
Stitching Threads into the Unified Model
M. J. Glover, A. J. Malcolm, M. Guidolin and P. M. Selwood

Met Office, FitzRoy Road, Exeter, UK. EX1 3PB

Abstract—The Met Office Unified Model (UM) uses a hybrid
parallelization strategy: MPI and OpenMP. Being legacy code,
OpenMP has been retrofitted in a piecemeal fashion over recent
years.

As OpenMP coverage expands, we are able to perform
operational runs on fewer MPI tasks for a given machine
resource, achieving the aim of reduced communication overheads.
Operationally, we are running with 2 threads today; but we are
on the cusp of 4 threads becoming more efficient for some model
configurations. Outside of operational resource windows, we have
been able to scale the UM to 88920 cores, which would not have
been possible with MPI alone.

We have experimented with a resource-stealing strategy to
mitigate load imbalance between co-located MPI tasks. The
method is working from a technical point of view and showing
large performance benefits in the relevant code, but there are
significant overheads which require attention.

I. INTRODUCTION

The Unified Model (UM) is developed and used by the
Met Office to simulate the Earth’s atmosphere, in order to
produce operational weather forecasts as well as seasonal and
climate-scale simulations. The model is gridpoint-based and
has historically been parallelised with domain decompostion
and MPI. There are limits to the effectiveness of this: fewer
gridpoints per MPI task limits the ratio of computation to
communications. Moreover, the underlying latitude-longitude
grid causes particular issues at the poles, such as a need for
numerical consistency along the polar rows.

Hybrid — or mixed-mode — parallelisation has been with
us since the dawn of OpenMP. Threading is used to allow an
application, as much as possible, to use some given amount of
machine resource with fewer MPI tasks. Fewer tasks means
fewer communications overheads, which translates to better
performance and scaling. The work required to achieve this
in a legacy application with a substantial amount of rapidly
changing code does not happen overnight. In this paper, we
aim to describe our hybrid parallelisation effort over recent
years, and the benefit we derive from that effort today. We
further discuss characteristics of the code which offer a clean
implementation of high-level OpenMP, and the scope for
resource-stealing between MPI tasks as a means of reducing
load imbalance.

Section II gives a brief description of the Unified Model
(UM). Section III describes the procedure we follow to
highlight code which would benefit from OpenMP directives.
Threading performance is described in Section IV. Section V
describes an experimental method to improve load balancing
between MPI tasks which share the same node, and Section VI
brings the paper to a close.

II. THE UNIFIED MODEL

A. Overview

The Met Office Unified Model (UM) is our atmospheric
simulation package. It has been in operational service for
approximately three decades, and is used today for short-
term weather forecasting, through medium-term seasonal and
decadal forecasting, to long-term climate timescales. At its
core is a CFD solver — ENDGame [1] — which attempts
to solve the fluid flow on a rotating sphere, but with numer-
ous sub-gridscale processes (cloud, precipitation, turbulance,
surface exchange, . . . ) being approximated to grid points.

B. Parallelisation

The parallelisation strategy employed is primarily one of
domain decomposition. At scale, domain decomposition hurts
and helps: helped by natural cache-blocking that comes with
smaller domain sizes, but also hurt by attendant reductions in
vector lengths, in addition to communications costs.

Aside from communications, load imbalance represents a
major cost. The effect manifests primarily in the time taken for
halo exchanges: a weakly synchronising operation. Significant
imbalance arises because the workload for different parts of
the globe is inherently non-uniform. For example, at any one
time, half the globe is in darkness, representing an uneven
distribution of sunlight even before the effects of the non-
homogeneous nature of cloud are factored in. Similarly, there
is a great deal of convection in the tropics, but very little at
the poles, as well as similar effects in many of the other sub-
gridscale processes.

OpenMP offers us a way to reduce communications costs
by limiting the number of MPI tasks needed for a given
machine resource. This may seem like old news: OpenMP
has been with us for more than a decade, and developers have
long-since adopted hybrid parallelisation strategies. We aim to
show here the current state of our years of hybridisation work,
and the benefits realised in the shape of enhanced scalability
and parallel efficiency in our real-world and highly complex
application.

C. OpenMP Coverage

Amdahl’s law dictates that parallel efficiency is dependent
upon the proportion of time spent executing parallelised code.
At over a million lines of code, with no particular performance
hotspots, OpenMP work on the UM is slow and highly
incremental. Early OpenMP work began with the arrival of
our IBM Power6 in 2009. That machine used in-order execu-
tion, which meant that simultaneous multi-threading (SMT)
gave a useful performance benefit. We could employ two



1

2

3

Fig. 1. Segmentation. The square represents a single model domain.
Numbering and arrows are faithful to the layout of data: working West-East
and South-North.

threads per physical core without risk of cores standing idle
in OpenMP-serial code sections: SMT gave us benefit, even
though OpenMP coverage was limited.

With the advent of our Cray XC40, any potential benefits of
hyperthreading are less clear. The benefit of OpenMP largely
falls back to the original intent of the exercise: to reduce the
communications overheads.

D. Deployment

The majority of OpenMP directives are confined to individ-
ual loops, or a relatively small number of loops in a common
parallel region. For legacy code that was not designed to be
thread-parallel, this is a sensible approach. The impact of
fork-join overheads is no doubt mitigated by thread pooling
strategies employed by compilers: threads are not created and
destroyed each time, but a pool of threads remain open to be
called upon at the start of each parallel region.

Some code sections are amenable to directives at a higher-
level, particularly some of the sub-gridscale parametrizations
such as radiation and microphysics. These sections of code
operate on vertical (skyward) columns of data points which do
not need to interact with their horizontal neighbours. Hence
there is scope for bunches of columns to be processed con-
currently without fear of race conditions. The benefits of this
are two-fold. The column-independence exposes parallelism,
but further subdivision into smaller bunches — or segments
— helps to exploit cache and reduce the impact of memory
bandwidth. Segmentation is illustrated in Fig. 1. It is similar
to the NPROMA technique employed by ECMWF [2].

III. TARGETS FOR OPENMP

A. Proprietary tools

There are platform-specific tools available to study per-
formance, such as CrayPat/CrayPat-lite, and other open-
source tools such as Score-P/Scalasca. But there are difficul-
ties surrounding them, particularly compared with DrHook
as described in III-B. They normally rely on some auto-
instrumentation of the code and different tools present their
results in different ways. We find it greatly helpful to have
available a tool which is permanently coded into the UM,
is threadsafe, and produces the same output on different
platforms. That tool is DrHook.

B. DrHook

DrHook was written at ECMWF, and originally conceived
as a debugging tool [3]. The idea was to leave the DrHook
compiled in, so that it could be activated to obtain a code
traceback without the need to recompile. But the presence
of callipers in the application code also allows it to extract
profiling information.

DrHook offers advantages over other solutions discussed
above. It produces a common format of output across mul-
tiple architectures, and the output is plain text; post-analysis
scripting is simple to automate. Being already present in the
code base, there is no need for the tool to perform automatic
instrumentation, and the developer can see clearly where
timing regions begin and end; even add new regions on an
ad hoc basis to study a particular code snippet. DrHook is
threadsafe, via an intuitive mechanism.

Moreover, in principle it would be a simple matter to run
DrHook across a model containing a coupler and several
different executables, so long as each component model was
instrumented with DrHook. Our seasonal and climate models,
which couple our atmosphere model with ocean and sea ice
models, are an example of this. Today however, only the
atmosphere model is instrumented.

When profiling is not taking place, a dummy DrHook library
is used. All calls to DrHook are protected by the test of a
logical value, which in this case is hardwired as a compile-
time parameter to .false.. An optimising compiler is able
to eliminate the calls at the compilation stage, removing any
potential performance degradation in production work.

C. Scaling score

In optimisation work, the challenge is to identify those areas
of code which will benefit the most. To find routines which
do not scale well in thread-space, we run a baseline with one
thread, and the same run on more threads, with the consequent
increase in machine resource.

Once timings have been obtained from DrHook, we com-
pute a scaling score using the output from the baseline and
multi-threaded runs. Subroutines are listed according to their
score value, smallest first. The scaling score is given by
Eqn. (1).

S =
(

p1t1T1

p2t2T2
− 1

)
/

(
p1t1
p2t2

− 1
)

+ 1 (1)

where p is the number of MPI tasks, t is the number of threads
per MPI task and T is the elapsed time. The index 1 refer to
reference (baseline) time and resources; index 2 is the test time
and resources.

Values of the score and their meaning are listed in Table I.
The score is not sufficient by itself to identify performance
hotspots: a small routine may scale horrendously but be
insignificant with regard to the overall wallclock time. Cross-
analysis with an ordinary wallclock time profile indentifies
those costly routines that do not exhibit good scaling.

Of course, this technique is not limited to threading; it is
used to study scaling characteristics in MPI-space, too.



TABLE I
MEANINGS BEHIND VALUES OF THE SCALING SCORE IN EQN. (1).

Score value Meaning
S < 0 Routine is anti-scaling.
S = 0 Routine shows no scaling.
0 < S < 1 Routine shows sub-linear scaling.
S = 1 Routine shows ideal scaling.
S > 1 Routine shows super-linear scaling.

Fig. 2. Scaling of the N768 model at UM version 10.3* (see text).

IV. THREADING PERFORMANCE

We now turn to performance of the UM with respect to
threading, in particular comparing today’s performance with
earlier UM versions. Asterisks (*) denote that the code used
fractionally predated official release of the accompanying UM
version, and may have some differences.

Fig. 2 allows comparison of scaling behaviour with various
combinations of MPI and threading. The MPI curve uses
one thread only. The hybrid scaling curve represents the best
combination found of the two parallelisation strategies for a
given amount of machine resource. The thread scaling curve
uses a fixed MPI decomposition baseline, with the scaling
coming purely from OpenMP coverage. Recall that much of
the OpenMP is loop-level; the thread scaling essentially serves
to demonstrate the degree of coverage.

Fig. 3 shows percentage parallel efficiencies at different
UM versions and processor generations. Here, the domain
decomposition is held constant as the thread count increases.
The plot shows clear improvements with each subsequent
model version. For example, with 8 threads, UM10.2 gave a
parallel efficiency of about 40%, which has increased to over
75% at UM10.4*. To add some chronology: UM10.2 dates
from mid-2015, and UM10.4* from early 2016. The increased
parallel efficiency is not purely a function of model version,
however: the Broadwell (E5-2695v4) results are demonstrably
better than the equivalent Haswell (E5-2698v3) results, as
seen in the two UM10.3* curves. We speculate that the
underlying reason relates to the increased shared L3 cache

Fig. 3. Parallel efficiency as a function of thread count at N768 resolution.

on the Broadwell processors.

A. Operational resources

Here we constrain ourselves to model resolutions and node
counts comparable to those used today to produce operational
weather forecasts.

Over recent years, the best performance with a given
operational resource window has usually been achieved using
a low number of threads. Utilising more than 2 threads with
a corresponding reduction in the number of MPI tasks has
invariably not given any benefit. However, OpenMP coverage
is now becoming sufficiently extensive that the situation is
changing. Table II shows optimal combinations of MPI de-
composition and threading for an N768 model over a range
of node counts. Notice that on 120 nodes and above, three
threads on Broadwell processors become more efficient than
2 threads. (With 36 cores per node, 6 threads would be the
next highest thread count which maintains full subscription.)
Hence the OpenMP is giving noticeable benefit for operational
Model configurations.

Digging a little deeper, Table III lists timings for individual
code sections within the UM. The leftmost column represents
some baseline timings, and the rightmost two columns rep-
resent the same resource-usage, but composed in different
ways: more domain decomposition with fewer threads, and
the decomposition held constant but using a larger thread
count. Some code sections demonstrate the benefit of hybrid
programming: notably the solver. This section contains a lot
of communications, and the OpenMP mitigates against these
overheads by allowing execution on a smaller number of MPI
tasks. The OpenMP is serving its intended purpose.

But the same is not true for all code sections: physics sec-
tions Atmos_phys1 and Atmos_phys2 demonstrate this. These
code sections influence the plain fluid dynamics, modelling
many processes such as radiation coming direct from the sun
(shortwave) and reflected from cloud (longwave), and vertical



TABLE II
HYBRID SCALING FOR N768

Nodes Cores Threads Time(s) Perfect Scaling Hybrid Scaling
15 540 2 1137 1 1
30 1080 2 1137 2 1.89
60 2160 2 564 4 3.81
120 4320 3 305 8 7.05
240 8640 3 181 16 11.88
480 17280 3 111 32 19.37

TABLE III
TIMINGS FOR INDIVIDUAL CODE SECTIONS WITHIN THE UM. ALL TIMES

ARE IN SECONDS. HERE, NXM REPRESENTS THE DOMAIN
DECOMPOSITION (MPI), AND 6 DENOTES SIX THREADS.

Code Section 36x60 2 72x90 2 36x60 6
Baseline MPI Threads

U_MODEL4A 1792 829 825
ATM_STEP_4A 1571 624 599
AS SOLVER 510 176 158
AS S-L Advect 356 183 153
AS Atmos_phys2 344 121 135
AS Atmos_phys1 283 105 114
INITIAL 209 197 218

transport of air (convection). These sections tend to have fewer
communications than the model dynamics, so the OpenMP for
these sections will require a higher degree of coverage in order
to match the performance of MPI domain-decomposition.
There are also load balancing issues to consider. The longwave
radiation and convection sections are both segmented, yet the
segment size does not correlate so directly with the amount
of work: depending on the path through the code, gridpoints
may have different amounts of computation. Whilst it can help
to code up some forced load balancing of gridpoints between
threads, that strategy is only effective if the amount of work
per gridpoint remains constant. When it does not, the segment
size may need to be reduced in order to allow an OpenMP
DYNAMIC schedule to assist: smaller segments permit better load
balancing between threads.

We have not yet addressed the use of hyperthreading in this
discussion. Our experience thus far shows a tendency towards
the existence of some performance gain with the combination
of 2 threads and a passive wait policy. Introducing more
threads, experience suggests, has a harmful effect on perfor-
mance, although this depends strongly on model configuration.

B. Further scaling

Having looked at the N768 model on relatively small node
counts, we now push the node count far higher. The scaling
characteristics are shown in Fig. 4. The vertical dotted lines
indicate the number of threads with which the underlying
timings were obtained. The line labelled “> 2 threads” is
significant: that is the line beyond which, under test, MPI
ceases to give any more benefit. Any further scaling results
from OpenMP coverage. On 9 threads, the model model
scales up to at least 80,000 cores, or well over 2000 nodes.
This would not be possible without the hybrid parallelisation:
scaling would otherwise be limited to well under 10,000 cores.

Fig. 4. N768 scaling extended to a larger number of cores. Vertical dotted
lines show the number of threads with which the timings were taken.

C. Limited Area Model (LAM)

All model configurations so far have been global: simulating
the atmosphere around the entire globe. But some operational
products only simulate the atmosphere over a local region of
interest, such as over the UK. The model is configured as a
Limited Area Model (or LAM). Boundary conditions — data
around the region’s perimeter — comes from the global model.

The major scaling issues in global models surround com-
plications at the poles. LAMs do not have any poles, and so
in theory ought to demonstrate better scaling characteristics.
But Fig. 5 shows otherwise. Note that the LAM baseline
decomposition has been adjusted to give each MPI task
broadly the same number of gridpoints as for the global model
(within 10%). Whilst choice of an optimal hybrid scaling curve
outperforms purer MPI or thread scaling, the hybrid curve still
lags the global model equivalent. The reason behind this is not
currently known.

V. MALLEABLE THREAD COUNTS

A. Overview and motivation

As already discussed, the UM suffers from a large degree
of load imbalance, particularly introduced by the uneven
physical processes around the globe. Shortwave radiation is
a particularly notable example: the effect of solar radiation
coming directly from the sun. Aside from the large imbalance
from the diurnal cycle, clouds cast shadows which change the
radiation pattern and hence the computational load.



Fig. 5. Scaling of the Limited Area Model (LAM), and comparison against
global model scaling.

 U
n

li
t

 L
it

 M
P

I 
ta

s
k

 N
o

d
e

G
ri

d
p

o
in

t

Fig. 6. Illustration of on-node load imbalance. Only lit points require
computation.

The coverage of OpenMP in the UM is not yet sufficient
to run with one MPI task per node, or even one MPI task per
socket. Hence there are multiple MPI tasks present, computing
different sub-domains with varying amounts of work. This is
illustrated in Fig. 6. It seems sensible to assign the available
cores to MPI tasks in proportion to their workload, relative to
other MPI tasks on the same node.

B. Implementation

The shortware radiation code is segmented: cache-friendly
bunches of independent columns — but contiguous-in-memory
— are operated on by different threads. Not all gridpoints have
any computation associated with them; we refer to gridpoints
with and without work as lit and unlit, respectively.

The UM forcibly distributes all lit points among threads
within a given MPI task, imposing good load balancing
between threads. For all results presented below, the segment

size was fixed at 80 gridpoints. Tests with a smaller size
showed no significant difference.

Shortwave (SW) radiation was chosen to investigate this
approach because there is a large degree of variation between
MPI tasks, and the UM knows up-front how many gridpoints
are lit and how many are unlit which the redistribution
algorithm can leverage.

For MPI tasks to perform some on-node organisation/co-
operation between themselves, there must be some level of
communication between them: all tasks must know the total
amount of work on the node, in order to compute their share
of the resource and create/affinitize their threads accordingly.

There is an API in MPI-3 which helps greatly with this
kind of book-keeping: in particular, handling shared memory
segments. The API allows one to create a communicator based
on whether or not tasks are on the same shared-memory node.
Two shared memory arrays are needed:

• The number of gridpoints requiring computation on each
MPI task.

• The number of threads to be spawned on each MPI task.
An XC40 node has two NUMA regions; two sockets. One

can prevent the reaffinitization process straddling the NUMA
boundary by further splitting the shared-memory node com-
municators into communicators for each socket independently.
It is not clear this this would be helpful, since it removes scope
for load balancing between sockets, at the expense of increased
friction at the NUMA boundary. Indeed, initial experiments
suggested that it would be better to allow tasks to bleed over
the boundary. At least one core is assigned to each MPI task.
The remainder are distributed according to workload, rounding
downwards to avoid oversubscription. Hence there is some
potential for undercommitting; but to avoid complication, we
keep the algorithm simple for the moment. In practical terms,
the results presented in Subsection V-G are conservative: there
may be room for improvement over those results.

It is important to store the original affinitization pattern —
as set initially by aprun — to cope with the UM’s I/O server,
which may occupy one or more cores on any given node. The
redistribution process must not attempt to place work on these
cores. Hence the importance of a stored pool of cores which
are available to the redistribution algorithm. This information
is simply collected by asking all compute-threads (not I/O-
server threads) to write their affinitization status to a shared
memory segment.

C. Latent threads

The Cray compiler appears to leave threads open at the end
of a parallel region: threads are not destroyed, in a strategy
termed thread pooling. The aim is to reduce the cost of fork-
join overheads. At the first parallel region, new threads are
created. But when subsequent parallel regions begin, threads
are acquired from the pool of currently open threads. It is
simple enough to verify that thread pooling is taking place:
/proc/<process id>/status shows the number of threads
currently assigned to the specified process number. With a
piece of code designed to open a parallel region multiple times



with different thread counts, one can verify that the number
of threads reported in the file matches the high-water mark,
not the value returned by omp_get_max_threads().

The redistribution process causes issues here. At its most
effective, a large number of threads may be required by one
MPI task, as it uses a greater share of the available resource.
Those threads are not destroyed once the parallel region
terminates; instead they are left behind, consuming resources
as they wait for work.

Ideally, we would utilise an option to temporarily suspend
thread pooling: all additional threads would be destroyed
at the end of a parallel region, leaving only those threads
spawned at the first parallel region. As this is not currently
possible, the effects of the pooled threads can be amelio-
rated with OMP_WAIT_POLICY=passive, as distinct from the
active default. This workaround is not a perfect solution
however, because the active wait policy is wanted for the
remainder of the run. The Cray compiler provides a (vendor-
specific) way to switch the policy mid-way through a run:
cray_omp_set_wait_policy(). However, experiments with
this function caused the model to hang at the first timestep.

Some mechanism to share a single common thread pool
between MPI tasks would be a solution to the issues in this
subsection, but we do not know of any way to make this work
at present.

D. Re-affinitization

We use the default -cc cpu affinity settings through the
aprun launcher. The implementation remembers how many
threads there were initially before the redistribution process,
and where they were bound. Threads are then returned to their
original cores afterwards: the restoration step.

The thread count is changed using the OpenMP API. Re-
affinitization of threads is done using the sched library: C code
behind a Fortran interface.

For reasons covered in Subsection V-C, early attempts at
redistribution resulted in a dramatic, prohibitive slowdown;
even after the restoration step had completed, as compute
performance was hindered by latent threads.

A workaround was possible: confine redistributed,
malleable-thread code sections to virtual cores, assuming that
there is only one thread per physical core (no hyperthreading
for the model’s work). Once complete, the restoration step
affinitizes the original threads back to the physical cores. This
method allowed the model to run through to completion.

Later testing with a newer compiler version suggested that
the workaround is no longer necessary: we may redistribute
work among the physical cores. A specially designed piece
of tester code confirmed that the issue had gone with module
cce/8.4.0 and higher. The results below were obtained with
cce/8.4.3; the workaround was used, but not necessary.

E. Rank reordering

The default MPI rank-ordering (SMP-style) places neigh-
bouring model domains on the same node. Hence the default
rank ordering is likely to place high-workload MPI tasks on

the same node, as a consequence of the underlying spatial
correlation of light and dark gridpoints.

To break up this spatial correlation — and separate light
and dark regions between different nodes — the rank reorder-
ing pattern was changed to a simple Round-Robin pattern:
MPICH_RANK_REORDER_METHOD=0. Whilst useful for the present
experimentation, future operational use would require a perfor-
mance evaluation of the model as a whole against the default
SMP-style rank ordering.

F. Miscellaneous details

Hardware and compiler were as follows:
• XC40 Broadwell nodes (18 cores per socket, 2 sockets)
• Cray compiler: cce/8.4.3
• UM version 10.3
Timings were taken with the UM’s internal timer function-

ality (not DrHook in this case). In all cases, the maximum
time is used across MPI tasks, since the model as a whole
only progresses as quickly as the slowest task. Timings were
measured for both the core code which performs the compu-
tation, and the surrounding code which incurs the overheads
of segmentation setup and thread redistribution.

G. Redistribution timings

Employing an N512 model resolution, Table IV shows the
timing of the segmented region, with and without redistribu-
tion and with two different rank ordering strategies. These
timings exclude the cost of the redistribution process itself, and
only represent the cost of the calculation inside. Notice that
on 3 threads, the cost of the segmented region comes down by
more than 20%, compared with the same calculation without
redistribution. There are cost savings on higher thread counts
too, though smaller as a percentage. Note in particular the
importance of Round-Robin rank ordering to achieve benefits
with redistribution.

Table V shows the equivalent total timings from short-wave
radiation. These timings are from the parent routine, which
itself calls down to the segmented code; they include the
overheads of the redistribution process itself. Fig. 7 plots the
same information, together with the previous segmented code
timings. The parent routine timing shows some benefit with
redistribution on 3 threads, but much smaller than the 20%
benefit for the segmented region: a modest 2.5%.

Table VI shows the cost of the parent routine, having
subtracted away the cost of the segmented region; values
provide a measure of the redistribution overheads. Whilst we
have demonstrated significant benefit for the segmented code
itself with the redistribution technique, future effort must turn
towards tackling the large overheads. The most likely culprit is
cache invalidation, due to changes in the affinitization pattern.

In the above tables, uncertainty on the values is of the order
of a few tenths of a second: any significant differences due to
the redistribution procedure are well-resolved.

The results so far were all taken from a 12x24 decompos-
tion. Tests with a 24x36 decomposition demonstrated weaker
benefits for the segmented code itself, and a slowdown once



TABLE IV
SEGMENTED REGION ONLY, OMITTING THE SETUP/REDISTRIBUTION OVERHEADS. ALL TIMES IN SECONDS.

SMP-style ordering Round-Robin ordering
Threads Original Redistribute Change (%) Original Redistribute Change (%)

2 35.0 42.6 +21.5 32.0 33.2 +3.8
3 23.7 27.7 +17.1 22.5 18.0 -20.1
6 12.3 13.6 +10.7 11.6 9.4 -18.9
9 8.4 9.0 +7.2 7.9 6.9 -12.0
18 4.4 4.5 +2.5 4.4 4.0 -8.7

TABLE V
SEGMENTED REGION PLUS PARENT TIME WITH 12X24 DECOMPOSITION.
CHANGES PROVIDE A MEASURE OF REDISTRIBUTION OVERHEADS. ALL

TIMES IN SECONDS.

Threads Original Redistribute Change (%)
2 38.9 46.6 +19.8
3 27.9 27.2 -2.5
6 15.7 15.6 -0.7
9 11.4 12.0 +5.3

18 7.6 8.2 +7.9

Fig. 7. Elapsed time of the segmented code with and without redistribution
and that of the parent routine, inclusive of the segmented code called. The
parent includes redistribution overheads.

the redistribution overheads are accounted for. This says that
the method preferred the larger domain size for this model res-
olution. A reason behind this might be argued as follows. The
method relies on there being sufficient variation in workload
between MPI tasks assigned to the same node, to better enable
this resource-stealing strategy to work. Whilst it is desirable to

TABLE VI
PARENT ROUTINE TIMINGS. VALUES INCLUDE REDISTRIBUTION

OVERHEADS.

Threads Original Redistribute Change (sec)
2 6.9 13.39 6.5
3 5.4 9.2 3.9
6 4.1 6.2 2.1
9 3.5 5.0 1.5

18 3.2 4.2 1.0

split up a computationally intensive pocket of work by splitting
it between different nodes, the Round-Robin rank reordering
may also have a homogenising effect. If the globe is divided
into smaller domains, and those domains are scattered between
nodes, then nodes may acquire a similar spread of relatively
loaded and non-loaded domains, such that a highly loaded MPI
task cannot claim sufficient resources to significantly improve
its performance. This much is supposition.

The implementation and investigations so far are young.
There is more to investigate:

• Understand how to mitigate against large redistribution
overheads.

• Better algorithm to distribute work between cores inside
a node, without undercommitting.

• Behaviour of the different compilers available on the
system: Cray, Intel and GNU. In particular, GNU does
not appear to perform thread pooling.

• Selective hyperthreading, redistributing across all logical
cores.

VI. SUMMARY & CONCLUSIONS

The scaling potential of the UM with respect to domain
decomposition alone is limited. Over recent years, we have
added and continuously extended OpenMP coverage in order
to circumvent communications overheads; the UM has adopted
a hybrid parallelisation strategy. The UM is legacy code, and
has many complicating data dependencies which inhibit the
level at which OpenMP can be sited: most directives are loop-
level, targeting those routines which will give the most imme-
diate benefit at operational model resolutions. The profiling
tool DrHook is compiled into our code, and provides a simple
and portable way to access thread-scaling information.

The effectiveness of threading is heavily dependent on the
degree of OpenMP coverage in the model, and the low-level of
the OpenMP directives means that increased coverage means
touching a lot of code. But we have gained demonstrable
benefits of the work in the Unified Model, both in terms of
operational model efficiency and increased scaling potential.
For an N768 model, the optimimal strategy today utilises
3 threads, with fewer MPI tasks than would otherwise be
necessary. Far outside of operational resource windows, we
have demonstrated scaling beyond 80,000 cores: many times
more than would have been possible without mixed-mode
parallelisation.

We have experimented with novel ways of using threading
to further boost the hybrid performance, which does seem to



be showing some promise. Threading opens up the possiblity
of a resource-stealing strategy to reduce load imbalance: MPI
tasks sharing the same node can be assigned a portion of
the available cores, proportionate to workload. This in turn
relies on a sufficient mixture of lightly and heavily loaded MPI
tasks on-node. Fortunately, the shortwave radiation code in the
UM meets this criterion, and already computes the number
of gridpoints that require computation, so the workload is
known up-front and some control code can do the necessary
re-affinitization. A crude distribution algorithm gives some
demonstrable benefit in the N512 model — around 20% for
the segmented region itself — provided that the rank-ordering
strategy is Round-Robin; we believe this to be important to
break up the underlying spatial correlation of light and dark
gridpoints. Surrounding the segmented region itself, there are
some significant overheads associated with the redistribution
process which need attention.

There is a further complication, related to thread pooling.
The Cray compiler does not destroy threads after a parallel
region. Instead, the threads remain active, waiting to acquire
more work at the next parallel region. Whilst helpful for the
remainder of the UM — where fork-join overheads would

otherwise be much larger — thread pooling seems to be
causing some issues in the redistribution method: it produces
a glut of threads which impede subsequent performance. A
passive wait policy helps, but that is not appropriate for the
remainder of the model, only redistributed sections. We do not
have a reliable way of switching the policy mid-run. We would
welcome a way to activate/deactivate thread-pooling, such that
any additional threads created for the purpose of redistribution
are destroyed.

Although it has taken a number of years of incremental
improvement to arrive at this point, mixed-mode parallelisation
is proving itself to have been a worthwhile investment.

REFERENCES

[1] N. Wood, A. Staniforth, A. White, T. Allen, M. Diamantakis, M. Gross.,
T. Melvin, C. Smith, S. Vosper, M. Zerroukat, and J. Thuburn, “An in-
herently mass-conserving semi-implicit semi-Lagrangian discretization of
the deep-atmosphere global nonhydrostatic equations,” Q.J.R. Meteorol.
Soc., vol. 140, pp. 1505–1520, 2014, dOI:10.1002/qj.2235.

[2] “IFS documentation. Part VI: Technical and computational procedures,”
www.ecmwf.int/sites/default/files/IFS CY40R1 Part6.pdf, ECMWF,
[Online. Accessed: April 6, 2016].

[3] S. Saarinen, M. Hamrud, D. Salmond, and J. Hague, “Dr.hook instru-
mentation tool,” https://software.ecmwf.int/wiki/download/attachments/
19661682/drhook.pdf, [Online. Accessed: April 6, 2016].

www.ecmwf.int/sites/default/files/IFS_CY40R1_Part6.pdf
https://software.ecmwf.int/wiki/download/attachments/19661682/drhook.pdf
https://software.ecmwf.int/wiki/download/attachments/19661682/drhook.pdf

	Introduction
	The Unified Model
	Overview
	Parallelisation
	OpenMP Coverage
	Deployment

	Targets for OpenMP
	Proprietary tools
	DrHook
	Scaling score

	Threading performance
	Operational resources
	Further scaling
	Limited Area Model (LAM)

	Malleable thread counts
	Overview and motivation
	Implementation
	Latent threads
	Re-affinitization
	Rank reordering
	Miscellaneous details
	Redistribution timings

	Summary & Conclusions
	References

