
Stitching Threads into the Unified
Model
M. J. Glover, A. J. Malcolm, M. Guidolin and P. Selwood

May 2016

Overview

• The Unified Model
• Targets for OpenMP
• Threading performance
• Resource stealing
• Summary

The Unified Model

UM Atmosphere

–Over 20 years old
–Fortran / MPI / OpenMP
–Global Collaboration
–Rapidly changing

Coupled Systems

– 4DVAR Assimilation
–UKCA Atmospheric Chemistry
–NEMO Ocean

Unified Model technical

Amdahl and threading

• UM has no particular
hotspots

• Requires large OpenMP
code coverage n

t
tt

p

s

Data dependencies

• Finite difference
• Hard-coded dependencies between
neighbours

=> Many loop-level
directives.

Segmentation

• Used for radiation, convection + microphysics.
• No horizontal dependencies
• Tune size for cache
• OpenMP parallel

Targets for OpenMP

DrHook

IF(lhook) call dr_hook(

‘MODULE:ROUTINE’,

 0, zhook_handle)

• Written at ECMWF (S. Saarinen, M. Hamrud, D. Salmond, J. Hague)
• Callipers stay in the code
• Threadsafe
• Parameter lhook: no production impact

Other tools?

• Same tool and output across platforms
• Text-based output easily post-processed
• Potential for MPMD: coupled models

CrayPat? Score-P / Scalasca?

DrHook:

Scaling Score
1. Perform

baseline run
2. Increase

number of
threads

3. Run
comparison
script

1

1

1

22

11

222

111

tp

tp

Ttp

Ttp

S

p : MPI tasks T : elapsed time
t : threads

Scaling Score

Score value Meaning

S < 0 Antiscaling

S = 0 No scaling

0 < S < 1 Sub-linear scaling

S = 1 Ideal scaling

S > 1 Super-linear scaling

Use in addition to wallclock profile.

Threading Performance

Comparison of MPI and thread
space (Operational global configuration)

Curves have common
baseline resource.

Hybrid: best
performing
combination.

Demonstrates
coverage of threading.

Operational configuration

Nodes Cores Threads Time

(s)

Perfect

scaling

Hybrid

scaling

15 540 2 1137 1 1

30 1080 2 1137 2 1.89

60 2160 2 564 4 3.81

120 4320 3 305 8 7.05

240 8640 3 181 16 11.88

480 17280 3 111 32 19.37

3 threads
has become
more efficient
than 2 for
given
resource.

Hybrid parallelisation at scale

More than 2
threads required to
avoid MPI-turnover
at ~10k cores.

Hybrid scales to
over 80k cores.

Limited Area Model (LAM)
Global & LAM: adjusted
to ~ same gridpoints per
MPI task.

Hybrid out-scales MPI and
thread scaling for LAM.

Scaling less good than
global, despite no poles!

Progress over model versions

UM 10.2: mid-2015
UM 10.4*: early 2016
(10.x* just predates 10.x)

Boost from Haswell to
Broadwell. Better shared L3
cache?

8 threads:
~40% to ~75%.

Resource-stealing
Malleable thread counts

Load imbalance: convection

Deep

Shallow

Load imbalance: short wave
radiation
Incoming flux (January)

Resource-stealing

Shortwave
radiation

More work, more
cores. (And more threads!)

Implementation

MPI-3 shared
memory handling

sched library

+
iso_c_binding

Same work per
lit point

Number of lit
points known

OpenMP API

Shared memory arrays

1:threads*MPI tasks

1:MPI tasks

• Each thread stores its core ID
• Once at the start of a run

• MPI reduction on-node to find total work
• Each task calculates and stores number of threads it needs

aprun –cc cpu

Redistribution

Parent routine

Segmented
region

Redistribute

Restore

Calculate SW
radiation

Obstacles: thread pooling

• Threads spawned but
not destroyed.
• Threads kept for next
parallel region.

Good when number of threads is constant
or fewer (concurrency throttling).

Obstacles: thread pooling

• Compiler version
 >= cce/8.4.0
• Earlier cce: affinitize to
virtual cores.

• Passive OMP wait policy
for entire model
• Changing with Cray API
causes hang

Obstacles: spatial correlation

MPICH_RANK_REORDER_METHOD=0

N
o

d
e

 1

N
o

d
e
 2

Scatter high-workload MPI-tasks between
nodes: Round-Robin ordering.

Default
SMP-
style

Redistribution timings

Segmented region:
performance improves on
all thread counts >= 3.

Parent routine:
performance degrades.
Cache invalidation?

Summary

Summary

UM hybrid performance
• Largely loop-level due to data dependencies
• Needs high coverage
• Benefits realised in operations and at scale

Resource stealing
• Up to 20% benefit on calculation itself, but ...
• Large overheads.
• Thread pooling: may have adverse impacts.

Questions?

