
Cray Performance Tools Enhancements
for Next Generation Systems
Heidi Poxon

Agenda

● Cray Performance Tools Overview

● Recent Enhancements

● Support for Cray systems with KNL

Copyright 2016 Cray Inc.
2

CUG 2016

Cray Performance Analysis Tools Overview

CUG 2016 Copyright 2016 Cray Inc.
3

●  Assist the user with application performance analysis and
optimization
●  Help user identify important and meaningful information from

potentially massive data sets
●  Help user identify problem areas instead of just reporting data
●  Bring optimization knowledge to a wider set of users

●  Focus on ease of use and intuitive user interfaces
●  Automatic program instrumentation
●  Automatic analysis

●  Whole program analysis across many nodes

Two Modes of Use

● CrayPat-lite for novice users, or convenience

● CrayPat for in-depth performance investigation and
tuning assistance

● Both offer:
●  Whole program analysis across many nodes
●  Indication of causes of problems
●  Suggestions of modifications for performance improvement

CUG 2016 Copyright 2016 Cray Inc.
4

“Lite” Mode
Load performance tools modules

Build program
(no modification to makefile)

Run program
(no modification to batch script)

a.out (instrumented program) > make

Condensed report to stdout
a.out*.rpt (same as stdout)

a.out*.ap2
files

> aprun a.out

> module load perftools-lite

CUG 2016 Copyright 2016 Cray Inc.
5

Example CrayPat-lite Output

CUG 2016 Copyright 2016 Cray Inc.
6

	
	

	
	

###	

#																																																															#	
#												CrayPat-lite	Performance	Statistics																#	

#																																																															#	
###	

	

CrayPat/X:		Version	6.3.2.461	Revision	56930ff		02/01/16	15:31:33	
Experiment:																		lite		lite/sample_profile	

Number	of	PEs	(MPI	ranks):					64	
Numbers	of	PEs	per	Node:							32		PEs	on	each	of		2		Nodes	

Numbers	of	Threads	per	PE:						1	

Number	of	Cores	per	Socket:				16	
Execution	start	time:		Tue	Feb		2	18:53:50	2016	

System	name	and	speed:		kay		2301	MHz	(approx)	
	

Avg	Process	Time:									64.38	secs	

High	Memory:														1,563	MBytes		24.43	MBytes	per	PE	
MFLOPS:											Not	supported	(see	observation	below)	

I/O	Read	Rate:								48.514130	MBytes/sec	
I/O	Write	Rate:							22.281350	MBytes/sec	

Avg	CPU	Energy:										41,820	joules	20,910	joules	per	node	

Avg	CPU	Power:											649.53	watts		324.77	watts	per	node	

	
	
	
	
Table	1:		Profile	by	Function	Group	and	Function	(top	10	functions	
shown)	
	
		Samp%	|				Samp	|		Imb.	|		Imb.	|Group	
								|									|		Samp	|	Samp%	|	Function	
								|									|							|							|		PE=HIDE	
	
	100.0%	|	6,156.2	|				--	|				--	|Total	
|---	
|		66.3%	|	4,082.5	|				--	|				--	|USER	
||--	
||		11.8%	|			729.2	|		48.8	|		6.4%	|mult_su3_mat_vec_sum_4dir	
||		10.2%	|			629.4	|		49.6	|		7.4%	|mult_adj_su3_mat_4vec	
||			6.1%	|			377.1	|		28.9	|		7.2%	|mult_su3_nn	
||			5.9%	|			365.4	|		42.6	|	10.6%	|mult_su3_na	
||			5.4%	|			329.4	|		37.6	|	10.4%	|scalar_mult_add_lathwvec_proj	
||			3.8%	|			232.9	|		39.1	|	14.6%	|mult_su3_sitelink_lathwvec	
||==	
|		25.3%	|	1,557.0	|				--	|				--	|MPI	
||--	
||		12.8%	|			789.3	|	163.7	|	17.5%	|MPI_Wait	
||			6.7%	|			411.9	|		74.1	|	15.5%	|MPI_Isend	
||			4.9%	|			300.2	|		95.8	|	24.6%	|MPI_Allreduce	
||==	
|			5.9%	|			365.4	|		44.6	|	11.1%	|STRING	
||--	
||			5.9%	|			365.4	|		44.6	|	11.1%	|memcpy	
|==	

Guidance: How Can I Learn More?

CUG 2016 Copyright 2016 Cray Inc.
7

	
MPI	utilization:	
	
				The	time	spent	processing	MPI	communications	is	relatively	high.	
				Functions	and	callsites	responsible	for	consuming	the	most	time	can	
				be	found	in	the	table	generated	by	pat_report	-O	callers+src	(within	
				the	MPI	group).	

Guidance: Reduce Shared Resource Contention

CUG 2016 Copyright 2016 Cray Inc.
8

	
	
	
Metric-Based	Rank	Order:	
	
				When	the	use	of	a	shared	resource	like	memory	bandwidth	is	unbalanced	
				across	nodes,	total	execution	time	may	be	reduced	with	a	rank	order	
				that	improves	the	balance.	
	
				A	file	named	MPICH_RANK_ORDER.USER_Time	was	generated	
				along	with	this	report	and	contains	usage	instructions	and	the	
				custom	rank	order	from	the	following	table.	
	
							Rank				Node	Reduction				Maximum		Average	
						Order		Metric				in	Max						Value		Value	
															Imb.					Value	
				Current		15.46%												1.134e+03		9.588e+02	
					Custom			1.46%			14.202%		9.731e+02		9.588e+02	

GPU Program Timeline CPU call stack:
Bar represents CPU

function or region: Hover
over bar to get function

name, start and end time Bar represents
GPU stream

event: Hover over
bar to get event

info

Program
wallclock time

line

Program
histogram of

wait, copy
kernel time

Recent Enhancements
through

perftools/6.3.2

Highlights Since Last CUG

●  New perftools-base and instrumentation modules (6.3.0)

●  Sampling over time and gnuplots (6.2.3)

●  Apprentice2 sampling over time plots with call stack (6.3.0)

●  Apprentice2 MPI communication pattern in summary mode (6.3.0)

●  Observation for helper threads in reports (6.3.0)

●  Performance data comparison in Apprentice2 (6.3.1)

CUG 2016 Copyright 2016 Cray Inc.
11

Evaluate Scaling with Cray Apprentice2

CUG 2016 Copyright 2016 Cray Inc.
12

Add file for
performance
comparison

here

seconds seconds

Energy Consumption Over Time (XC Systems)
Call stack:

Bar represents function
or region: Hover over

bar to get function
name, start and end time

Plots of energy
consumed by the
socket and by the

cores within a socket
over time. Can also
show memory high

water mark, etc.

CUG 2016 Copyright 2016 Cray Inc.
13

Support for Cray Systems with KNL

Port
Analyze

Overview of Support for KNL

●  CrayPat and CrayPat-lite
●  Identifies top time consuming routines, work load imbalance, MPI rank

placement strategies, etc.
●  Enhanced program memory high water mark

●  Broken down into DDR and MCDRAM memory
●  Report active allocations at samples or during tracing at the function level

●  PAPI

●  Cray Apprentice2
●  Helps identify load imbalance, excessive communication, network contention,

excessive serialization

●  Reveal support for adding OpenMP and allocating in MCDRAM

CUG 2016 Copyright 2016 Cray Inc.
15

Functionality Coming in 2016

● MCDRAM configuration information

● New trace groups for
●  MemKind, HBW, CrayMem
●  OpenCL
●  Lustre API
●  Parallel NetCDF

● Support for Charm++

CUG 2016 Copyright 2016 Cray Inc.
16

Example: MCDRAM Configuration Information

CUG 2016 Copyright 2016 Cray Inc.
17

	
	
	
CrayPat/X:		Version	6.4.X	Revision	e82c848		04/29/16	14:13:55	
	
Number	of	PEs	(MPI	ranks):			64	
	
Numbers	of	PEs	per	Node:						1		PE	on	each	of								64		Nodes	
																										
Numbers	of	Threads	per	PE:				1	
	
...	
	
Execution	start	time:		Mon	May		2	15:54:21	2016	
	
Intel	knl	CPU		...	
	
MCDRAM:	16	GiB	available	as	snc2,	cache	(100%	cache)		for	16	PEs	
MCDRAM:	16	GiB	available	as	snc2,		flat	(0%	cache)		for	16	PEs	
MCDRAM:	16	GiB	available	as	snc4,		flat	(0%	cache)		for	1	PE	
MCDRAM:	16	GiB	available	as	quad,		flat	(0%	cache)		for	15	PEs	
MCDRAM:	16	GiB	available	as	quad,	equal	(50%	cache)		for	16	PEs	

Adding OpenMP with Reveal

●  Navigate to relevant loops to
parallelize

●  Identify parallelization and
scoping issues

●  Get feedback on issues down
the call chain (shared
reductions, etc.)

●  Insert parallel directives into
source for performance
portable code

●  Validate scoping correctness
on existing directives

CUG 2016 Copyright 2016 Cray Inc. 18

More Information for C/C++ Programs

CUG 2016 Copyright 2016 Cray Inc.
19

More Information for C/C++ Programs (2)

CUG 2016 Copyright 2016 Cray Inc.
20

Reveal Auto-Parallelization

CUG 2016 Copyright 2016 Cray Inc.
21

●  Build an experimental binary that includes automatic runtime-assisted parallelization

●  No source code changes required to see if high level loops that contain calls can be
automatically parallelized

●  Result includes parallelization of serial loops via traditional OpenMP as well as more extensive
loop optimizations

●  User Workflow:
1.  Obtain loop work estimates using CCE 8.5 and perftools-lite-

loops from perftools/6.4.0
2.  Use Reveal and CCE’s program library to parallelize loops and

create experimental binary
3.  Run experimental binary and compare performance against

baseline
4.  If auto-parallelization is successful, use Reveal to insert parallel

directives into source

•  Trigger dependence
analysis

•  scope loops above
given threshold

•  create new binary

Examples of Reveal Analysis Feedback

CUG 2016 Copyright 2016 Cray Inc.
22

Reveal Auto-Parallelization Recap

CUG 2016 Copyright 2016 Cray Inc.
23

●  Minimal user time investment includes time to set up and run optimization
experiment
●  Collect loop work estimates
●  Build program library
●  Click button in Reveal
●  Run experimental binary and compare against original program

●  Even if experiment does not yield a performance improvement, Reveal will
provide insight into parallelization issues

●  Targeted for KNL, where a pure MPI solution cannot utilize all cores on a node

●  Can be used on existing hardware (AMD Interlagos, Intel Haswell, etc.)

●  Infrastructure will allow different optimization experiments in the future

Coming Soon…

Identifying Objects for Allocation in
KNL MCDRAM

FLOPS vs Data Movement / Data Locality

●  Next generation memory systems will be more complicated
●  Multi-tier hierarchies
●  NUMA domains
●  Complicated caches

●  Data movement through the memory hierarchy is critical to
performance

●  Compared to the price of data movement, flops are “free”

●  Monitoring and minimizing data movement within node and
across nodes is key

CUG 2016 Copyright 2016 Cray Inc.
25

Identifying Objects for Allocation in MCDRAM

●  Is application predominantly memory intensive?

● Does application data all fit within MCDRAM?

● What data contributes most to memory bandwidth?

● Where is data allocated within program?

CUG 2016 Copyright 2016 Cray Inc.
26

Reveal Data Allocation Assistance

● Use combination of CrayPat and Reveal to identify data
most relevant for allocation in MCDRAM

CUG 2016 Copyright 2016 Cray Inc.
27

	
	
subroutine	sweep	(it,jt,	kt,	nm,	isct,	mm,mmo,mmi,	mk,	myid,	
					1		hi,	hj,	hk,	di,	dj,	dk,	Phi,	Phii,	
					2		Src,	Flux,	Sigt,	
					3		w,mu,eta,tsi,	wmu,weta,wtsi,	pn,	
…	
	387					do	i	=	1,	it		
	388								phi(i)	=	src(i,j,k,1)	
	389					end	do			
	390					do	n	=	2,	nm		
	391								do	i	=	1,	it		
	392											phi(i)	=	phi(i)	+	pn(m,n,iq)*src(i,j,k,n)	
	393								end	do	
	394					end	do	

	

c...AUTOMATIC	ARRAYS	
	double	precision	Src(it,jt,kt,nm)	
	double	precision	pn(mm,nm,8)	
	double	precision	Phi(it)	

Example Workflow

●  Enable data collection for memory analysis experiment
and build program with CCE’s program library feature

●  Run program to collect data

●  Pass program library and memory traffic data to Reveal

●  Reveal shows best candidates for allocation in MCDRAM
and identifies points of allocation

●  Reveal helps insert allocation directives into source

CUG 2016 Copyright 2016 Cray Inc.
28

Summary

● Users continue to need tools to help find critical
performance bottlenecks within a program

● Cray performance tools offer functionality that reduces
the time investment associated with porting and tuning
applications on new and existing Cray systems

CUG 2016 Copyright 2016 Cray Inc.
29

Q&A

Heidi Poxon
heidi@cray.com

Copyright 2016 Cray Inc.
30

CUG 2016

Legal Disclaimer

Copyright 2016 Cray Inc.
31

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual
property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers
and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray
Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of
Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect
actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, and URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT,
CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model
number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant
to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used
in this document are the property of their respective owners.

CUG 2016

