
Parallel Synchronization of
Multi-Pebibyte File Systems

Andy Loftus
National Center for Supercomputing Applications

University of Illinois
Urbana, IL 61820

Email: aloftus@illinois.edu

Abstract—When challenged to find a way to migrate an entire
file system onto new hardware while maximizing availability
and ensuring exact data/metadata duplication, NCSA found that
existing file copy tools were insufficient to accomplish the task
in a timely manner. So they set out to create a new tool. One
that would scale to the limits of the file system and provide a
robust interface to adjust to the dynamic needs of the cluster.
The resulting tool, Psync (Parallel Sync), effectively manages
numerous syncs running in parallel. As a synchronization tool, it
correctly duplicates both contents and metadata of every inode
from the source file system to the target file system including
special files such as soft and hard links, and additional metadata
such as ACLs and Lustre stripe information. Psync supports
dynamic scalability features to add and remove worker nodes on
the fly and robust management capabilities that allow an entire
run to be paused and unpaused or stopped and restarted. Psync
has been run successfully on hundreds of nodes with multiple
processes each. Spreading the load of synchronization across
thousands of processes results in relatively short runtimes for
an initial copy and even shorter runtimes for successive runs
(to update a previous sync with new and changed files). This
paper will present the overall design of Psync and its use as a
general purpose tool for copying large amounts of data quickly
and efficiently.

I. INTRODUCTION

As file systems grow into the pebibyte range, the time to
manage the data increases as well. Tasks that used to take
minutes now take hours and those that took hours now take
days. Building file systems of this size requires parallelism and
likewise the tools to manage them need to be parallel in order
to finish in a reasonable amount of time. In terms of runtime,
copying an entire file system is certainly the most time
consuming management task. Accomplishing this in under
24 hours is possible, in theory, if enough parallelism is used
and if the filesystem can handle the load. However, standard
file synchronization tools are not parallel, hence the need for
new tools to manage these tasks. This paper introduces a tool
that can perform a file system synchronization in parallel,
achieving a copy of multiple pebibytes of data in a relatively
short period of time (determined by the scale of parallelism
available).

A. Conventions

Given some possible confusion about the spelling of
“filesystem” vs. “file system”, a note about the difference
is warranted. The spelling “filesystem”, one compound word,

refers to the technical implementation of the underlying data
storage mechanism. For example: ext4, lustre, and gpfs are all
examples of “filesystems”. The spelling, “file system”, as two
words, refers to the actual data that is stored and its relevant
directory structure.

Being that this paper is about file syncronization, there is
always a source file and a target file. To reduce wordiness, the
word “source” may be dropped from “source file” when the
meaning is clear. If the word “file” is used without specifying
whether it is the source or the target, assume the source file
is being referenced.

II. MOTIVATION

The driving factor for the creation of psync arose from the
need to update firmware on the filesystem hardware serving
the Blue Waters supercomputer at NCSA. The nature of the
update would require a destructive reformat of the filesystem.
Additionally, the update procedure would take several days to
complete, which is an unacceptable length of time to let the
entire machine sit idle. The resulting plan was to synchronize
all the data from the file system to a second location, so that the
supercomputer could continue to operate while the hardware
was updated. This process would then be repeated to move
the data back and repeated again on the other file systems in
a rolling fashion till all the hardware was updated. Given the
high cost of an idle supercomputer, the amount of downtime
must also be minimized. These two tasks, synchronizing data
and minimizing downtime, drive the goals of psync.

III. DESIGN

A. Synchronizing Data

Goal one, synchronizing data between two file systems,
is already solved by rsync. However, rsync does not meet
the second goal of minimizing downtime because it is single
threaded and would take multiple weeks to complete a sync
of this size. One solution is to run multiple rsyncs in parallel,
though care must be taken to ensure each rsync operates on
non-overlapping parts of the file system. Breaking the file
system into useful chunks usually requires some forehand
knowledge of the layout of the file system, which makes
this approach difficult and unique to each file system. Rsync
also suffers in performance when it encounters a directory
containing millions of files and also for a directory with many



large files. Psync addresses these issues by running one rsync
per file. This may seem counter-productive given the expense
of forking a new rsync process for each file. However, the
startup time is constant no matter how many processes are run
in parallel. The rsync startup cost is inversely proportional to
the number of workers while the files processed per unit of
time is directly proportional to the number of workers.

B. Minimizing Downtime

Goal two, minimizing downtime, is addressed in two ways:
by fast copying and minimizing the total amount of data
to copy. Fast data copy is accomplished by copying files in
parallel, which includes walking the directory tree, in parallel,
to find the files that need to be copied. Copying files in parallel
is discussed above. Walking the directory tree in parallel is
accomplished by operating on each directory independently,
without recursing. Starting with the top level directory, every
sub-directory becomes a new directory scan that will be
handled by some other worker in parallel.

The second part of minimizing downtime is to minimize
the amount of data to copy. Copying less data should, quite
obviously, complete in less time and thus require a shorter
downtime. This is realized by copying as much data as possible
ahead of time while the file system is still live. Similar to
rsync, the first psync run will copy every file since the target
is empty, but successive runs will copy only new and/or
changed files. Also during successive syncs, files deleted from
the source will be deleted from the target. Finally, during
the actual downtime, the filesystem is quiesced and a final
synchronization will bring the target file system into perfect
sync with the source file system.

C. Distributed Task Queue

With the overall job of file system synchronization broken
down into small, individual tasks, the remaining chore is to
run all the tasks. This is the role of the task queue. The task
queue is a centralized data structure that holds the individual
tasks and provides an interface to pull tasks for working and
push tasks for future work. The task queue also ensures that
each task is executed only once. Psync defines workers that
query the task queue to get work. Some tasks may generate
new tasks, such as when a “directory scan” discovers new sub-
directories. New tasks are pushed onto the queue where they
will eventually be pulled and executed by a worker. At the start
of psync, a single task is pushed onto the queue, containing
the top level source and target directories. A single worker will
execute the task. As the top level directory is scanned, each file
will be pushed onto the queue as a new “file sync” task. If the
top level directory contains subdirectories, each subdirectory
will be pushed onto the queue as a new “directory scan” task.
These two task types, “file sync” and “directory sync”, are the
core part of psync. Any worker can perform either task. This
allows both parts of the synchronization, walking the directory
tree and file sync, to happen in parallel.

IV. DESIGN CHALLENGES

Designing a fast file synchronization tool requires a focus
on correctness and performance. Each are equally important
in making the development effort worthwhile.

A. Correctness

One of the requirements for the data move on the Blue
Waters machine was to preserve hardlinks. The algorithm to
do this is as follows:

1) Get the source file FID.
2) Check the target filesystem for a file (in a pre-determined

temp directory) with a name matching the source file
FID.

3) If a temp file does not exist, copy the source file to the
temp file.

4) Create a hardlink on the target filesystem linking the
target filename to the temp file.

Following this algorithm, only the first instance of a file with
multiple hard links will be physically copied to the target
filesystem. Any additional hard links found on the source file
system will only be linked to the appropriate name on the
target file system. It should be noted that there is no initial
check if the file has multiple hard links. The algorithm is
applied to all files. The reason for this is, when syncing a
live file system, additional hard links may be created at any
point in time. If a file was copied without first creating a temp
file, and then the source file had additional names linked to
it, the first file copy on the target file system would point to a
different inode than the rest of the link names that were copied
using the temp file method. It is also important to note that
the temp file copy algorithm described above is almost exactly
how rsync copies files. The difference is that rsync copies to a
random temp file and, after linking the target filename, deletes
the temp file. Since psync is already managing the temp file
creation, rsync is invoked with the “in-place” option.

The advantage to using rsync for file and directory copies
is that rsync already has the capability to sync the associated
metadata. When operating on Lustre, psync retrieves the stripe
count of the source item (file or directory) and pre-creates the
target item with the appropriate stripe count.

The final step of correctly copying files is to verify that
the target file exactly matches the source file. Checksums
are calculated for both the source and the target files using
md5. Psync logs matching checksums with INFO severity and
mismatched checksums with WARNING severity.

B. Rsync Performance

Most of the performance gains are a direct result of op-
erating in parallel. A technical detail that bears mention is
the performance of rsync on large files. Rsync uses relatively
small block sizes for copying files, resulting in exponentially
increasing transfer times as file size increases. To deal with
this, files larger than 512 MiB are copied using the standard
linux tool ‘dd’ with a 4 MiB transfer block size. The amount
of time saved during file copy far outweighs the added time
cost of the extra process startup.



V. IMPLEMENTATION

Psync is written in Python and uses Celery[1] for its task
queue. Celery provides a framework for creating the workers
and tasks. Celery also handles the details of interacting with
the task queue. The task queue itself is an AMQP broker, and
while Celery supports several, RabbitMQ [2] is the only fully
AMQP compliant broker. Redis [3] is used as a centralized
log system.

VI. TASK DESIGN

There are currently four tasks defined in psync: syncdir,
syncfile, synchardlink, and syncdirmeta. The two primary tasks
are syncdir and syncfile, which do the majority of the work.
The latter two tasks handle special cases. Each task will be
discussed in turn.

A. Syncdir

Syncdir operates as follows:

1) List all entries in the source directory
2) List all entries in the target directory
3) Delete any target entries that no longer exist in the

source directory
4) Process all entries of type dir

a) Create target subdirectory (if needed)
b) Enqueue subdirectory as a new syncdir task

5) Process all entries of type file (including special files)
a) Enqueue each entry as a new syncfile task

6) Enqueue directory as a new syncdirmeta task.

B. Syncfile

The syncfile task uses the following algorithm:

1) If target ctime is newer than source ctime:
a) Return

2) If sizes or mtimes don’t match:
a) If file is large, invoke dd
b) Invoke rsync
c) Return

3) If any other metadata values dont match
a) Invoke rsync

C. Synchardlink

The synchardlink task is identical in function to the syncfile
task. It differs only in that instances of this task get posted to a
special queue. The need for a separate queue for hardlinks is to
prevent a race condition from occuring when a new hardlink is
first being created on the target filesystem. If multiple syncfile
tasks, working on different filenames sharing the same inode,
start close enough in time to each other, each task will attempt
to create the tempfile. One will succeed and the others will
fail. By processing hardlinks serially, this race condition is
avoided.

D. Syncdirmeta

The purpose of the syncdirmeta task is to sync just the
metadata of a directory inode. Similar to synchardlink, this task
is also processed on a separate queue. The need for a special
queue is to ensure that directory metadata is correct after the
directory stops changing. Each time a file or subdirectory
is added (or removed) from a parent directory, the parent
directory’s inode changes. Since the creation of the files and
subdirectories happens in other tasks in parallel, the mtime
of the parent directory will be wrong unless the directory
entry is sync’d last. The queue that holds syncdirmeta tasks is
processed last to ensure that directories have the correct mtime
at the end of the sync.

VII. PERFORMANCE ANALYSIS

Psync was tested on the Blue Waters supercomputer using
Cray XE6 compute nodes. Each node contains two AMD
Interlagos model 6276 CPUs running at 2.3 GHz and 64 GiB
of RAM. The compute nodes connect to LNET routers via the
Cray Gemini high speed network, which runs at an average
speed of 6 GiB/s. The LNET routers use QDR inifiniband to
connect to Cray Sonexion 1600 filesystem appliances.

During a recent outage, a test psync run copied the Home
file system to the Projects file system. The test started out with
a small number of nodes and processes and ramped up to a
final count of 2384 processes on 398 nodes.1

Since the test was run during an outage, psync was the
only activity on the file system. Using completed inodes as
measure of progress, the sync moved 2.25% of the file system
per hour, resulting in a 44 hour runtime. In terms of data
transfer rate, this equates to 1.5 GiBps and 757 inodes per
second. The latter of these two measurements is more useful
since the primary bottleneck is the single MDS server keeping
up with metadata requests. This is shown in Figure 1., where
the metadata transactions per second from psync is fully within
the expected maximum range for the MDS (as calculated by
mdtest during acceptance testing.) Another measure of MDS
load is the disk %util reported by the sar command. For this
psync run, the disks on the MDS were consistently at or above
98% utilized.

During a successive psync run, when an intial copy already
exists on the target, far fewer nodes are required to push the
MDS server to it’s peak load in terms of transactions per
second and disk %-utilization. Continuing the test run from
earlier, a successive psync was run, again from the Home file
system to the Projects file system. Due to time constraints,
the re-sync was not able to run during the outage. The re-sync
was run with 800 processes on 100 nodes and was run on a
live filesystem. Using metrics of avg file create time and avg
ls time, it was determined that more processes would degrade
interactive file system response time too much. Even at this
small (relative to the initial sync) number of processes, the
entire re-sync took 16 hours, which is 6.25% per hour, or

1The first 200 nodes ran 4 processes each and the last 198 nodes ran 8
processes per node.



Fig. 1. The two horizontal lines show the range of maximum transactions
per second (25K-30K) for file creates on the MDS as calculated using mdtest
during acceptance testing for Blue Waters. The graph labels are “wtps” (write
transactions per second), “rtps” (read transactions per second), and “tps”
(combined transactions per second).

2083 inodes per second. Remember that most of those inodes
are simply being checked and very few are actually new or
changed files that require an actual data transfer.

VIII. LIMITATIONS

Psync was initially written to synchronize an entire file
system and as such requires to be run with full superuser
privileges. At NCSA, the normal job schedulers do not allow
jobs to run as root, which is why psync was designed to use
its own task queue for scheduling work. Therefore, setting up
and running psync requires shell access to the nodes it will
run on. This is usually outside of the normal work flow for the
typical cluster. When using cluster compute nodes they should
be removed from the normal scheduling process to prevent
jobs from running on those nodes.

Psync is also still very specific to Lustre. While all filesys-
tem interaction is provided by an external module, there are
no modules currently written to support filesystems other than
Lustre.

IX. FUTURE WORK

Psync is still a very young project and there are many areas
where it could be improved and extended. What follows is a
short, but not exhaustive list of possible areas for improvement.

A potential performance enhancement would be to interact
with the filesystem using efficient, low level libraries instead
of command line tools. On Lustre, invoking the command line
tool lfs getstripe causes the specified file to be opened twice,
which is expensive since it involves communication to both the
MDS and any OSSs involved. Getting the stripe information
for a file or directory without requiring communication with
the OSS or additional MDS messages could have far reaching
impact since this is done for every file that is copied and every
directory that has changed.

As touched upon in the Limitations section, psync could
be adapted to function on other filesystem types. The only
requirement to do so would be to provide a module that
provides functions for interacting with the filesystem. Two
examples of additional filesystem modules are a generic Posix
module and a GPFS module.

One of the pain points of using Lustre is choosing a useful
stripe count for files. Psync could very easily be adjusted to
review source file stripe count and write the new, target file
with a different stripe count. The new stripe count would be
based on a size-per-stripe threshold passed as a customizable
parameter. Additionally, using the same file system as both
the source and the target would allow psync to be used as a
general restriping tool.

As of the current writing of psync, the checksums of the
source and target files are calculated as part of the syncfile
task. However, this has a slight potential for error since the
data read for either file could come from the worker nodes
local cache. If this happens, the data that was actually written
to disk is never really checked. A better approach is to enqueue
the checksum as an additional task so that another node will
calculate the checksums. With a different node executing the
checksum task, that node will not have any data cached and
will get the actual file data that was written to disk.

A second possible improvement resulting from performing
checksums as their own task is the possibility for improved
performance by isolating checksum tasks to machines best
suited to the task. Checksum calculation tasks could be run on
machines with fast CPU’s or even GPU’s while file transfer
tasks could be run on machines with slower CPU’s but fast
network and fast filesystem access.

ACKNOWLEDGMENT

This work was funded by the National Science Foundation
in conjunction with the Blue Waters project and NCSA.
Special thanks go to Alex Parga (NCSA) for the hardlink
solution and countless other contributions. Andy Loftus would
also like to thank Chad Kerner (NCSA) and David McMillan
(CRAY).

REFERENCES

[1] Celery: Distributed Task Queue (http://www.celeryproject.org/)
[2] RabbitMQ - Messaging that just works (https://www.rabbitmq.com/)
[3] Redis (http://redis.io/)


