit the
amount of work spent on the FFTs of ψn, most plane-wave
electronic structure codes do not perform a straightforward
3D-FFT of the cube in Fig. 8A. Instead most codes imple-
ment a (1D×1D×1D) ball↔cube-FFT. This is illustrated in
Fig. 8B-D: the first series of 1D-FFTs is taken along the x-
direction and is limited to the space depicted as a red rod
in Fig. 8B. This rod with diameter G is just large enough
to completely encompass the sphere with non-zero Fourier
components of ψn. The second series of 1D-FFTs is performed
along the y-direction on that part of space that is depicted as
a red slab in Fig. 8C. The slab completely encompasses the
rod of the previous FFTs. The final series of 1D-FFTs is taken
along the last remaining direction, the z-direction, and has to
be taken over the complete cube, as shown in Fig. 8D. The
progression B→D is the “forward”-FFT from “real”-space to
“reciprocal”-space: ψ(r) → ψ(k). The corresponding “back”-
transform would be the progression D→B.

FFTLIB incorporates this idea by splitting the 3D-FFT into
a 2D- and a 1D-FFT that are performed in sequence—breaking
the 2D-FFT down into two 1D-FFTs, and implementing the
steps B and C in Fig. 8 seems inferior to 2D-FFT computation,
as the letter is well optimized already. The 2D-FFT effectively
combines steps B and C in Fig. 8 and the 1D-FFT corresponds
to step D. In between the data layout has to be adapted so that
after the 2D-FFT all components in z-direction are contiguous
in memory. The first transpose operation Txz interchanges x ↔
z before the 1D-FFT, and the seconds transpose Tzx after the
1D-FFT works the other way around, recovering the original
layout.

Our implementation of the ball↔cube-FFT in FFTLIB
determines the number of “zero”-layers in z-direction automat-
ically and creates a plan for the 2D-FFT covering the “non-
zero”-layers. The respective plans are stored in the internal
hash-map and can be reuse for other ball↔cube-FFTs having
the same x- and y-extent and the same number of “non-zero”-
layers in z-direction. The latter does not necessarily mean the
same z-extent. Additionally, we allow to skip the Tzx transpose
operation. In the VASP application, we then need to adapt
the computation(s) after the 3D-FFT to operate on the “zyx”
instead of the “xyz” layout.

Figure 9 illustrates the performance of FFTLIB’s ball↔
cube FFT using the FFTW back-end and without the last
transpose operation. Across all the different grid geometries, it
can be noted that the ball↔cube approach achieves a higher

Fig. 8. (A): Fourier components of the one-electron orbitals (ball) inside a cube that represents the regular FFT grid large enough to contain all non-zero
Fourier components of the electronic density, and (B)-(D): (1D×1D×1D) ball↔cube-FFT.

Ball↔Cube FFT (Haswell CPU)

0

20

40

60

80

100

1 2 4 8 12

G
Fl

op
s/

s

Number of Threads

Ball↔Cube FFT vs. 3D-FFT (FFTW3)

Grid: 70x70x70

Reference, 3D-FFT
Ball↔Cube, 0% zero-layers
Ball↔Cube, 25% zero-layers
Ball↔Cube, 50% zero-layers

0

20

40

60

80

100

1 2 4 8 12

G
Fl

op
s/

s

Number of Threads

Ball↔Cube FFT vs. 3D-FFT (FFTW3)

Grid: 72x72x72

Reference, 3D-FFT
Ball↔Cube, 0% zero-layers
Ball↔Cube, 25% zero-layers
Ball↔Cube, 50% zero-layers

Fig. 9. Performance of FFTLIB’s ball↔cube FFT compared against 3D-FFT
computation.

compute performance than conventional 3D-FFT computation
if a significant fraction of the z-layers contains zeros—in our
test cases we consider 0%, 25% and 50% of the z-layers be
filled with zeros. A maximum performance gain of 1.4x could
be achieved for the complex 643 FFT using 12 threads.

Running the same setups on the Xeon Phi, however, gave
poor performance. We assume that our implementation of the
transpose operation is somehow unfortunate for execution on
the Xeon Phi—the majority of time is spent in the transpose.
We therefore do not list performance values for the Xeon Phi.

High Bandwidth Memory: Our implementation of the trans-
pose operation uses one additional buffer (we implement the
transpose out-of-place) that is managed within FFTLIB. On
the upcoming Intel Xeon Phi KNL platform, an additional
memory layer, the high bandwidth memory (HBM), will be
available. Application tuning for KNL thus involves moving
selected data (-structures) to the HBM when it is used as a
“scratchpad.”3

We extended our implementation using hbw_malloc()
to allocate memory directly in the HBM—this functionality
is accessible through the memkind library [2]. Running the
program on a dual-socket CPU system, we place all processes
on socket 0 using numactl--cpunodebind=0 and allo-
cate memory on socket 1 using numactl--membind=1. By
setting the environment variable MEMKIND_HBW_NODES=0,
we can use the local memory on socket 0 as HBM. In this
way, we can emulate the presence of the HBM. On the Cray-
XC40 compute nodes, we measure about 10% performance
gain for the transpose operation(s) when using HBM instead
of the distant memory on socket 1.

IV. SUMMARY AND OUTLOOK

We have demonstrated for two relevant aspects in the con-
text of 3D-FFT computation—plan reuse and composed 3D-
FFT—how to effectively approach them on current computer
platforms with inherent need for multi-threading.

One of the main issues in VASP (and maybe other DFT
codes, too) when using the FFTW library is the significant
amount of time spent in planning the FFT computation. The
latter increases with the number of threads to be used for
the computation. We introduced a plan caching scheme as
a component of our FFTLIB—a C++ template library that
intercepts FFTW calls—that reduces these times measurably.
For the VASP application, we were able to gain the multi-
threaded application performance by up to a factor 1.4x for a
selected input using 4 Cray-XC40 compute nodes.

3The HBM can also be used as an additional cache between the on-chip
last level cache and the DDR4 RAM.

Furthermore, FFTLIB provides additional functionality like
composed FFT computation with “ball↔cube” optimization,
and support for the high bandwidth memory (HBM) on the
upcoming Intel Xeon Phi Knights Landing platform. Us-
ing synthetic benchmark kernels, we achieved up to 1.4x
performance gain over a conventional 3D-FFT computation
on a Cray-XC40 compute node, and measured up to 10%
performance increase for an out-of-place transpose operation
as part of the “ball↔cube” FFT when using HBM.

One of our next steps is the integration of FFTLIB’s “ball↔
cube” FFT into VASP, which currently did not happen as it
requires adaptions of the data layout in the code. We also plan
to implement an auto-tuning mechanism into FFTLIB, that
allows for a re-compilation of some components of FFTLIB
using runtime information. First results on tuning the transpose
operation, used for the “ball↔cube” FFT, show a performance
gain of up to 10%.

DISCLAIMER

All our measurements have been carried out on the de-
scribed hardware and with the latest libraries available at
the time of this writing. We used the libraries to our
best knowledge. For FFTW we incorporated suggestions
and recommendations given on the official FFTW web-
page: http://www.fftw.org. The VASP version used
for benchmarking is a prototype version that is not publicly
available at the current time. The integration of FFTLIB into
VASP happened in agreement with the VASP developers and
might become part of VASP in upcoming releases.

ACKNOWLEDGMENT

This work is partially supported by Intel Corporation within
the “Research Center for Many-core High-Performance Com-
puting” (IPCC) at ZIB, and by Cray Computer Deutschland
within a joint research project.

REFERENCES

[1] FFTW—Fastest Fourier Transform in the West. Official webpage:
http://www.fftw.org, 2016.

[2] Memkind library. https://github.com/memkind/memkind,
2016.

[3] Constantine Bekas, Alessandro Curioni, and Wanda Andreoni. Applied
Parallel Computing. State of the Art in Scientific Computing: 8th
International Workshop, PARA 2006, Umeå, Sweden, June 18-21, 2006,
Revised Selected Papers, chapter New Scalability Frontiers in Ab Initio
Electronic Structure Calculations Using the BG/L Supercomputer, pages
1026–1035. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[4] Andrew Canning, John Shalf, Lin-Wang Wang, Harvey J. Wasserman,
and Manisha Gajbe. A comparison of different communication structures
for scalable parallel three dimensional ffts in first principles codes. In
Chapman et al. [5], pages 107–116.

[5] Barbara M. Chapman, Frédéric Desprez, Gerhard R. Joubert, Alain Lich-
newsky, Frans J. Peters, and Thierry Priol, editors. Parallel Computing:
From Multicores and GPU’s to Petascale, Proceedings of the conference
ParCo 2009, 1-4 September 2009, Lyon, France, volume 19 of Advances
in Parallel Computing. IOS Press, 2010.

[6] Manisha Gajbe and Andrew Canning and John Shalf and Lin-Wang
Wang and Harvey Wasserman and Richard Vuduc. Auto-tuning
distributed-memory 3-dimensional fast Fourier transforms on the Cray
XT4. In Proc. Cray User’s Group (CUG) Meeting, Atlanta, GA, USA,
May 2009.

[7] S. Song and J. K. Hollingsworth. Scaling parallel 3-d fft with non-
blocking mpi collectives. In Latest Advances in Scalable Algorithms for
Large-Scale Systems (ScalA), 2014 5th Workshop on, pages 1–8, Nov
2014.

[8] Andrew Sunderland, Stephen Pickles, Milos Nikolic, Aleksandar Jovic,
Josip Jakic, Vladimir Slavnic, Ivan Girotto, Peter Nash, and Michael
Lysaght. An Analysis of FFT Performance in PRACE Application
Codes. Technical report, PRACE Whitepaper, 2012.

[9] J.M. Thijssen. Computational Physics. Cambridge University Press,
1999.

[10] Weber, Valery and Bekas, Costas and Laino, Teodoro and Curioni,
Alessandro and Bertsch, Adam and Futral, Scott. Shedding Light
on Lithium/Air Batteries Using Millions of Threads on the BG/Q
Supercomputer. In IPDPS, pages 735–744. IEEE Computer Society,
2014.

	Introduction
	FFT Computation with FFTW (LibSci) and MKL
	The Fast Fourier Transform
	FFTW and MKL
	3D-FFT in VASP (Initial Setup)

	FFTLIB
	Summary and Outlook
	References

