Experiences Running Mixed Workloads on Cray Analytics Platforms

Haripriya Ayyalasomayajula
Cray Inc.
901 Fifth Avenue, Suite 1000
Seattle, WA 98164
hayyalasom @ cray.com

Abstract—The ability to run both HPC and big data frame-
works together on the same machine is a principal design
goal for future Cray analytics platforms. Hadoop™provides a
reasonable solution for parallel processing of batch workloads
using the YARN resource manager. Spark™is a general-
purpose cluster-computing framework, which also provides
parallel processing of batch workloads as well as in-memory
data analytics capabilities; iterative, incremental algorithms; ad
hoc queries; and stream processing. Spark can be run using
YARN, Mesos™or its own standalone resource manager. The
Cray Graph Engine (CGE) supports real-time analytics on the
largest and most complex graph problems. CGE is a more
traditional HPC application that runs under either Slurm or
PBS. Traditionally, running workloads that require different
resource managers requires static partitioning of the cluster.
This can lead to underutilization of resources.

In this paper, we describe our experiences running mixed
workloads on our next generation Cray analytics platform
(internally referred to as ‘“‘Athena”) with dynamic resource
partitioning. We discuss how we can run both HPC and big
data workloads by leveraging different resource managers to
interoperate with Mesos, a distributed cluster and resource
manager, without having to statically partition the cluster. We
also provide a sample workload to illustrate how Mesos is used
to manage the multiple frameworks.

Keywords-HPC, Big Data, Mesos, Marathon, Yarn, Slurm,
Spark, Hadoop, CGE

I. INTRODUCTION

The ability to run both HPC and big data frameworks
together on the same platform is highly desirable. Such a
capability provides better overall system resource utilization,
as dedicated clusters targeting one specific capability or
framework may become idle at times based on workload
characteristics and requirements. One single system capable
of supporting multiple frameworks eliminates the need to
maintain multiple systems. A second and equally important
benefit this capability provides is significant gain in user
productivity. By enabling mixed workflows to run on a
single platform, users can run more complex workflows.
Users no longer have to copy large amounts of data between
systems. Moving multiple terabytes of data between systems
becomes a significant bottleneck for many mixed-workload
applications. This may also enable applications running in
different frameworks to exchange data more seamlessly
using light-weight interfaces, either leveraging a shared file

Kristyn J. Maschhoff
Cray Inc.
901 Fifth Avenue, Suite 1000
Seattle, WA 98164
kristyn@cray.com

system such as Lustre™, or by storing data in memory
without needing to write data to the file system. Analytics
frameworks provide REST endpoints that are helpful for
users and operators. We can use the REST API provided
by the frameworks to connect to the HTTP endpoints of
their components.

Traditionally, various implementations of Parallel Batch
System (PBS), and more recently Slurm, have been the
resource managers used for HPC platforms. Big data frame-
works work with a variety of different resource managers for
their job scheduling and resource management. The Hadoop
[1] ecosystem uses YARN (Yet Another Resource Negotia-
tor) [2] as its default resource manager. Apache Spark [3]
comes with its own standalone resource manager but can
also work with YARN or Mesos [4]. On most systems today,
running workloads that require different resource managers
requires static partitioning of the cluster or HPC system.

In this paper, we describe our experiences running mixed
workloads on an Athena development system with dynamic
resource partitioning. The Athena analytics test platform
used for this study was an Aries™-based system with node-
local SSDs. Each node has two sockets populated with 12-
core Haswell processors, 512GB of DDR-4 memory, a 1.6
TB SSD and dual 1.0 TB hard drives. We first describe the
three frameworks supported on this platform and provide
some background about the unique characteristics and core
components for each of the frameworks. We then discuss
Mesos, a distributed cluster and resource manager, and
describe how we are able to support both HPC and big
data workloads by leveraging different resource managers to
interoperate with Mesos without having to statically partition
the cluster. We then introduce a mixed workload that uses
both an analytics-style application (Spark) and an HPC-style
application (Cray Graph Engine) and illustrate how Mesos is
used to manage the multiple frameworks. Finally we discuss
our experiences running this mixed workload and identify
possible improvements and areas of future work.

II. DESCRIPTION OF FRAMEWORKS

In this section we describe the three frameworks that we
support on the Athena system: the Hadoop/YARN ecosys-
tem, the Spark analytics framework, and the Cray Graph

Spark Ecosystem
Hadoop Ecosystem S
(Hive, Hue, Kafka, Zookeeper etc.) (Spark SQL, Streaming, MLIib,
GraphX)
Hadoop Core
(MapReduce & Yarn) Spark Core

Mesos Resource Management Ecosystem

Cray Graph Engine

(Mesos, Marathon, High Availability Proxy & Cray Developed Scripts)

Figure 1. Software architecture diagram for the Athena platform

Engine (CGE) framework. For each framework, we discuss
its core components and the deployment modes supported.

Figure 1 shows the overall structure of the Athena soft-
ware stack.

A. Hadoop/YARN Ecosystem

Hadoop is an open-source framework used for parallel
distributed processing of batch workloads on large data sets.
The Hadoop/YARN ecosystem is built around two core
components: Hadoop Distributed File System (HDFS™)
[5] (storage) and an analysis system, MapReduce [6] (pro-
cessing). Together, they provide a computing solution that
is scalable, cost-effective, flexible and fault-tolerant. It is
designed to scale up from small servers to clusters with
thousands of nodes.

HDEFS serves as primary data storage for Hadoop work-
loads and also supports a wide range of data formats. HDFS
works best for storing very large files and retrieving them in
a write once, read many times fashion. It is designed to offer
fast local storage and high-throughput access to data. Fault
tolerance and resiliency are ensured by replicating the data
across the nodes. Data locality is offered by scheduling task
execution on the nodes where the data is present. HDFS
components also ensure persistency of the data. HDFS
provides a limited interface for managing the distributed
file system; other applications in the Hadoop ecosystem can
access data through this interface.

On the Urika-XA™platform and also on the Athena
platform, HDFS storage is supplied by the SSD and HDDs
on each of the compute nodes to form the HDFS filesystem.
Data stored in HDFS is accessible from everywhere and at
all times, both by the applications running within the Hadoop
ecosystem framework, but also from other frameworks in-
cluding Spark and CGE. Storing data on the SSDs located
on the compute nodes that needs to be persistent across jobs
and globally accessible is fundamentally different from the
data storage model used by HPC-style applications, where
persistent data is stored off-node in an external filesystem.

YARN was first introduced in Hadoop version 2.
YARN supports both MapReduce and a collection of non-
MapReduce applications in the same Hadoop environment.

While YARN provides resource management functionality
to workloads launched in the Hadoop ecosystem, it cannot
be extended easily to non-Hadoop workloads. YARN pro-
vides a scheduler integrated with its resource manager. This
becomes a limitation when writing a new framework on top
of YARN, as the new framework will also have to use the
scheduler provided by YARN. This may not be the most
optimal solution for all frameworks. So in order to manage
resources across all three frameworks we need a scalable
yet more ‘“global” resource manager solution to schedule
different types of workloads, both big data applications
contained within the Hadoop ecosystem and other traditional
HPC applications, such as MPI-based applications. Mesos
allows each framework to implement its own scheduler
which overcomes this limitation.

At CUG 2014, Sparks et al. [7] discussed the development
of a Cray framework for Hadoop on the XC30 system based
on the myHadoop project by Sriram Krishnan. In their paper
they discussed many of the obstacles that complicate the
adoption of Hadoop as a part of typical HPC workflow, the
most significant involving workload management. Several
components of the Hadoop ecosystem, including database
applications such as Accumulo™or HBase™, are intended
to be used as long-running, shared services, and are not
well suited to the batch oriented model typically used for
managing large HPC systems.

B. Spark Analytics Framework

Apache Spark is a general-purpose cluster-computing
framework that also provides parallel processing of batch
workloads. Spark supports a wide range of distributed com-
putations and facilitates reuse of working data sets across
multiple parallel operations by its potential to keep data
in memory. Spark facilitates interactive ad hoc querying on
large datasets. It offers Spark SQL for SQL and structured
data processing, MLIib for machine learning, GraphX for
graph processing, and Spark Streaming.

Spark provides high-level APIs in Java, Scala, Python
and R. Unified programming abstractions called Resilient
Distributed Datasets (RDDs) are the fundamental building
blocks of Spark. They are the primary storage primitives
that facilitate storage of data in memory and across multiple
compute nodes.

Spark can be run using its stand-alone resource manager
or over several existing cluster managers such as Hadoop
YARN or Apache Mesos. Spark jobs can be run in batch
mode using the spark-submit command or they can be
run interactively through the supported Spark shells (Scala,
Python, SparkR, SparkSQL).

When Spark is run in batch mode, the Spark programmer
writes a driver program, which is the main program. Inside
Main, the programmer sets up the SparkContext. As part
of setting up the SparkContext, the programmer can specify
arguments on how the Spark job is to be run. In addition,

when spark-submit is called, users can alternately pass
arguments, such as the number of executors, which can
specify how the job is to be run.

The Spark program then connects with a cluster man-
ager to gain resources required to launch the jobs. The
Spark driver establishes a connection with the resource
manager. Spark acquires executors on nodes in the cluster.
Executors are processes that run computations. These long-
lived processes can store RDD partitions in memory across
operations. One or more RDDs are defined in the driver
program and actions are invoked on them. When Spark is
run interactively, the spark—shell will start up the Spark
context.

Although there is overlap between the Spark and Hadoop
workloads, the Spark and Hadoop frameworks were devel-
oped using different design considerations, and each these
offer optimal solutions to different classes of algorithms and
constraints. A discussion of early experiences developing
applications for both Spark and Hadoop aimed at evaluating
the performance offered by Spark can be found in [8].

C. CGE Framework

In contrast to Hadoop and Spark, which were originally
developed to run on commodity clusters, the Cray Graph
Engine (CGE) was developed to run in a Cray HPC environ-
ment. CGE is a high performance semantic graph database
based on the industry-standard RDF graph data format and
the SPARQL graph query language. At CUG 2015, we
presented our early work to port the back-end query engine
of the Urika-GD appliance to the Cray XC40 system [9].

The CGE query engine performs several functions. First,
the query engine is responsible for reading RDF, translating
it into its memory-resident representation of the database,
and writing the database to disk. Second, the query engine
is able to read in a previously compiled database from disk in
order to build its memory-resident database image. Third, it
accepts SPARQL queries from the front end, evaluates them
against the memory-resident database, and returns the results
to the front end. Fourth, it accepts SPARUL (SPARQL
Update) commands from the front end and updates the
memory-resident database according to those commands.
Finally, it also accepts checkpoint commands from the front
end, writing the database to disk.

The back-end query engine of CGE is written as a
distributed application using Coarray C++ as the underlying
distribution mechanism. Coarray C++ is a C++ template
library that runs on top of Cray’s Partitioned Global Address
Space (PGAS) library (1ibPGAS), which is an internal Cray
library supporting the Cray compiler, built on top of DMAPP
[10]. As a graph analytics application, maintaining optimal
network performance for small word remote references is
essential. In order to fully utilize the RDMA and synchro-
nization features provided by the Aries interconnect, we
leveraged existing software running on our XC40 systems,

bringing over the necessary components of the Cray XC soft-
ware stack required to launch and run the CGE application.
Currently Slurm is used for launch and job initialization, and
is the mechanism used to configure Aries communication.
The use of Slurm is not exposed to the user directly. The user
only interacts with the CGE launcher. The CGE launcher is a
Python-based script, which on Athena uses Slurm to allocate
nodes from Mesos, start Slurm components on the allocated
nodes, set up the HPC software stack, launch CGE, and
return nodes to Mesos when the job is finished. We provide
more details on how this done in the next section.

III. CLUSTER RESOURCE MANAGEMENT

We chose Apache Mesos as the primary resource manager
for the Athena platform. Mesos supports diverse frameworks
on the same platform without static partitioning. When one
performs static partitioning, specific portions of the cluster
are allocated to run each framework. Resources allocated
to a specific framework are idle when there are no jobs
running under that framework, potentially resulting in poor
resource utilization. Mesos allocates resources dynamically
to launch jobs of different frameworks, thereby improving
system utilization compared to static partitioning.

A. Mesos

Apache Mesos is the main resource manager for the
Athena platform. It provides the necessary functionality to
share system resources between the three diverse frame-
works. Over the last decade, big data frameworks such
as Hadoop and Spark have gained popularity and new
cluster computing frameworks continue to evolve. Having
multiple frameworks supported in the same system provides
user with the ability to select the best framework for each
application. Each of these frameworks evolved with different
design considerations targeted to solve problems of different
classes of applications. Similarly, each of these frameworks
interacts with different resource managers to schedule its
jobs on the cluster. Apache Mesos addresses the need for a
common interface that allows cluster resource management
for multiple existing frameworks. It also has the ability to
support future frameworks.

Resource management and scheduling are two related
problems. Each framework has different scheduling needs
based on its programming model, communication pattern,
task dependencies and data placement. The way the frame-
works address fault tolerance and high availability can differ
too. To have one common platform with multiple frame-
works we can either choose to have a centralized scheduler
or a decentralized scheduler. To satisfy these requirements
with a single scheduler is very complex and not feasible,
particularly while maintaining scalability and resiliency. In
addition, it is difficult to predict the scheduling requirements
for any upcoming frameworks. Mesos does not implement
a centralized scheduler. Instead, it delegates the scheduling

HADOOF

MESOS MESOS
- MASTER MASTER

MESOS SLAVE MESOS SLAVE

Figure 2. Overview of Mesos architecture

decision to frameworks. Mesos has a distributed two-level
scheduling mechanism called resource offers. It encapsulates
a bundle of resources that a framework can allocate on a
cluster node to run tasks into resource offers.

Mesos decides how many resources to offer to each frame-
work based on an organizational policy. The frameworks
decide which resources to accept and which computations
to run on them. The task scheduling and execution decisions
are left to the framework. This enables the framework to
implement diverse approaches to various problems in the
cluster example: data locality and fault tolerance, which can
evolve independently. While the decentralized scheduling
model is not always the globally optimal solution, it is
efficient to support diverse workloads.

Like many other distributed systems, Mesos has been
implemented in a master-worker pattern. Mesos consists of
Mesos master, Mesos slave, and frameworks. There is one
Mesos agent/slave daemon that runs on each node of the
cluster. There is a Mesos master that manages agent/slave
daemons running on each cluster node. Frameworks that
register with Mesos run tasks on these slaves. A resource
offer comprises a list of free resources on multiple slaves.
Frameworks running on Mesos have two components: sched-
uler, a process that registers with master to be offered
resources, and executor, a process that is launched on a slave
node to run the framework tasks.

Figure 2 provides an overview of the Mesos architecture.
The Mesos master decides how many resources to offer
to each framework. The framework scheduler then selects
which of the offered resources to use. The framework
chooses either to accept or decline the resources. When
a framework accepts offered resources to use, it passes to
Mesos a description of the tasks it wants to launch. The
master allocates the proper resources and then sends tasks
to the slave. A framework has the ability to reject the
resources that do not satisfy its requirements or constraints.

It is this ability that allows frameworks to ensure constraints,
such as data locality. However, it poses some challenges
too. Frameworks have to wait for resources that satisfy the
constraints. Mesos may have to send out multiple resource
offers before one is accepted.

To avoid this, Mesos lets the framework set filters to
specify that a framework will always reject certain resources.
Mesos shares resources in a fine-grained manner. It allows
frameworks to achieve near-optimal data locality by taking
turns reading data stored on each machine. Mesos also
supports having multiple versions of frameworks in the same
cluster. On the Athena platform, for example, support for
multiple versions of frameworks could be used to support
multiple versions of Spark.

B. Framework Resource Allocation

On the Athena system, we have a hierarchy of resource
managers operating with Mesos. The frameworks are config-
ured to interact with Mesos for acquiring resources to launch
their jobs. For frameworks not native to Mesos, we provide
interfaces to allow these resource managers, such as Slurm
and YARN, to dynamically acquire and release resources
from Mesos.

Mesos is set up to run in high-availability mode with three
masters and operates with a quorum of two. It is configured
with Zookeeper™, which is a distributed coordinating ser-
vice. This ensures fault tolerance and resiliency. If one of
the master processes dies, one of the other two masters is
elected as a leader. Mesos slaves are started on the nodes of
the cluster.

Spark running as a native Mesos framework on the
Athena system: Spark is run as a native Mesos framework
and interacts directly with Mesos for resource allocation.
This is accomplished by simply pointing the Spark master
to a Mesos cluster set up in high-availability mode with three
masters configured with ZooKeeper. By default we set the
Spark master to the Mesos masters in the SparkConf file. For
our experiments we run Spark on Mesos using the default
coarse-grained mode. The coarse-grained mode launches
only one long-running Spark executor on each Mesos slave.
The Spark executor manages the parallel tasks across all the
cores on that node. By default, it acquires all cores in the
cluster (that are offered by Mesos), but the user can limit
the number of cores requested by setting the spark.max.cores
configuration parameter. Figure 3 shows how Spark interacts
with Mesos for resource allocation.

Marathon: Hadoop/YARN and CGE are not run as
native Mesos frameworks. We build our solutions for both
Hadoop/YARN-based applications and traditional Slurm-
based HPC applications on top of Marathon. Marathon is
a cluster-wide initialization and control system for running
services under the Mesos ecosystem. Marathon registers
itself as a Mesos framework. Marathon is REST-based and

Worker Node

Executor | Cache

Task

af

Driver Program

SparkContext [L

Cluster Manager

Worker Node

Executor | Cache

Task

af

Figure 3. Running Spark on Mesos
‘ HADOOP ‘ l CGE |
YARN
RESOURCE SLURM
MANAGER B:lwAESST(iESR CONTROLLER
MESOS SLAVE MESOS SLAVE ‘ MESOS SLAVE ‘ MESOS SLAVE ‘
YARN Node YARN Node Slurm Cloud Slurm Cloud
Manager Manager Node Node
Hadoop Hadoop CGE CGE
Task Task Task Task

Figure 4. Launching Hadoop and CGE using Marathon on Athena

provides an API for starting, stopping and scaling long-
running services. On the Athena platform, Marathon is used
on top of Mesos to launch Slurm and YARN. Figure 4
provides an illustration of the launch process.

Hadoop on the Athena platform: Hadoop version 2
workloads require YARN, and Mesos enables running mul-
tiple frameworks together. Hence, YARN and Mesos should
coexist. Our solution uses Marathon to launch a dynamic
YARN sub-cluster under Mesos. Marathon is a part of the
Mesos ecosystem that provides a mechanism for launching
long-running applications. The scripts we developed use
Marathon to expand or shrink a YARN cluster. The cluster
remains under the control of Mesos even when we run
other cluster managers. When we call the f1ex—up script,
YARN node managers are started as Mesos slave tasks using
Marathon. Marathon negotiates with Mesos for resources
and sets up a YARN cluster for launching jobs. Once the
YARN cluster is flexed up with the required number of
nodes, users can submit Hadoop jobs to YARN. When
the Hadoop jobs have completed and YARN no longer
requires the resources a £lex—down script terminates the
application running under Marathon. This stops the YARN
node managers and returns resources from YARN back to
Mesos.

CGE on the Athena platform: We launch CGE on
the Athena platform using Slurm configured to run in
Slurm’s Elastic Computing Cloud mode. Slurm is a free
open-source workload manager that has been adapted by
Cray to support HPC applications on Cray platforms. Slurm
normally expects to own and manage all the resources on
a platform. In Slurm’s Elastic Computing Cloud mode,
Slurm allocates from a fixed pool of physical nodes and
launches the sub-tasks of a job on each node. From an
HPC application perspective, Slurm is important primarily
because it knows how to configure communication among
the sub-tasks, whereas Mesos and Marathon have no native
awareness of these kinds of issues.

With the advent of cloud computing services like Ama-
zon’s EC2 product, Slurm was extended, using elements of
its power management infrastructure, to permit leasing of
Slurm resources on an as-needed basis from a cloud comput-
ing provider. The mechanism provides for two scripts run by
the Slurm controller daemon. One of the scripts “suspends” a
node, meaning that it terminates Slurm components running
on that node and releases its “lease” on the node. The other
script “resumes” a node, meaning that it leases the node
and initiates Slurm components on that node. When the
Slurm controller determines that it needs to extend its cloud
computing resources to accommodate a job, it ‘resumes’ a
cloud node. When the Slurm controller no longer needs those
resources it ‘suspends’ the cloud computing resource.

We observed that Mesos could be treated as a cloud
computing service on the Athena system by adding the
necessary supporting scripts to suspend and resume cloud
nodes managed primarily by Mesos. To do this, Slurm uses
Marathon to allocate nodes from Mesos and launch Slurm
components on those nodes. A set of Cray-developed scripts
provides the interaction with Mesos and Marathon necessary
to make this happen. With this infrastructure in place, we
can then launch CGE using Slurm with the required HPC
software stack and hardware initialization, almost in the
same way Slurm performs this function on the XC40 system.
The main difference is that on the Athena platform, Slurm is
deferring to Mesos for the underlying resource management.

A summary of the steps involved when the CGE launcher
gets invoked follows. As part of the launch command,
the user specifies how many nodes to use and how many
images per node. If the number of nodes and images is not
supplied by the user, the default is to request one node and a
heuristic is used to determine the number of images per node
based on number of cpu cores. Memory considerations for
holding the memory-resident database and the complexity
of the queries to be run are two guiding factors when
selecting an appropriate node count to use. The cge-launch
script composes an appropriate Slurm srun command, which
queues the job to the Slurm controller. From there the
Slurm controller determines what resources it needs from its
cloud service (Mesos) and runs Slurm with Mesos “resume”

script to obtain the needed nodes. This script launches a
complement of Slurm daemons under Marathon (which takes
care of the Mesos offer solicitation and acceptance process
and starts the Slurm daemons). Once the Slurm daemons are
running and registered with the Slurm controller, the Slurm
controller places the job on the newly-started nodes and lets
it run. When the job completes, the nodes become idle.
The Slurm controller waits for a brief system-configured
interval in case a subsequent job might use the idle nodes
immediately; then, if the nodes remain idle, “suspends” them
using the Slurm with Mesos suspend script, returning the
no-longer-needed nodes to Mesos.

IV. SOCIAL NETWORK ANALYSIS WORKFLOW

To illustrate how Mesos is used to manage the multi-
ple frameworks, we use a mixed workload that includes
both an analytics-style application (Spark) and an HPC-
style application (CGE). The example is derived from a
social network analysis workflow originally developed in
Spark to run on the Urika-XA system [11]. The original
Spark workflow has two modes or pipelines, a real-time
analytics pipeline and a batch analytics pipeline. The real-
time pipeline performs operations which can be completed
in a small window timeframe, such as simple aggregations.
Example aggregations include counting the total number of
tweets, unique users or unique hashtags. The batch analytics
pipeline operates with a larger window timeframe to both
collect more data and perform more complex analysis on
that data.

We have modified the batch analytics pipeline to illustrate
how efficiently one can use both Spark and CGE to execute
the components of this workflow. The modified pipeline
demonstrates the exchange of data between these applica-
tions using either HDFS or Lustre. This modified use case
also shows how we can apply Spark to the ETL (Extract,
Transform, Load) components of the workflow for which it
is most suited, and likewise can apply CGE to graph analysis
components of the workflow where it is most suited. This
does not require the copying of large amounts of data that
has to be accessed by different frameworks between systems
or from one file system to another.

The full workflow includes ETL, numerous aggregations,
and joins. The batch analytics pipeline includes running a
community detection graph algorithm. We use Spark and
Spark Streaming to process the data as a series of micro-
batches. Spark is used to perform the ETL and generate
RDF data which can then be loaded into CGE. These
are tasks at which Spark excels. The key programming
abstraction used in Spark Streaming is called a DStream, or
distributed stream. Conceptually, a DStream is just a series
of RDDs, and any operation applied on a DStream translates
to operations on the underlying RDDs. Although Spark
can be used to perform the various aggregations and joins
required by the workflow, the relatively poor performance

Streaming
Perform ETL
Collect Twitter using Spark

data in Lustre Build database

Write RDF data to
HDFS/Lustre

Set up Spark
Spark gets resources
from Mesos

| S —

On completion,
Spark releases

resources from Mesos |

Launch CGE
Allocate resouces to
SLURM from Mesos

Bring up SPARQL

Run more g
endpoint

queries or
release
resources to
Mesos

Visualize results
Run CGE Queries

Figure 5. Sequential workflow for social network analytics example

of the GraphX community detection algorithm limits the
amount of data that can be used for identifying communities.
This task is much better suited for CGE.

Figure 5 shows a simple flow diagram for the social-
analytics workflow where we run Spark followed by CGE in
a serial fashion. This workflow will demonstrate the process
of starting up one framework across most of the nodes on the
system and running, shutting down, and bringing up another
framework on those same nodes, all on the same hardware.
Although the workflow executes the two components (Spark,
CGE) serially, the overall runtime is still greatly reduced.
The magnitude of the efficiency of CGE over Spark for
the graph analytics portion of the workflow easily justifies
the added the overhead of generating and writing RDF
data to HDFS, dynamically switching from running a Spark
framework across all nodes to running the CGE framework
across all nodes, loading the RDF data into CGE and running
queries.

Figure 6 shows a modified flow diagram for the social-
analytics workflow where we have the Spark Framework
and the CGE Framework both running at the same time
on different nodes on the system. In this workflow, the
RDF data generated from each streaming batch from Spark
can be loaded into CGE as SPARQL update operations to
an already-running CGE database. The exchange of data

between the two system components is managed through
the HDFS file system using the time-stamped RDF data di-
rectories generated from Spark Streaming as the mechanism
for initiating the SPARQL load operation for those data files.

The source data is from Twitter. Each tweet record con-
tains the user making the tweet and any users mentioned in
the text of the tweet. Spark Streaming is used to process the
data as a series of micro-batches. The ETL phase consists of
parsing the JSON record and reorganizing it into structures
analogous to relational tables (tweets, users, relationships,
hashtags). For each batch, we generate and write out RDF
data to HDFS by using the Spark Streaming save AsTextFiles
operator. The output directory on HDFS where the generated
RDF data is written for each batch includes a time prefix.
This gives each batch interval a uniquely-named directory,
allowing several batches to be processed before switching to
run CGE. We write the RDF data to an HDFS directory with
the All_SSD storage policy set (see Hadoop 2.7 Archival
Storage, SSD & Memory online documentation [12]). This
causes HDFS to attempt to place all blocks (and their repli-
cas) into the SSD storage tier, which reduces I/O overheads
for both writing from Spark and loading the data into CGE.

After some pre-determined number of batches are pro-
cessed, we load the RDF data from several batches into
CGE, where we first construct a graph from the network
of user pairs that have mentioned each other. We then use
the Cray-developed built-in graph function (BGF) extensions
to SPARQL to run community detection. By accumulating
RDF data containing an edge list of the users who mention
other users over a larger window of time, the input contains
more relationships on which to build the communities.

Figure 7 shows the Spark code to generate the RDF data
used later in CGE to construct the network or graph of
users who mention each other. We first extract from the
distributed streaming tweet records the users who mention
other users in their tweet. The userMention function takes
as input a DStream of Tweets and outputs a DStream of
UserMention. Next, we further restrict to users who have
mentioned each other. Figure 8 shows how this can be done
in Spark using the intersection of two sets. This intersection
corresponds to the pairs of users who have bidirectional
edges between them. User A has mentioned User B, and
User B has mentioned User A, and thus we infer that User
A knows User B.

If we run the workflow as initially designed only using
Spark, we are limited to looking at communities only using
relationship data within a single batch interval. Although
the join operation used to compute the intersection in Spark
performs reasonably well for small joins, as the batch
window is increased, even this join becomes problematic.
The biggest motivation for moving the join operation for
generating the network of users who know each other from
the Spark pipeline to a SPARQL query run using CGE is
that we can now look at communities over much larger time

intervals.

Figure 9 shows the SPARQL code used to construct the
network of users who mention each other and also to run
community detection. The results from this query are the
user community assignments, and for current implementa-
tion of CGE these are written to a user-specified directory
on Lustre. We are currently extending CGE to provide the
option of writing results to the HDFS as well.

Overall workflow performance is also a significant mo-
tivator to use both Spark and CGE for performing this
workflow, rather than just performing the full workflow
in Spark. CGE performance for running the community
detection portion of the workflow (Label Propagation) is
more than 10 times faster than the Spark GraphX Label
Propagation algorithm when run on the same number of
nodes for even moderately sized graphs (one million edges).
This performance difference grows substantially with larger
graphs. We provide some detailed timings of Spark and
CGE performance and the time required to switch between
frameworks in the following section.

A. Workflow Launching Details

In this section we walk through the components of the
workflow in detail and show from a user perspective how
each of the application components is launched as well
as how the resource manager manages these requests and
allocates resources as the workflow progresses.

The workflow is designed to connect to Twitter to down-
load live tweets and process them in real time from Twitter4;]
[13] or to reprocess historical data that has been archived. To
capture historical data, a Java process which downloads data
from Twitter runs continuously on a login node. This Java
process receives the tweets as JSON records and appends
each text to a file. Every hour, the current file is closed
and gzipped, and a new file is started. The archived data
resides on Lustre and is stored as timestamped events. The
workflow allows the reprocessing of data by starting at a

given timestamp and streaming data forward.

To start the Spark component of the workflow, a bash
script (run) is used to launch both the real-time analytics
pipeline and the batch analytics pipeline. The following are
inputs to the bash script.

Input Arguments

1. lane: fast or slow

start datetime, eg "2015-01-01"
files per batch

max batches

total number of executors cores
executor mem, eg 128g

oY U1 W N

In the following example, we specify 24 files per batch,
running 10 batches, requesting 1,024 executor-cores and 128
GB of memory per executor.

./run slow "2015-11-01" 24 10 1024 128g

This processes approximately 10 days’ worth of our
internally archived tweet data. The full Twitter firehose

Set up Spark
Spark gets resources
from Mesos

b e—

Streaming

Perform ETL using

Spark

Write RDF data to

Collect Twitter

HDFS/Lustre
data in Lustre L

Bring up SPARQL

endpoint

Launch CGE
Allocate resources to
SLURM from Mesos

Visualize results

Run more
queries or
release
resources to
Mesos

Figure 6.

is about 600 million tweets per day. For our experiments
we are limiting ourselves to less than one percent of the
firehose. The tweets downloaded are based on a list of search
keywords. For our internally archived repository, we have
recorded approximately two million tweets per day. Thus
for the example above, we are processing approximately 20
million tweets combined for the 10 batches.

The fast lane corresponds to the real-time analytics
pipeline and the slow lane corresponds to the batch an-
alytics pipeline. Both lanes can be run simultaneously,
although they will then be sharing system resources. For
this demonstration, we modified the slow lane so that the
Spark component of the batch analytics pipeline also writes
out RDF data containing the (user, user.mentions) pairs per
batch, thus allowing us to later load this data into CGE for
further processing.

The run bash script then invokes a second script
which is where spark-submit is initially called.
spark—-submit starts executing Main. Inside Main the
Spark context is set up, and any parameter settings used to
configure and optimize Spark are set. Two examples of user-

Perform more
analysis

Visualize results

Collect Metrics

Load more batches
SPARQL update

Loading RDF
data in batches

Run CGE Queries

Parallel workflow for social network analytics example

provided Spark configuration parameters passed into Main
are parameters for setting the total number of Spark executor
cores to use (spark.cores.max) and the size of executor
memory (spark.executor.memory).

When a Spark context is set up, Spark registers as a frame-
work with Mesos. The Mesos master then gives resource
offers to Spark. Spark decides if the resources offered by
Mesos satisfy the resource requirements for launching its
tasks. If the resource requirements match, Spark accepts
the resources from Mesos and coordinates with the Mesos
Master to launch its tasks on the Mesos slaves.

For this workflow the core of Main mostly consists of
initializing the StreamingContext, specifying the pipeline to
execute, and starting the streaming. More information on
Spark Streaming can be found in the Spark Users Guide
[14].

For the workflow described in Figure 5, we then shut
down Spark, releasing the resources back to Mesos. Next
we either can load data directly from HDFS into CGE or
execute a simple script to pull data from HDFS to Lustre,
concatenating all of the distributed RDF files into one large

1

2 type UserMention = (UserId, UserId)

J

4 def userMention(tweets: DStream[Tweet]) DStream[UserMention] = {

5 val userMention = tweets

6 .flatMap { tweet => tweet.mentions

7 .map (mention => (tweet.user, mention))}

8 .filter(t => t._1 != t._2) // no self-mentions

9 .distinct

10

11 val predicate = "<http://mentions>"

12 val endTag = "."

13 val URIfront = "<http://"

14 val URIback = ">"

15 val add_space = "_"

16

17 val userMentionRDF = userMention.map (edge => URIfront + edge._1 + URIback + add_space
18 + predicate + add_space + URIfront + edge._2 + URIback + add_space + endTag)
19
20 // This will write data to a directory on HDFS to be resident on the SSDs
21 userMentionRDF.saveAsTextFiles ("hdfs:/All_SSD/userMentionRDEF")
22
23 // This will write data to the users HDFS home directory
24 userMentionRDF.saveAsTextFiles ("userMentionRDF")
25
26 // One can also write the generated RDF data directly the Lustre filesystem
27 //userMentionRDF.saveAsTextFiles ("file:///mnt/lustre/kristyn/userMentionRDF")
28
29 userMention
30

Figure 7. Spark code using Scala API for generating and writing RDF data from Tweet DSream

1

2 type UserKnows = (UserId, UserId)

3

4 def userKnows (userMention: DStream[UserMention]) DStream[UserKnows] = {
5 val ab = userMention

6 val ba = userMention.map (_.swap)

7 val userKnows = ab.intersection (ba)

8 userKnows

9 }

10

11 def communityDetection (userKnows RDD [UserKnows]) RDD [UserComm] = {

12 // Repartition userKnows before constructing graph

13 userKnows.repartition (512)

14 val userGraph: Graph[UserId, Int] = Graph.fromEdgeTuples (userKnows, OL)
15 val groups: Graph[UserId, Int] = LabelPropagation2.runPregel (userGraph)
16 val userComm = groups.vertices

17 userComm

18 }

Figure 8. Spark code using Scala API for selecting edges from the userMention DStream

file called dataset.nt. This is the most efficient method for
building very large databases for CGE, but CGE can also
directly load files from HDEFS, saving the extra copy.

Next we start up CGE using the cge-1launch script.

cge—-launch
—-d (path to dir where RDF data resides)

-0 (path to dir on Lustre to store results)

Note that to load the RDF data directly from HDFS, we can
provide a graph.info file to CGE to indicate where the files
are stored.

Example for contents of graph.info file

1

2 PREFIX cray: <http://cray.com/>
3 PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
4

5 SELECT ?vertex ?comm

6 WHERE{

7 CONSTRUCT {

8 ?s ?weight 2o

9 } WHERE {

10 ?s <http://mentions> ?o

11 ?0 <http://mentions> ?s

12 BIND ("1"""xsd:integer as ?weight)

13

15 # and run for 20 iterations

}
14 # Invoke community detection algorithm (Label Propagation)

|16 INVOKE cray:graphAlgorithm.community_detection_LP (20)
17 PRODUCING ?vertex ?comm
18 1}

19 ORDER BY ?comm

Figure 9. SPARQL query for generating graph and running community detection

hdfs:/Al1l1_SSD/UserMentionRDF-1459988200000
hdfs:/All_SSD/UserMentionRDF-1459988400000
hdfs:/All1_SSD/UserMentionRDF-1459988600000
hdfs:/All_SSD/UserMentionRDF-1459988800000
hdfs:/All1_SSD/UserMentionRDF-1459989000000

Here cge—-launch works with Marathon/Mesos to request
resources, and Slurm starts up CGE. Marathon applications
submitted by Slurm accept resources from Mesos based on
the resource availability. Once the resources are available the
Slurm daemons are started as Mesos slave tasks as illustrated

in Figure reffig:UsingMarathon.

Once CGE starts, it builds the database and waits for
queries. We then start up the CGE command line interface
cge—cli to run queries.

cge-cli spargl SNA_community.rqg

Here the file “SNA_community.rq” contains the SPARQL
code listed in Figure 9. The results for the query are written
to Lustre. We can then use the following command to shut
down CGE and release all resources back to Mesos.

cge—-cli shutdown

For the workflow described in Figure 6, we keep the
Spark framework running and continue streaming tweet data
through the Spark pipeline. CGE can be started at any point
on a different set of nodes, either with an empty database or
with an initial set of RDF data obtained from an initial set
of batches processed. We can then pipeline the insertion of
new RDF data via the CGE command-line front end using
the SPARQL LOAD operator. The generation of the update
queries provided to cge-cli can be automated to look for
new files being written to HDFS and the Spark Streaming
pipeline process runs. An example of what the SPARQL
update using the LOAD operator would look like is shown
below.

LOAD <hdfs:///All_SSD/ (new RDF dir/filename)>

We are able to make some interesting observations by
examining the output logs from the CGE runs. As we
increased the window of data analyzed, the premise was
that we would better capture relationships between users.
To look at this we ran the community detection algorithm
using CGE analyzing the first 24 hours of twitter data, then
analyzing five days of data, then analyzing 10 days, and
finally analyzing 30 days. All the comparisons were made
using 16 nodes.

For the 24-hour period the number of (user.user.mention)
pairs or RDF triples generated using Spark and written to
HDEFS was 2,399,916. On 16 nodes this took 3.8 seconds to
build the database from the RDF data in CGE. Running
the query, which includes computing the network graph
of users who know each other (existence of bi-directional
edges connecting users), running the community detection
algorithm, and sorting the users by community, only took
2.9 seconds. The resulting network graph and communities
from a 24-hour period was also interesting in that from the
large number of initial input RDF triples, which each contain
a record of where a user mentioned another user in a tweet,
the number of users who “know” each other based on our
criteria was significantly smaller. The size of the graph on
which community detection was run was 60,853 vertices and
76,896 edges. The largest community found contained only
152 users (vertices in the graph), with many users not yet
assigned to communities after 20 iterations.

If we then look at a window of five days, the number
of (user.user.mention) pairs or RDF triples generated using
Spark and written to HDFS was 12,033,038. The resulting
size of the graph on which community detection was run was
281,536 vertices and 404,866 edges. The largest community

found now contains 442 users. There are still a lot of users
not yet assigned to communities, but by just looking at the
average number of edges per vertex in the input graph,
we can see that more relationships are being captured by
analyzing data over larger windows of time. Also note that
although we are analyzing five times as much data, the time
to build the database is still only 6.47 seconds, and the query
took 3.2 seconds.

For the 10-day window, the number of RDF triples
generated using Spark and written to HDFS was 19,469,132
and the resulting size of the graph was 541,804 vertices
and 861,476 edges. The total startup time, which includes
reading in the RDF files and building the database, took only
12.2 seconds, and the query took 3.74 seconds. As the size
of the window increases, we continue to capture both more
users and more connections between users.

The number of RDF triples generated in our 30-day
window was 54,990,937, which is slightly less than 2 million
triples per day. For our 30-day window, the number of RDF
triples we are processing is still about 10 times smaller
than the 600 million tweets per day for the full Twitter
firehose, so the capability to analyze even larger graphs is
still highly desirable. For the 30 day window we collected
some additional performance data, looking at the overhead
from loading data from HDFS or Lustre, and then looking at
the performance relative to Spark for running the community
detection portion of the workflow.

For the 30-day window, the total startup time was 17.63
seconds when loading the RDF files from HDFS, of which
5.44 seconds of this time was the RDF load time. We also
looked at the total startup overhead if instead we first copied
all the data files out of HDFS onto Lustre and collected these
into a single large file. In this case the total startup time
increased slightly to 18.72 seconds, of which 5.5 seconds
was the RDF load time.

The size of the network graph (1,422,267 vertices,
2,775,008 edges) increased in both the total number of users
and the number of connections. The time to run community
detection again only increased slightly, up to 5.54 seconds.
We then compared this time to the original Spark-only work-
flow where we ran the community detection in Spark using
GraphX within a single batch. For the Spark implementation
of community detection (Label Propagation), we are using
a more optimized version of this routine than is provided
in the Spark distribution. Our implementation includes op-
timizations made to the Spark PageRank algorithm but not
yet folded into the distributed version of LabelPropagation
provided with GraphX. We refer to the optimized version as
LabelPropagation2.

The time for running the community detection using
Spark is dominated by the time required to repartition and
then convert the UserKnows RDD (distributed edgelist) to
the GraphX Graph distribution; see Figure 8, lines 13 and
14. This repartitioning and graph construction took 520

Table I
RDF AND USER NETWORK GRAPH STATISTICS

Window | RDF Triples Vertices Edges Average Edges
per Vertex
24 hours 2,399,916 60,853 76,896 1.26
5 days 12,033,038 281,536 404,866 1.44
10 days 19,469,132 541,804 861,476 1.59
30 days 54,990,937 1,422,267 | 2,775,008 1.95

seconds for two million edges. This builds the VertexRDD
and EdgeRDD GraphX data structures used to represent and
operate on the graph. Once the graph was constructed, each
iteration of the Label Propagation algorithm only took 11
seconds, but the total runtime was 11.4 minutes, or 684
seconds. To run this component in CGE, the combined
time of loading the RDF and building the database (17.63
seconds) and the query time (5.54 seconds) is 23 seconds,
almost a 30x speedup.

For the network graphs generated using the smaller time
windows (24-hour period) it is reasonable to just have these
computations remain in Spark, but as was discussed earlier,
the smaller windows limit the possible connections found
between users. Using both CGE and Spark enables more
detailed analysis of the data over larger windows of time.

V. FUTURE PLANS

Apache Myriad is an open-source project that also enables
the co-existence of Apache Hadoop and Apache Mesos on
the same analytics platform. Myriad provides this ability by
running Hadoop YARN as a Mesos framework, and thereby
enables Hadoop workloads and other Mesos frameworks to
run side by side. Our plan is to investigate using Myriad in
place of the Cray-developed solution (which uses Marathon
to flex up YARN sub-clusters under Mesos).

Using Slurm’s Elastic Computing Cloud feature, while
moderately successful, did not provide the level of system
management integration that we initially hoped for. We
now believe that creating a Marathon framework capable
of performing the Aries setup required for CGE/DMAPP
would allow more precise control of system resources and
provide the ability to more effectively clean up error cases
that may arise when running CGE tasks.

We also plan to continue to develop a more general
HPC framework beyond the subset of components needed
to run CGE. This will entail bringing over more of the HPC
software stack running on our XC40 systems to the Athena
platform, such as the full Cray Compiler Environment (CCE)
and Cray MPI message passing library.

VI. CONCLUSION

In this paper, we described our early experiences running
mixed workloads across the Spark, CGE and Hadoop frame-
works on Cray’s Athena analytics platform. To accomplish

this we created the necessary interfaces for the different
resource managers to interoperate with Mesos. We then il-
lustrated how our solution provided an an efficient utilization
of resources using a sample workload. We also showed that
by providing a single system capable of running both a
traditional analytics (big data) and HPC workload we were
able to improve overall performance for this workflow, not
only improving time to solution, but enabling more detailed
analysis of the data over a longer time period.

ACKNOWLEDGMENT

The authors would like to thank Mike Ringenburg,
Richard Korry, Andy Kopser, Bill Sparks and Eric Lund
for taking time to review the paper and provide valuable
feedback. We would like to express our special thanks to Eric
Lund for helping with CGE integration with HDFS, having
this working in time for the paper, and also his work on the
Mesos/Slurm integration for launching CGE on the Athena
system. We would also like to thank Mike Hinchey for his
assistance with the social networking analytics workflow.

REFERENCES

[1] T. White, Hadoop: The Definitive Guide , 2nd ed.
O’ReillyMedia, Inc., October 2010.

[2] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,
B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed,
and E. Baldeschwieler, “Apache hadoop yarn: Yet another
resource negotiator,” in Proceedings of the 4th Annual
Symposium on Cloud Computing, ser. SOCC °13. New
York, NY, USA: ACM, 2013, pp. 5:1-5:16. [Online].
Available: http://doi.acm.org/10.1145/2523616.2523633

[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” in
Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing, ser. HotCloud’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 10-10. [Online]. Available:
http://dl.acm.org/citation.cfm\ ?id\=1863103.1863113

[4

—

B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica, “Mesos: A
platform for fine-grained resource sharing in the data
center,” in Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation, ser.
NSDI'11. Berkeley, CA, USA: USENIX Association, 2011,
pp- 295-308. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1972457.1972488

[5] J. Shafer, “The Hadoop distributed filesystem: Balancing
portability and performance,” in IEEE International Sym-

posium on Performance Analysis of Systems and Software
(ISPASS), March 2010.

[6

—_

J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in Proceedings of the
6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 10—
10. [Online]. Available: http://dl.acm.org/citation.cfm) ?id\
=1251254.1251264

[7] J. Sparks, H. Pritchard, and M. Dumler, “Cray framework for
hadoop for the cray XC30,” in Cray User Group Conference
(CUG ’14), Lugano, Switzerland, 2014.

[8] H. Ayyalasomayajula, “An Evaluation of the Spark
Programming Model For Big Data Analytics,” Master’s
thesis, University of Houston, 2015. [Online]. Available:
https://ub-ir.tdl.org/uh-ir/handle/10657/1130?show=full

[9] K. Maschhoff, R. Vesse, and J. Maltby, “Porting the Urika-GD
graph analytic database to the XC30/40 platform,” in Cray
User Group Conference (CUG ’15), Chicago, IL, 2015.

[10] T. Johnson, “Coarray C++,” in 7th International Conference
on PGAS Programming Models, Edinburgh, Scotland, 2013.

[11] M. Hinchey, “Implementing a social-network analytics pipe
using Spark on Urika-XA,” in Cray User Group Conference
(CUG ’15), Chicago, IL, 2015.

[12] Hadoop 2.7 Archival Storage, SSD & Memory.
[Online]. Available: https://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-hdfs/ArchivalStorage.html

[13] Twitterdj, 2016 (accessed April 8, 2016). [Online]. Available:
http://twitterdj.org

[14] Spark Lightning-fast cluster computing, 2016 (accessed April
8, 2016). [Online]. Available: http://spark.apache.org/docs/
latest/streaming-programming- guide.html

