
How to Automate and Not Manage under Rhine/Redwood

Paul Peltz Jr., Adam DeConinck, Daryl Grunau
High Performance Computing Division

Los Alamos National Laboratory
Los Alamos, NM, USA

Email: {peltz,ajdecon,dwg} at lanl.gov

Abstract—Los Alamos National Laboratory and Sandia
National Laboratory under the Alliance for Computing at
Extreme Scale (ACES) have partnered with Cray to deliver
Trinity, the Department of Energy’s next supercomputer on
the path to exascale. Trinity, which is an XC40, is an ambitious
system for a number of reasons, one of which is the deployment
of Cray’s new Rhine/Redwood (CLE 6.0/SMW 8.0) system
management stack. With this release came a much-needed
update to the system management stack to provide scalability
and a new philosophy on system management. However, this
update required LANL to update its own system management
philosophy, and presented a number of challenges in integrat-
ing the system into the larger computing infrastructure at Los
Alamos. This paper will discuss the work the LANL team
is doing to integrate Trinity, automate system management
with the new Rhine/Redwood stack, and combine LANL’s and
Cray’s new system management philosophy.

Keywords-system management; automation; Ansible; Cray;
XC40; Rhine/Redwood; CLE 6.0/SMW 8.0

I. WHAT IS RHINE/REDWOOD?

Rhine/Redwood (R/R) is the code name for Cray’s new
systems software stack, CLE 6.0/SMW 8.0. This release
provides a much-needed update to the system management
stack, and makes extensive changes to the tooling and overall
system management philosophy on Cray systems. The inclu-
sion of a new, more reproducible approach to image creation
and deployment, and the tight integration of Ansible as a
configuration management system, conforms more closely to
industry standards for system management than the previous
approach. However, while these changes eliminate many of
the issues with the old stack, the complexity of this new
system introduces a new set of challenges for the system
administrator.

This work has been authored by an employee of Los Alamos National
Security, LLC, operator of the Los Alamos National Laboratory under
Contract No. DE-AC52-06NA25396 with the U.S. Department of Energy.
The United States Government retains and the publisher, by accepting this
work for publication, acknowledges that the United States Government
retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or
reproduce this work, or allow others to do so for United States Government
purposes. Los Alamos National Laboratory strongly supports academic
freedom and a researcher?s right to publish; however, the Laboratory as
an institution does not endorse the viewpoint of a publication or guarantee
its technical correctness.
This paper is published under LA-UR-16-22395.

II. ACES/CRAY COLLABORATION

ACES and Cray have been collaborating on the CLE
6.0/SMW 8.0 software release while it was still in active
development and through several beta releases until the
release of UP00 in December 2015. This collaboration
is unprecedented for Cray and it has proven to be very
successful. As new releases of CLE 6.0/SMW 8.0 became
available, system administrators at LANL would install, test,
and give feedback directly to the developers. Through this
tightly coupled collaboration, Cray was able to deliver a
more refined and administrator friendly version of both the
CLE and the SMW management tools than what would have
otherwise been released. The rapid customer feedback cycle
enabled by the ACES/Cray collaboration uncovered a variety
of bugs and design issues, as well as producing several new
ideas which improved the eventual deployment on Trinity.
This collaboration also provided invaluable experience to
the system administrators at LANL, who would eventually
support Trinity in production. The extensive changes from
previous releases represent a daunting learning curve, and
the early exposure to new system management concepts and
tools allowed the administrators to learn the new system
and begin devising new ways to automate and manage the
system.

III. CLE 6.0/SMW 8.0 MANAGEMENT PHILOSOPHY

There are two important considerations administrators
should think about for a given system. Is the system repro-
ducible and is the management of the system automatable?
Much of the evaluation and feedback to Cray of the new
CLE 6.0/SMW 8.0 system directly addressed these issues.
If there was a direct conflict with what is considered a best
practice in system management, the LANL administrators
would file a request for enhancement (RFE) to address the
issue. However, not all of these processes can be automated,
which is by design to allow certain aspects of the system to
function in case of a failure or if there is planned downtime.
Much of the initial work done by the LANL administrators
was learning Cray’s new system management philosophy
and integrating that into LANL’s system management phi-
losophy so that they could co-exist and leverage each other’s
abilities. Sometimes these philosophies come into direct
conflict and workarounds are in place to deal with these until

the larger issue can be resolved. This section details both
system management philosophies and what LANL has done
to implement them to create a reproducible and automatable
system.

A. Cray Philosophy

Under CLE 6.0 there is no longer a shared root that nodes
reference and therefore also no specializations for node
classes or cnames. CLE 6.0 has a new system for managing
images now which Cray calls the Image Management and
Provisioning System (IMPS). IMPS now uses generic image
types for classes of nodes (login, service, compute, and
eLogin) and all of these images are built from a set of
common SLES and Cray RPM repositories. This helps
to provide a more homogenous environment between the
external and internal system. In order to specialize these
generic node images, Cray uses Ansible to customize the
image post boot for its intended purpose. For example, if
a DVS node boots the generic service image, Ansible runs
on that node and configures it so that it will function as
a DVS node. Another service node could also boot that
same service image and be configured to be an LNET router,
depending upon its Ansible configuration. The way in which
Ansible determines what class a node belongs to in order to
specialize it is through what Cray calls the config set. This
is the source of truth for the system and defines everything
from IP addresses to node classes, e.g. c2-3c0s0n2 is an
LNET router, for the entire system. The Cray Ansible plays
are specific for each node class and reference the config
set information to generate configuration files, start services,
and specialize the end nodes. In order to do this Cray has
an Ansible play area that is run at boot, hereby referred
to as Cray Ansible (CA). There are multiple Ansible areas
that Cray and the administrators utilize, and differentiating
them will be important later. The CA playbook runs twice
during a nodes boot up. Once at the pre-init and then the
second run of Ansible is after the completion of systemd’s
init (multi-user). See Figure 1.

Figure 1. Ansible Play Ordering

Within each run of CA there is also the ability to order
the plays so that they run in a specific order to fulfill any

dependencies. Ordering is important and there are specific
variables that can be set to define that order. While it is
possible to modify the plays provided by Cray, this is not
recommended. These plays are provided by RPMs and will
be overwritten whenever new images are created. In order
to address this issue, Cray has provided a hook into the CA
area. This is what will be referred to as the Site Ansible (SA)
area. This area allows a site to insert their own plays into
Cray’s playbook which runs at boot. This way it is possible
to modify files, services, and the state of the machine at
boot to ensure it boots into a known good configuration. The
SA plays are coalesced with the CA plays to form one large
playbook. Cray’s /etc/init.d/cray-ansible
python script, among other things, identifies all
of the plays defined in /etc/ansible and
/etc/opt/cray/config/current/ansible
and builds this large playbook which is placed into
/etc/ansible/site.yaml. The play ordering is
explicitly defined in this file and Ansible executes each of
these plays in order when executed against this playbook.
This is an important point to remember, because if the
ordering is incorrect a configuration file could be modified
after a service is already started by another play earlier
in the playbook. While it is possible to restart the service
later, this is wasteful in terms of wasted time during boot
and also there could be negative consequences to restarting
the service later. One such consequence the administrators
have seen is that restarting the rsyslogd service caused
apsys to be stopped as well and not restarted. The SA
area can contain any number of additional Ansible plays
to further customize nodes which allows the administrator
to specialize a class, group, or specific node to the site’s
specifications.

The config set and SA areas reside on the SMW in
/var/opt/cray/imps/config/sets/p0. The con-
fig set data resides in p0/config and the SA resides in
p0/ansible. Cray then exports the p0 config set directory
read-only via NFS to both of the Tier 1 servers, boot and sdb.
The Tier 1 servers utilizes the 9p network file system and
automount to distribute the config set read-only to the Tier
2 servers. This system is known by the IMPS Distribution
Service (IDS). IMPS is the implementation of the new
system management philosophy by Cray and all of the tools
associated with it. The mount location on the end node dif-
fers from the SMW, therefore on an end node the config set
data will reside in /etc/opt/cray/config/current.
The number of Tier 2 servers required is dependent on the
scale of the system. Having too few Tier 2 nodes can lead to
config set redistribution issues which will become apparent
during system boots when the end nodes fail to mount the
9p file system and the CA run fails. Cray has guidelines on
the required number of Tier 2 nodes and is actively working
on minimizing the number of those nodes that are required.

As can be seen in Figure 2, Cray utilizes a multi tiered

Figure 2. Scalable Services Diagram

approach to provide scalability of the configuration data.
The use of the 9p file system allows for better caching and
autofs provides failover in case one of the tiered nodes
fail.

Image creation and management is another new feature
of CLE 6.0. Images are built from recipes, recipes are built
from packages and package collections, and the packages
and package collections are provided by RPM repositories.
This process builds generic images for the system to boot as
mentioned previously. Images are then mapped to individual
nodes by the Node Image Mapping Service (NIMS). This is
diagrammed below in Figure 3.

Figure 3. Node Images and Recipes

For most sites, external login nodes have been a source
of frustration among admins and users when administering
the Cray system. Choosing whether or not to use Bright
or install from a SLES DVD and then manage it through
a configuration management system was a decision that
every site had to make. One of the problems with this
system was that managing the Programming Environment
(PE) and the external login node’s software and keeping
them identical between the internal system and external was
a continuous challenge. Now under CLE 6.0, Cray is instead
using OpenStack to manage the newly named eLogin nodes.
Images are built from recipes on the SMW and reference
the same repos that the other images reference. See Figure

4. This change in the provisioning process of the eLogin
nodes goes a long way to solve the problem of package
and package version skew between the internal and external
systems. Once the eLogin image is built on the SMW, it is
then exported to Glance, which is an OpenStack component.
Glance runs on the Cray System Management Software
(CSMS) node and OpenStack then distributes that image to
be written to the eLogin node’s disk and once the eLogin
node is booted, use Ansible to customize and configure the
node. Ansible references the same config set that the internal
system does. The PE is pushed from the SMW to the CSMS
node which guarantees it to be the same on the internal Cray
system. The PE is then copied over to the eLogin node from
the CSMS box while booting the eLogin node. Utilizing
the same config set and PE provides consistency across the
entire platform.

Figure 4. eLogin Data Movement

Cray’s approach at deploying this new system manage-
ment software philosophy was originally from the desire to
no longer use Cray’s unique shared root solution and move to
leveraging Linux and more open source tools. In many ways
they have done this, but most of these features are obfuscated
behind Cray’s helper commands. This isn’t necessarily a bad
thing, but it does add some confusion at times understanding
what the Cray commands are doing. Understanding comes
with time and continuous use of the new system.

B. LANL Philosophy

Over the past year the LANL administrators have spent
a lot of time working with the new CLE 6.0/SMW 8.0
software. Much of that time was spent fixing the system once
it was broken after attempting to influence the behavior of
it somehow. Over time there have been a number of lessons
learned, and what the LANL administrators are considering
best practices which are shared here.

1) Use of the Cray Ansible Area: By default the
cray-ansible script is only run at boot time to do an
initial configuration and start all of the services that the
node requires to provide its intended functionality. In order
to maintain consistency across the system it is necessary
to periodically run at least a subset of the Cray and Site

plays to avoid configuration skew and ensure services are
still running. Presently there is no way to address this from
a Cray perspective other than setting a cron job to run the
cray-ansible script at a specified interval. This issue could
be addressed by selecting a specific set of plays to run on
a regular basis, especially the following: firewall, work load
manager configs, syslog, ssh, and simple sync plays.

2) When to use the Site Ansible Area: Initially the ad-
ministrators pursued placing all of the site created plays
into the SA area to leverage Cray’s Ansible run at startup
to configure the system, but there are a few considerations
to make before deciding whether or not a task should be
implemented within the SA area due to issues that were
discovered by implementing this idea. Over time it was
realized that over using the SA area was not desirable.
One issue that was immediately noticed is that a failure
in the Ansible playbook within the SA area could stop the
boot of the machine. An end node would not return that it
succeeded and the xtbootsys process would sit in wait
until the timeout value was reached. The reason this is such a
problem, especially if Ansible fails in the first Ansible phase,
is because those logs are not written back to the SMW. The
phase 1 Ansible play logs are only available on the end node.
It is possible if the end node is far enough into the Ansible
playbook to be configured for remote login to the node, then
the Ansible playbook could be replayed to fix the failure,
but this is not always possible. xtcon could also be used
to log in to the node over the console, but this isn’t always
possible either because there could be a security policy that
no password logins are allowed on an end node, or for a
variety of other reasons. If this is the case where there is no
mechanism for remote access, it would be required to do a
debug boot session to monitor each stage of the boot process.
One other issue is that every play is processed by Ansible
during both the pre-init and multi-user Ansible runs. A large
number of plays extends the boot time for a given system.
To address these issues, the administrators have implemented
their own local CM (LCM) area on a subset of nodes that
require it. The LANL administrators are using Ansible as
well to handle this, but isn’t strictly necessary.

The LCM area is only deployed on a small set of nodes
currently to address issues with the need for management of
files on only one node. The SMW is a good example of this
because even though the CA plays can be run on this host,
there is no need to use the SA area for this. As mentioned
previously these plays will be evaluated by Ansible on every
node in the system during boot which lengthens the boot
time. Therefore, all of the files that needed to be under
configuration management were done so through the LCM
area. This gives the administrator better fine grained control
of what files to manage and the frequency in which they
will need to be verified or changes pushed to the system.
The state of the SMW and the configuration files on it need
to be in a reproducible state in case of a system failure or

user error. The LCM provides this ability without being a
detriment to the boot time due to placement within the SA
area.

With the previous generation of system management
software 5.x (Pearl), an administrator could place a file in
the shared root directory and immediately affect the entire
system. There are pros and cons to this approach, but it
certainly made it easy to affect a non-invasive change across
the entire system. This was certainly beneficial when doing
lightweight but important tasks such as account manage-
ment. Previously this could be implemented by running a
script on the boot node that would drop the appropriate files
into the shared root space. This is no longer the case under
CLE 6.0. In order to affect a change on the end nodes it
is necessary to run a script or something equivalent to an
Ansible play on each end node to accomplish this task.
For instance, if the password/group/shadow files need to
be updated on and end node there will have to be some
mechanism to accomplish this. The LANL administrators
implemented an Ansible play that runs periodically on the
internal login nodes to keep the account files in sync. For
the compute nodes however this is more of a challenge. An
hourly play or script could be run to accomplish this as
well, but this causes extra jitter on the compute node which
could affect job performance. To avoid this issue we have
implemented a resource manager (RM) prologue task that
calls a local Ansible play to sync these files. This causes
a slight delay (∼3s) in job launches but is more desirable
than job performance degradation. Therefore, considerations
need to be made on when a file needs to be distributed
to the system frequently. If it is a config file that needs
to be distributed widely to the end nodes, consider lever-
aging the 9p file system. The /var/opt/cray/imps
directory is redistributed via IDS and mounted at
/var/opt/cray/imps-distribution on the end
nodes. For instance, this is where LANL administrators dis-
tribute accounting files and other files that change frequently
so that the LCM system can reference those to put them in
place. The way this is accomplished is the SMW has an
LCM area that generates the files and then places them into
the directory structure that IDS utilizes.

There are some considerations to make before deciding
how to distribute files throughout the system, and this is
mostly applicable to compute nodes, because an hourly play
on service nodes is not as disruptive to users. If it is a
file that is updated regularly (more often than a typical
DST/PM cycle) then it should be distributed through the 9p
file system. However if it cannot be referenced/included by
another file and has to overwrite a file in the root file system
then a play may need to be written to accommodate this task
which would also have to be included in the RM prologue.
Also consider a soft link to the file in 9p space if the
application supports this as this would remove the necessity
of the play. This is more difficult if there is a service that

needs to be restarted/reloaded based on a change to the
file. In this case it will likely require an action in the RM
prologue to accomplish this task. Not everything will follow
these guidelines however and careful consideration should
be made when deciding on an implementation strategy.

3) Using Images and Recipes Effectively: An administra-
tor can clone and modify site specific recipes based off of
Cray provided default recipes, and then add new package
collections, and repos. This gives the site the ability to take
a preset Cray recipe and extend it to fulfill the needs of the
site. The LANL administrators are using package collections
that match the recipe/image names to make things more
transparent. See Figure 5.

Figure 5. Naming Schemes

This makes it more obvious when inspecting a recipe to
see what has been extended to differentiate between a site
modification and what Cray includes in the recipe. Use of the
package collection is advised rather than adding packages
directly to recipes. It is easy for a single package to get lost
in the long listing of packages that some recipes have. There
are no restrictions on the number of site generated package
collections and it makes sense to create another package
collection if there are multiple recipes sharing a specific set
of packages. For instance, the work load manager packages.
If they do not serve a common purpose it is recommended to
place them in the recipe’s corresponding package collection.
For instance, add the package X to the service site package
collection for use in the service site recipe. It is also possible
to include a package collection within a package collection,
but this isn’t obvious by inspecting the recipe. You would
also have to look through the package collections to find
where it was included and therefore not recommended.

Another nice feature of recipes and package collections
is that it provides a mechanism for change tracking. There
are fields for “rationale” associated with each collection and
package. This will allow an administrator to associate a
change with a ticket number to more easily trace back to
why a particular package was added.

"compute_lanl": {
"description": "Compute packages",
"package_collections": {},
"packages": {

"bash-completion": {

"rationale": "RT#104314"
},
"vtune": {

"rationale": "RT#102090"
}}

In the future it may be desirable to clone and customize
more images for various node types. There may be the case
where a node needs to have more memory available to it
and it would be necessary to remove the excess packages
from the recipe to reduce its memory footprint. Currently,
each service node runs an approximately 1.5G image that
lives in memory and it may be possible to reclaim some of
that memory.

IV. CONFIGURATION MANAGEMENT CHALLENGES

A. Image Management Challenges

The most obvious change in CLE 6.0/SMW 8.0 is the
introduction of Cray’s new Image Management and Provi-
sioning System (IMPS), which eliminates the shared root
environment that was present in previous versions. While
the shared root provided a convenient mechanism for making
changes across all of the service nodes on a large, running
system, configuration management was difficult and it was
nearly impossible to test new software or perform staged
upgrades on a portion of the system. All service nodes ran
the same essential Linux image, with limited differentiation
possible only in /etc (where a complex system of symbolic
links provided a mechanism to specialize different nodes),
and in /var (where each service node had its own dedicated
storage). Under CLE 6.0, each node boots into a RAM-based
root filesystem which is not shared with any other node.
Changes can be made live, allowing testing of alternative
configurations and even package installs using zypper; but
these changes must be reproduced in the original image to be
persistent across reboots. While this is convenient, it does
lend to the possibility of configuration skew across what
would normally be a homogenous system. Live changes
to images also risks the same kind of non-reproducible
system administration which was risky under the shared root
environment.

One of the challenges the administrators encountered early
on was how to manage the contents of an image that is
created by Cray’s image creation tools. The easy process for
this is to create an image and then modify the files in the
newly created image root before packaging the image up for
use by the boot process. There are commands to give you the
controls to do this, but this can become burdensome every
time an image is created and requires manual intervention
in the image creation process. However, each subsequent
image build creates a new image root and all of the changes
to the previous image root are not transferred to the new
image root location. There is also a tool that Cray uses,
named imgbuilder, which will do the complete image

build, packaging, and NIMS mapping with one command
and this is the tool that Cray uses in its patch sets when
an image build is required after an update. Fortunately Cray
has provided hooks within the recipe that the image creation
commands execute to allow the administrator to copy in
files and execute commands after the image is created. For
example:

"example_image_recipe": {
"package_collections": {},
"packages": {},
"postbuild_copy": [

"/home/crayadm/post_conf.sh",
"/home/crayadm/post_conf_files/"],

"postbuild_chroot": [
"${IMPS_POSTBUILD_FILES}/post_conf.sh],

"repositories": {}
},

This will copy the files in from the location specified and
execute a script to do some actions to customize the image
before it is packaged. One thing to note about this is that it is
executing the script in a chroot environment, so if access to
/dev or /proc would not be possible. To address this the
administrators have copied the script in the image and then
the script is set to run at reboot to configure the system.
This process is all possible through the postbuild actions.
This system will allow the site to fully customize the image,
but only after the base image has been created. The LANL
administrators also have a need to be able to pre-seed an
image with specific files. This feature is under development
and once it is implemented, it will allow the administrators
to achieve full prescription of an image.

B. Fine Grained Control of the Ansible Playbook

One other challenge the administrators have dealt with
is how to play nicely with Cray’s Ansible plays. This was
briefly mentioned in the Philosophy section, but it deserves
more detail here. Cray has provided the ability to have
mechanisms to control the CA playbook. As shown in Figure
1, there is an ordering to the Ansible playbook and the site
is able to use the same variables to control the order that
Cray uses. There are three run stages within each phase of
the two Cray Ansible phases (pre-init and post-init). When
the cray-ansible script evaluates these plays and orders
them it will look at the vars section and see if there are
any directives there for ordering. Below are the vars that are
available to use to influence the playbook ordering.

• run early – a set of plays, first run stage (Boolean)
• run late – a set of plays, last run stage (Boolean)
• run after – run after specific play (Multival)
• run before – run before specific play (Multival)
If no run_ variable is specified then the play is run

between early and late in the middle stage. One other
important note is that dependencies take precedence over

run_early and run_late variables. The early and late
variables are boolean so they only take true or false. The
after and before variables accept a multival list of plays
so there can be multiple dependencies. For example, if an
administrator may want to put in additional rsyslog rules
to forward to a remote server, but Cray also has in influence
on the rsyslog configuration files as well and manages
starting the service in the CA play. To leverage this and avoid
another rsyslog restart after their play an administrator
could do the following.

- hosts: localhost
vars:
run_early: true
run_after:
- persistent_data
run_before:
- llm

roles:
- syslog

This would ensure the play is run in the first stage, but
after persistent_data and before the llm play. The
persistent_data play is responsible for mounting per-
sistent storage space from the boot RAID and the llm play
is Cray’s Lightweight Logging Manager which influences
and controls the rsyslog service.

In order to control which of the two phases, pre- or post-
init, the Ansible play can have a conditional to evaluate
whether or not the system is in the first phase or not and
execute an action. See the example below.

Run only when not in init
- include: example.yaml
when: ansible_local.cray_system is

defined and not
ansible_local.cray_system.in_init

This will run the example play if the system
is not in init (second phase) and if “not” is left
out it will only run at pre-init (first phase). If the
ansible_local.cray_system.in_init variable is
not included to evaluate, the play will be run in both phases.
This in_init variable is one of the most important to
include in all of the SA plays that are developed by the
administrators. Here are some other handy variables to use
for conditionals.

• All compute nodes
– ansible local.cray system.platform == “compute”

• All service nodes

– ansible local.cray system.platform == “service”
• All DataWarp nodes

– ‘nvme0n1’ in ansible devices
• All internal login nodes

– ansible local.cray system.hostid in
cray login.settings.login nodes.data.members

• All eLogin nodes
– ansible local.cray system elogin is defined

• The SDB node(s)
– ‘sdb’ in ansible local.cray system.roles

• The SMW node(s)
– ‘smw’ in ansible local.cray system.roles

• The boot node(s)
– ‘boot’ in ansible local.cray system.roles

With these conditionals in place, a play can be isolated to
a single node, a group of nodes, or any combination thereof.

C. Simple Sync vs. Configuration Management

Simple Sync is a play that Cray provides to manage files
in a similar process in which they were managed under the
previous shared root system. Within the config set area there
exists the p0/files/roles/simple_sync/ directory.
Underneath that is the familiar subdirectories of classes,
cnames, and hostnames. Classes can contain the following:
common, compute, sdb, and service. Common will place the
files on every node, and the others will place the files for
those particular groups of nodes. The cnames area contains
the cname of a specific node only, e.g. c0-0c0s10n0, but
cname supersets do not work, e.g. c0-0c0. One thing to
note about Simple Sync is that Cray also places files within
this area as well to be distributed onto the system.

One issue with Simple Sync is that it starts in the second
stage of the Ansible run. Therefore it is not always the best
solution for distributing files if there are services that depend
upon them. With the release of CLE 6.0 UP01, the Simple
Sync play is supposed to be expanded and offer more fine
grain control of the timing of the placement of files which
should address some of the concerns the administrators have
with this play as it is currently deployed.

D. eLogin Challenges

One of the issues with eLogin currently is the process to
update the configurations on those systems. The issue is that
it is not automatable because it involves running commands
to push and pull data on different hosts to distribute the data
around the system. The current workflow to push a change
made on the SMW to the config set is as follows.

smw:# cfgset push -d csms p0
smw:# ssh csms
csms:# ssh cdl
cdl:# /etc/opt/cray/pre-pivot.d/20ConfigSync.sh
cdl:# ansible-playbook /etc/ansible/site.yaml

This can be addressed slightly by scripting part of this
process on the CSMS box.

#!/bin/bash

ssh -t root@$1 "/etc/opt/cray/pre-pivot.d/20
ConfigSync.sh && cd /etc/ansible &&
ansible-playbook site.yaml"

Cray implemented this workflow by design in order to
prevent any dependencies on system availability of any of
the components. This allows either the CSMS or SMW to
be down due to a system failure or due to a software update.
While this is convenient the implementation of this leaves
much to be desired. The config set, programming environ-
ment, and images must all be pushed via a Cray provided
command to the CSMS. This entire process is automated
within the internal Cray system, but the eLogins are not
handled in this way. This non-automatable implementation
makes it more difficult to manage because the administrator
now has to remember extra steps in order to affect changes
onto the eLogin nodes.

V. REVISION CONTROL OF SYSTEM CONFIGURATION

Large HPC systems usually remain in operation over a
period of several years, during which the system’s software
stack, configuration, and environment can undergo extensive
changes. For example, the ACES Cielo system at LANL
has experienced such changes as OS upgrades; changing
the parallel filesystem from Panasas to Lustre; renumbering
of network interfaces due to changes in the site network-
ing infrastructure; and hundreds of smaller configuration
changes in response to day-to-day operations. Each of these
changes must be tracked in such a fashion that they can
be rolled back in response to unexpected problems, as well
as maintaining a coherent history of the system that can
be used in such situations as interpreting historical log files
or tracking security-significant changes. A good mechanism
for revision control of configuration files therefore becomes
essential to long-term management of the HPC system.

The LANL administrator’s objectives for a revision con-
trol mechanism include the following capabilities:

1) Keep a record of all changes to configuration files
and management scripts, from initial installation to
decommissioning

2) Attach commentary to each set of changes (e.g., “re-
configured network settings according to ticket 912“)

3) Associate each change with the particular person
4) View the differences between two revisions of the

system configuration
5) Roll the configuration back to any previous revision
6) Share common files and scripts between multiple HPC

systems
This section will describe the built-in mechanisms pro-

vided by CLE 6.0 for revision control of configuration files,
the changes and additions that have been made to this system

in order to satisfy LANL’s objectives, and areas in which the
implemented solutions still needs improvement.

A. Insufficiency of Built-In Tools for Change Management

CLE 6.0 provides some built-in mechanisms for change
management, but these mechanisms fall short of the admin-
istrator’s objectives for a revision control system. In most
instances, the built-in change management tools take one
of two forms: an automatically-generated changelog, and
creation of back-up files.

In CLE 6.0, most changes to configuration files are made
using tools such as cfgset, recipe, and pkgcoll.
Some of these tools, such as cfgset and recipe, main-
tain some kind of change history within the data they
manage; others, such as pkgcoll, make changes without
recording any kind of log.

For example, each config set managed by cfgset in-
cludes a changelog directory. The files in this directory
are named according to the date and time that cfgset was
run, and contain a record of each setting which was changed.
Changing the MTU on a network interface might generate
lines in a changelog file which resemble:

cray_net.settings.hosts.data.<hostname>
.interfaces.eth0.mtu:

previous: ’1500’
current: ’9000’

cfgset also creates auto-save copies of the config sets
it manipulates, so that the config sets directory will typi-
cally include several subdirectories with names resembling
p0-autosave-2016-01-01T12:00. It also allows the
administrator to clone an existing config set, in order to
create a backup of the live config set before a disruptive
operation such as an OS upgrade.

While automated changelogs and backups are potentially
useful, these mechanisms are not truly a revision control
solution. Where complete, changelogs do provide a history
of changes to the system, but they do not provide a mech-
anism for attaching comments or tracking who made the
change. In addition, these change logs cannot be used to
back out undesirable changes, except by reading the value
of the previous settings and reverting the changes manually.
The backup files do provide a rollback mechanism, but
they do not provide a straightforward way to “diff” these
changes, and each subsequent copy occupies as much disk
space as the original, limiting how much of the history
can be made available at any given time. Perusal through
each backed up config set directory is far from ideal and
tracking which changes are made in each particular backup
is overly cumbersome. There is also no mechanism to share
configuration files and scripts between systems, except for
manually copying the files from one system to another and
editing them in place.

B. Revision control implementation

As the built-in tools were insufficient for the LANL
administrator’s needs, a new design was embarked upon to
provide a revision control mechanism for the CLE 6.0 sys-
tems, based on similar requirements for other HPC systems
managed at LANL. Currently, the administrator’s standard
systems management scheme makes use of a dedicated
configuration management server (“CM server”) which sits
outside the HPC system and acts as the single “source
of truth” for one or more systems. The CM server stores
a collection of scripts and configuration files referred to
as the “product area” for each HPC system, which fully
describe the system’s configuration. The product area is
under revision control using an industry-standard source
code management system such as RCS or Subversion, and
provided to the HPC system read-only over the network,
typically using rsync as a transport.

CLE 6.0 required an adjustment to the current revision
control scheme in two important respects. First, because
certain tools such as cfgset and recipe must be run
on the SMW to generate configuration files, the SMW must
have read-write access to the source repository. Second,
because some configuration files such as image recipes and
package collections are stored separately from the config set,
it is necessary to use multiple check-outs of the repository
from the CM server.

Figure 6. Configuration files and scripts are stored in a remote code
repository on the configuration management server. Subdirectories of this
repository are checked out on the SMW, replacing the original configuration
directories.

A diagram of the revision control scheme on Trinity
is shown in Figure 6. After the initial install of a new
CLE 6.0 system, the administrators imported the config
set, image recipe, and package collection directories into a
source code repository on the CM server. Then, on the SMW,

each of the configuration directories were replaced with a
remote check-out of the corresponding directory in the CM
server’s repository. An hourly cron job on the SMW was set
up to periodically update the local copies of configuration
directories from the CM server, and changes made on the
SMW can be committed back to the CM server repository to
update its state. For Trinity, Subversion is what was chosen
as the revision control system, with remote checkouts being
performed via HTTPS. However, this general scheme could
easily be adapted to other revision control systems which
support remote check-outs, such as Git and Mercurial.

At this point, the built-in management tools cfgset,
pkgcoll, and recipe behave normally. They can make
changes to the files in their area, and create their own
changelogs and backups, without any awareness of or in-
terference from the revision control software. The system
administrator who makes the change must simply remember
to commit their changes back to the repository to ensure it
is tracked.

A major advantage to this scheme is that the system’s
configuration can be kept in sync with multiple copies
off of the SMW, whether on the CM server or on other
remote checkouts. This allows the administrator to make
some types of changes in a context where they are not
immediately presented to the rest of the system, avoiding
the situation where a change is made “live” by accident.
This allows restriction of some types of change to groups
of administrators with different allowed levels of access.
For example, LANL has a dedicated team for managing
workload management and scheduling configuration; this
arrangement allows permissions to be given to them to ma-
nipulate the workload manager’s configuration files, without
necessarily giving them administrative access on the HPC
system itself.

A further advantage of this scheme is that the same source
repository can be used by multiple Cray systems to share
common configuration. While each system’s “product area”
must necessarily be customized to that system, site-local
customizations such as Ansible playbooks and the addresses
of external resources can be shared directly rather than
having to be updated separately for each system. This feature
has not yet been implemented in production, as there are
currently not multiple CLE 6.0 systems on the same internal
network, this ability could be utilized in the future.

C. Challenges for our approach

The use of an industry-standard revision control system
to control LANL’s CLE 6.0 systems allows the majority of
objectives to be met quite easily. Revision Control systems
keep a record of each change to the configuration files
and scripts, including commit comments by the person who
made the change; allows easy comparisons of revisions;
makes it possible to roll back to previous versions; and
potentially allows the sharing of the CM server repository

with multiple remote SMWs. However, several issues were
encountered implementing this initially, some of which have
been addressed.

1) File Ownership and Permissions Within the Config Set:
One of the first problems encountered was with respect to
file ownership and permissions. Because they were designed
for software development, none of the industry-standard
revision control systems there were evaluated preserve own-
ership or permissions information. This is fine as long as
the the configuration management system (i.e., Ansible)
enforces these attributes when the configuration is applied
to the system. However, it was discovered that several
Cray-provided Ansible plays assume that the ownership and
permissions of files within the config set will match their
desired attributes when copied into place on the system.
In several places, the Ansible plays will simply rsync a
directory of files from the config set to its final location with-
out checking any of their metadata. This led to immediate
problems when the original config set directory was replaced
on the SMW with a Subversion checkout, and attempted to
boot the system, as several services failed to start because the
files copied from the config set had the wrong permissions.

The current solution to this problem is to keep a list of
files in the config set which are “sensitive” to permissions is-
sues, and have the hourly “svn update” cron job enforce their
ownership and permissions to prevent accidental changes.
This solution works, but is potentially brittle as the list of
files may change with new updates, and it needs to check
the files in each of several possible config sets. Another
possible option to explore is to use the “propset” option
to Subversion which can enforce user/group/permissions on
a given file. The moral equivalent could be used for other
revision control systems.

2) Change Management Challenges on the SMW: One
of the objectives for the implementation of revision control
was to associate each change with a particular person. This
is relatively easy to do with respect to changes made from
the CM server, as Subversion includes the name of the
committer in its logs. However, the Subversion checkout on
the SMW must be owned by root for the Cray tools to work
correctly, and all changes made from the SMW (such as
with the cfgset tool) are made as root. This makes it
impossible to tell with certainty who made a given change
that originated on the SMW.

In addition, changes made on the SMW can immediately
take effect on the larger system, whether they are committed
to the repository or not. This has led to situations where a
file is changed in the config set from the SMW to address
some urgent issue, and then not committed to the repository
for hours or days. At that point, the reason for the change
might not be as immediately clear, making it difficult to
write a good commit message.

For now, part of the commit process is to include the
username of the committer in the commit message of all

changes from the SMW. A “nag script” runs periodically on
the SMW and reports the presence of un-committed changes
via e-mail to the team. In the future, “wrapper scripts” for
the Cray tools may be explored which would prompt the
user to perform an svn commit as soon as the Cray tool
exits.

3) Requirement That Certain Changes be Made on the
SMW: Currently Cray does not support running tools such
as cfgset from a different host than the SMW. This
breaks the administrator’s usual workflow, which on other
types of system requires that all changes be made from
the CM server rather than being made “live” on the actual
system. This is an important workflow because it prevents
“in-progress” changes from accidentally taking effect on the
running system. Many files can be edited without the use
of these tools, allowing those changes to be made from the
CM server; but cfgset performs several useful validations
on this data, as well as auto-generating other files from
user-supplied config data. However, it would be ideal if the
changes would be prepared on the CM server in preparation
for implementation. A solution to this issue is still being
explored.

VI. PROGRAMMING ENVIRONMENT MANAGEMENT

The elimination of the shared root under CLE 6.0 brings
its own set of challenges to Programming Environment
(PE) management. Consider the fact that each node’s root
filesystem is now RAM-based and the PE is pushing 50GB
these days. Cray’s legacy stack afforded a single PE release
to be projected to back-end nodes via Data Virtualization
Services (DVS) as an integral part of its shared root. Clearly
it would be infeasible now to deliver over the wire a RAM-
root, including a full PE revision, to every back-end node
of the machine! CLE 6.0 rises to this challenge by factoring
out the heavy-weight PE and projecting it to back-end nodes
in traditional fashion.

CLE 6.0’s PE management philosophy falls right in line
with how it oversees its various other components. In fact the
PE can simply be regarded as being just another specialized
image type, though no node will actually boot it. CLE 6.0
also bakes more flexibility into what appears holistically on
the back-end by permitting the administrator to bind any pre-
built PE collection to that node’s software stack. A nicety
of this scheme is that the PE may be modified, or even built
from scratch, and then {re-}bound without the necessity of
taking the mainframe down. However to affect these changes
on the system the PE needs to be “pushed” to the boot node
and then a fairly heavy-weighted Anisbile play needs to be
run on every node that has the PE mounted. Because of the
impact this would have on running jobs, it would not be
advisable to run on a system with running jobs. In order
to address this issue, the site would need to implement an
Ansible play that would be run by the resource manager’s
job prologue or epilogue to do the PE update. Missing here,

however, is the opportunity to automate any fine-grained
modification to the PE that is routinely performed by a
CA/SA play at boot time; unfortunately such an alteration
must still be made by hand. In order to address this issue,
the administrators are using an LCM area to manage files
within the PE image on the SMW that need to be under CM
control.

Gone too is the notion of what static software versions
comprise the PE. Cray’s legacy mind set is to have sites nuke
and pave PEs from one release to another. This, however,
never works in practice as user requirements commonly
demand off-rev versions of software. CLE 6.0 now makes
it possible for each customer to tailor PE releases to the
potpourri of software variants necessary to support its user
base. And best of all: CLE 6.0 utilizes common RPM/Zypper
repositories to build all of its image types so there need no
longer be stack disparity between what runs on the main-
frame and disk-full externals such as eLogin/CDL nodes.

The remaining cost associated with CLE 6.0’s image
schema that needs to be emphasized is that of disk bloat.
The size of the system’s boot RAID has historically been
a limitation on Cray systems, leading to close scrutiny of
all installed software - especially that of the PE. While the
Trinity system does include the largest boot RAID device the
administrators have seen to date, the variety of deployment
images and flexibility in the PE management process will
mandate relentless assessment of the disk space on this
storage controller.

Adding or removing non-Cray software within the PE
image can be a challenge too. For instance, installing the
Intel Parallel Studio XE package requires some additional
installation steps because the image must be chroot’d
into. The installer requires that dev and proc be mounted.
These can be mounted into the chroot’d image by the
following commands.

mount -t proc none $PE_LOCATION/proc
mount -o bind /dev $PE_LOCATION/dev
chroot $PE_LOCATION

Now it will be possible to install other third party tools
into the PE image if proc or dev are required. Another
issue that is still under investigation is the Intel Parallel
Studio will only allow for one version to be installed at a
time. If it detects the presence of a previous version it will
uninstall the older version and replace it. This is undesirable
for sites that want to provide multiple versions of releases
for its users.

VII. UPDATE TESTING AND ROLLING UPGRADES

With the previous versions of Cray’s system management
software, almost all changes required the Cray back-end
system to be down. The debugging and testing of the new
changes lengthen the downtime of a system. 6.0/8.0 gives
the administrators the ability to now test patches, field

notices, and configurations changes while the system is in
a production mode without affecting users. The new image
management and deployment system allows administrators
to build images and only deploy them to a small set of nodes
for testing purposes. This ability will reduce the amount of
time required for dedicated system time (DST)/preventative
maintenance (PM). Future versions of 6.0/8.0 also promise
to provide support for rolling updates so that after a user job
completes it will reboot the nodes within the allocation into
the new image. There are exceptions to this update process
of course, including if the updates require firmware, BIOS
changes to the system, or Aries driver updates. Also, the
testing of service node images will most likely be difficult,
because most of the service nodes are actively in use on
the system. An administrator could test the service image
on a spare service node, but it is not a thorough test though
because that node will not be providing the services that
may need to be tested because it will be a generic image
that is not configured for a specific service.

Even if the rolling updates are not being utilized by a
site, the ability to prepare a system for an update is made
significantly easier because of the new IMPS system. One
thing to note that the LANL administrators have learned
is not to map the new images using NIMS that are built
ahead of time. The issue with this is that if a node is
rebooted for some reason the node will boot with the newer
image. This can lead to major issues, especially within
service nodes. Another important point about testing updates
is that configuration set mapping is also definable within
NIMS. So not only can a new image be tested, but also
a new configuration set. Within the configuration set the
administrator can test new config changes (p0/config), the
SA area (p0/ansible), and the files tree for simple sync
(p0/files). This will allow testing of the major components
of an upgrade on a test node to validate changes.

Staged Upgrades is another new feature Cray is debuting
with 6.0/8.0. This allows the administrator to do an upgrade
(UP01->UP02) while the system is still up. Cray is able to
do this because the SMW is using the BTRFS file system.
A snapshot can be created to capture the current running
system’s state and then chroot into that snapshot. All
upgrades can be done within that snapshot and it can be
ready for deployment at a later time by simply rebooting
into that snapshot. Keep in mind though that any changes
done to the SMW after modifying the snapshot will not be
captured within that snapshot. Also, the snapshot does not
necessarily have to be used at a later time. It can also be used
to test the upgrade procedure and if it works as expected,
then run the upgrade on the current snapshot the system is
booted in to. While the Cray administrators have not had an
opportunity to use this feature yet, they are eager to try this
new procedure.

VIII. CONCLUSIONS

The project of upgrading from a previous CLE 5.X/SMW
7.X (Pearl/Pecos) software stack should not be undertaken
without serious consideration of the time investment that
will be required. The SMW and boot RAID will need to be
formatted and reinstalled with SMW 8.0 and very little of
the previous implementation of configuration management
will be applicable to the new system. Learning Ansible is
also essential to the administrator. The boot process, when
it fails, is almost always due to an Ansible issue of some
kind. If the site wants to take advantage of the Site Ansible
area provided by Cray, the only option is to use Ansible
in that space. Use of another configuration management
system would be possible within the system, but considering
the number of services and configuration files that Cray is
managing it would be difficult to affect a change at the
desired time in the boot process.

As CLE 6.0/SMW 8.0 matures through upgrades from
Cray, the system will become more robust and admin
friendly, but the initial release will still be a shock to those
who are accustomed to the previous generations of the Cray
system software. It will take time for Cray to improve the
software so early adopters of 6.0/8.0 may have a harder
time than sites who wait to upgrade. For those who are
adventurous or have a need to upgrade to 6.0/8.0 with the
initial release, there will be a steep learning curve, but the
long term benefits of the new system software will eventually
outweigh the early development cost of learning the new
system.

IX. ACKNOWLEDGMENTS

The authors would like to thank the entire LANL systems
support team for their time and dedication to Trinity and
helping ready it for production. We would also like to thank
Cray for being responsive to our requests and helping drive
the development of their product. Many long days were spent
working closely with Cray’s developers and support staff to
help make the system operational and reliable. The authors
would also like to thank Harold Longley at Cray as well for
use of his slides.

