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Abstract— Parallel linear equation solvers are one of the most 
important components determining the scalability and 
efficiency of many supercomputing applications. Several 
groups and companies are leading the development of linear 
system solver libraries for HPC applications. In this paper, we 
present an objective performance test study for the solvers 
available on a Cray XE6/XK7 supercomputer, named Blue 
Waters, at National Center for Supercomputing Applications 
(NCSA). A series of non-symmetric matrices are created 
through mesh refinements of a CFD problem. PETSc, 
MUMPS, SuperLU, Cray LibSci, Intel PARDISO, IBM 
WSMP, ACML, GSL, NVIDIA cuSOLVER and AmgX solver 
are employed for the performance test. CPU-compatible 
libraries are tested on XE6 nodes while GPU-compatible 
libraries are tested on XK7 nodes. We present scalability test 
results of each library on Blue Waters, and how far and fast 
the employed libraries can solve the series of matrices. 

Keywords-parallel linear equation solver; dense direct solver; 
sparse direct solver; sparse iterative solver; CPU-compatible 
library; GPU-compatible library 

 

I. INTRODUCTION  
Solving linear system of equations is responsible for 

70%–80% of the total computational time in many problems 
in computational science and engineering such as continuum 
and quantum mechanics, multi-physics, geophysics, 
optimization, linear programing, circuit design etc. Parallel 
linear equation solvers are therefore one of the most 
important components determining the scalability and 
efficiency of many supercomputing applications. Since no 
one wants to reinvent the wheel, most of HPC simulation 
programs employ standard libraries in order to solve their 
system of equations. At the present time, several groups and 
companies are leading the development of linear system 
solver libraries, and they have released their own 
performance test results in public. In this paper, we present 
an objective performance test results for parallel linear 
system solvers on Blue Waters. 

Blue Waters [1, 2] is one of the most powerful 
supercomputers in the world. It can complete more than 1 
Peta-Flops per second on a sustained basis and more than 13 
times that at peak speed. Blue Waters is supported by the 
National Science Foundation (NSF) and the University of 

Illinois; the National Center for Supercomputing 
Applications (NCSA) manages the Blue Waters project and 
provides expertise to help scientists and engineers take full 
advantage of the system for their research. The system 
opened up to the science community at large on March 28, 
2013. Blue Waters is a Cray XE6/XK7 system consisting of 
more than 22,500 XE6 compute nodes augmented by more 
than 4200 XK7 compute nodes in a single Gemini 
interconnection fabric. The XE6 nodes are populated with 2 
AMD Interlagos model 6276 CPU processors and 64 GB of 
physical memory. The XK7 nodes are equipped with one 
Interlagos model 6276 CPU processor with 32 GB system 
memory and one NVIDIA GK110 "Kepler" accelerator 
K20X with 6 GB device memory.  

A series of non-symmetric matrices is generated from a 
CFD problem and the matrix size is from 10 thousand 
equations to 5.5 million equations. We employ dense direct 
solvers, sparse direct solvers, sparse iterative solvers on 
CPUs and GPUs: Portable, Extensible Toolkit for Scientific 
Computation (PETSc) [3], MUltifrontal Massively Parallel 
sparse direct Solver (MUMPS) [4], Supernodal LU 
(SuperLU) [5], Cray LibSci, Intel Math Kernel Library 
Parallel Direct Sparse Solver (MKL PARDISO), IBM 
Watson Sparse Matrix Package (WSMP) [6], AMD Core 
Math Library (ACML), GNU Scientific Library (GSL), 
NVIDIA cuSOLVER, and NVIDIA AmgX library [7]. The 
performance tests are categorized into two groups: single-
node tests for the best SMP performance and multiple-node 
tests for the best interconnect performance. According to 
Blue Waters charging policy, we compare the performance 
of the solvers based on the same number of XE/XK nodes. 
Since the purpose of this study is to compare the 
performance of solvers, we exclude the cost of I/O to read 
matrices and write solutions from the comparison.  

II. TEST PROBLEM AND LIBRARIES 

A. Non-symmetric matrices from a CFD simulation 
In this study, we employ a variational multi-scale finite 

element method for computational fluid dynamics [8] in 
order to generate a series of test matrices. The stabilized 
mixed finite element code provides a nonlinear, consistent 
tangent matrix for the given residual vector. Due to the 
Eulerian specification of the flow field, the convective-time 
derivative term in the Navier-Stokes equation produces non-



symmetrical entries in the matrices. This non-symmetric 
aspect requires a totally different approach for linear 
equation solvers in CFD from computational simulations in 
solid mechanics or other elliptic problems with symmetric 
matrices. The test problem is a body force-driven fluid flow 
in a unit volume of cubic domain. It is filled with 8-node 
linear hexahedral finite elements. Each node of elements has 
4 degrees-of-freedom (DOFs) composed of the velocity 
vector and the scalar pressure. The body force presented in 
[8] is prescribed in every Gaussian quadrature point in 
elements; as a result, the body force is directly injected into 
the residual vector. The Dirichlet boundary condition is 
applied for the velocity field on the boundary surface, while 
the pressure is set to zero only at the centroid of the domain. 
A series of non-symmetric consistent tangent matrices are 
generated through the mesh refinement. An equal number of 
elements are assigned along x-, y- and z-axis. The number of 
elements along each axis (i.e., n) is used as the index of the 
linear hexahedral mesh (e.g., LHMn) that is composed of n3 
hexahedral elements in the domain. The matrices are saved 
in a compressed row storage format (CSR, CRS or Yale 
format) in double precision, and then they are converted into 
coordinate list (COO) format or matrix market (MM) format  

as required. The sizes of matrices are from 10 thousands to 
5.5 millions equations, and the numbers of non-zero 
components are from 0.9 millions to 0.6 billions 
respectively. Table 1 presents characteristics of non-
symmetric matrices tested in this study. Figure 1 shows the 
graphical representation for non-zero components. The 
condition number of non-symmetric matrices grows from 
16,600 to 52.7 millions as the number of equations increases 
as presented in Figure 2. 

 
 

Figure 2. Condition numbers of non-symmetric matrices 

 
(a) LHM14  (b) LHM28  (c) LHM56  (d) LHM112 

Figure 1. Graphical representation for non-zero components (non-zeros: black, zeros: gray) 
 

Table 1. Characteristics of non-symmetric matrices 

Matrix Number of finite 
elements 

Number of 
equations 

Number of non-
zero components 

Sparsity 
(Density) (%) 

Condition 
number* 

File size in 
CSR format 

LHM14 143 9,965 891,083 0.8974 1.66E+04 32 MB 
LHM20 203 29,837 2,835,299 0.3185 6.33E+04 102 MB 
LHM24 243 52,125 5,066,723 0.18648 1.25E+05 181 MB 
LHM28 283 83,437 8,239,907 0.11836 2.25E+05 294 MB 
LHM30 303 102,957 10,231,499 0.09652 2.94E+05 365 MB 
LHM32 323 125,309 12,520,739 0.07974 3.75E+05 447 MB 
LHM36 363 179,277 18,075,107 0.05624 5.91E+05 645 MB 
LHM46 463 377,197 38,621,387 0.02715 1.54E+06 1.4 GB 
LHM56 563 684,317 70,756,067 0.015109 3.33E+06 2.5 GB 
LHM60 603 843,117 87,435,299 0.012300 4.38E+06 3.1 GB 
LHM62 623 930,989 96,677,579 0.011154 4.99E+06 3.4 GB 
LHM64 643 1,024,756 106,549,283 0.010146 5.65E+06 3.8 GB 
LHM66 663 1,124,637 117,071,147 0.009256 6.39E+06 4.1 GB 
LHM68 683 1,230,797 128,263,907 0.008467 7.19E+06 4.5 GB 
LHM70 703 1,343,437 140,148,299 0.007765 8.07E+06 4.9 GB 
LHM80 803 2,010,557 210,670,499 0.005212 1.37E+07 7.4 GB 
LHM112 1123 5,545,789 586,210,979 0.0019060 5.27E+07 21 GB 

* Condition number is estimated via the error analysis routine with full statics of MUMPS (i.e., ICNTL(11) is set to 1) 
 



B. Employed Linear Equation Solver Libraries 
We employ PETSc, MUMPS, SuperLU, Cray LibSci, 

Intel MKL PARDISO, IBM WSMP, ACML, GSL, NVIDIA 
cuSOLVER, and NVIDIA AmgX library for the 
performance test. Cray-optimized modules are used for some 
solver libraries, and we install other libraries on Blue Waters 
for this study.  

The Cray modules tested in this study are as follows:  
• Cray LibSci version 13.3.0 for an optimized 

LAPACK with SMP performance on Cray XE 
nodes,  

• Cray PETSc version 3.6.1.0 for KSP Linear 
Equations Solvers on Cray XE nodes,  

• Cray TPSL version 1.5.2 for MUMPS, 
SuperLU_DIST and ParMetis on Cray XE nodes,  

• Intel Composer XE version 15.0.3.187 for Intel 
MKL PARDISO solver on Cray XE nodes,  

• ACML version 5.1.1 for an optimized LAPACK 
with SMP performance on Cray XE nodes,  

• GSL version 1.16-2015-04 for LAPACK on Cray 
XE nodes,  

• NVIDIA cudatoolkit version 7.0.28-1.0502.10742.5. 
1 for cuSolver on Cray XK nodes.  

The followings are the user-built libraries on Blue 
Waters:  

• SuperLU_DIST version 4.3 for MPI on Cray XE 
nodes,  

• MUMPS version 5.0.0 for MPI on Cray XE nodes,  
• IBM WSMP version 16.01.10 on Cray XE nodes,  
• NVIDIA AmgX version 1.2.1-build112 and 1.2.0-

build108 on Cray XK nodes.  
 

 

III. SINGLE-NODE TEST RESULTS FOR THE BEST SMP 
PERFORMANCE  

In many HPC applications, the optimized single-node 
performance is one of the most crucial building blocks for 
the optimization of probabilistic analysis or hybrid MPI-
OpenMP/ OpenACC implementation. In this section, one 
XE6 or XK7 node on Blue Waters is assigned to solve the 
series of test matrices. Cray LibSci, ACML, GSL, MUMPS, 
SuperLU, Intel MKL PARDISO, and PETSc are performed 
on a single XE node. NVIDIA cuSolver and AmgX solvers 
are executed on one XK node.  

A. Dense matrix direct solvers on an XE node – Cray 
LibSci vs. ACML vs. GSL vs. Naïve LU factorization 
The LU factorization routine in Cray LibSci, ACML and 

GSL are employed in this test. As a reference, a naïve LU 
factorization code is also written and tested. For Cray LibSci 
and ACML, a simple code using DGESV subroutine is 
written in Fortran 90, and built with corresponding modules. 
For GSL, a small code using GSL_LINALG_LU_DECOMP 
and GLS_LINALG_LU_SOLVE subroutines is written in C 
and built with the GSL module. Cray LibSci and ACML 
codes are tested with a single thread as well as 32 threads 
(i.e., one thread per one integer core), while GSL and naïve 
codes are run only with a single thread. Since the LU 
factorization routine solves for a dense matrix, the 
performance is bounded by the memory capacity. Cray 
LibSci and ACML complete the solution process for 
matrices with up to 83,437 equations (i.e., up to LHM28). 
GSL and the naïve code are tested only for LHM14 and 
LHM20 due to unacceptably long processing time with a 
single thread. Speedups of Cray LibSci and ACML with 32 
threads are 12.3 – 17.8 and 8.4 – 9.8, respectively as 
presented in Table 2. All cases follow the third-order time 
complexity that is ideal for dense matrix direct solvers as 
shown in Figure 3.  

B. Sparse matrix direct solvers on an XE node – MUMPS 
vs. SuperLU-DIST vs. Intel MKL PARDISO  
Parallel direct solvers for non-symmetric sparse matrices 

are tested on a single XE node. MUMPS and SuperLU-DIST 
libraries from Cray TPSL module are executed with 16 MPI 
processes (i.e., one MPI-rank per one Bulldozer core) on an 
XE node, while Intel MKL PARDISO uses 16 threads (i.e., 
one thread per one Bulldozer core). Since sparse direct 
solvers are more efficient in memory usages than dense 
direct solvers, they can solve larger matrices than LHM28 
that is the biggest solvable matrices of dense direct solvers 
on one XE node. MUMPS solves the system of the equations 

 
Figure 3. Wall time of dense direct solver on an XE node 

 
Table 2. Wall time of dense direct solvers on an XE node 

Matrix  
Number 

of 
equations 

Cray LibSci ACML GSL Naïve LU 

1 thread 32 threads* Speedup 1thread 32 threads Speedup 1 thread 1 thread 

LHM14 9,965 52.13 s 4.23 s 12.3 46.45 s 5.55 s 8.4 631.3 s 582.38 s 
LHM20 29,837 1373.7 s 86.27 s 15.9 1198.3 s 125.52 s 9.5 16818.9 s 19078.4 s 
LHM24 52,125 7325.4 s 429.7 s 17.0 6348.2 s 649.97 s 9.8 - - 
LHM28 83,437 30017 s 1689.2 s 17.8 25833.7 s 2671.2 s 9.7 - - 
* one thread per one integer core (two threads per one Bulldozer core) 

 



for matrices up to LHM56 with 684,317 equations, and 
SuperLU-DIST is good enough to solve LHM62 with 
930,989 equations. Intel MKL PARDISO accomplishes the 
most optimized memory usage performance, so it can solve 
the largest matrix (i.e., LHM68 with 1,230,797 equations) 
among sparse direct solvers on one XE node. Table 3 shows 
wall time of each solver on an XE node with 16 Bulldozer 
cores. For most matrices, they show the second-order time 
complexity that is ideal for sparse direct solvers, as presented 
in Figure 4. Intel MKL PARDISO and MUMPS even 
establish the first-order time complexity for small size of 
matrices.  

 

 
C. Direct solvers on an XK node – cuSolver_dense_QR vs. 

cuSolver_sparse_QR  
The cuSolver library is a high-level package based on the 

cuBLAS and cuSPARSE libraries, and it provides useful 
LAPACK-like features, such as common matrix factorization 
and triangular solve routines for dense matrices, a sparse 
least-squares solver and an eigenvalue solver. In addition, 
cuSolver provides a new re-factorization library useful for 
solving sequences of matrices with a shared sparsity pattern. 
Since CUDATOOLKIT 7.0 does not support LU 
factorization on GPU yet, we alternatively use QR 

factorization to solve the systems of linear equations. Table 4 
presents simplified steps for dense QR factorization on GPU, 
sparse QR factorization on GPU and sparse QR factorization 
on CPU, implemented in this study.  

 
The NVIDIA GK110 Kepler accelerator K20X on one 

XK node has 6GB of memory on the device; therefore, the 
performance of cuSolver is bounded by the memory capacity 
due to high demand for memory of the QR factorization. The 
dense QR solver on GPU can solve only LHM14 and the 
sparse QR solver on GPU completes the solution process for 
LHM14 and LHM20. For larger matrices, the programs 
return the out of memory (OOM) error. To confirm that it is 
not from another issue, sparse QR solver on CPU is tested. 
Since one Interlagos CPU processor on an XK node has 32 
GB of system memory that is much larger than 6GB of 
memory on GPU, sparse QR on CPU can solver up to 
LHM28, as presented in Table 5. Figure 5 shows wall times 
of dense/sparse direct solvers on GPU and CPU.  Sparse QR 
solvers on GPU and CPU follow the ideal 2nd order time 
complexity while direct QR solver on GPU follows the ideal 
3rd time complexity.  

 

 

Table 3. Wall time of parallel sparse direct solvers on an XE node with 
16 Bulldozer cores 

Matrix 
Number 

of 
equations 

MUMPS 
(Cray 
TPSL) 

Intel 
MKL 

PARDISO 

SuperLU 
(Cray 
TPSL) 

LHM14 9,965 0.3808 s 0.4317 s 0.4348 s 
LHM20 29,837 1.3864 s 1.333 s 1.7960 s 
LHM24 52,125 3.027 s 2.860 s 3.776 s 
LHM28 83,437 6.170 s 5.889 s 7.790 s 
LHM30 102,957 9.485 s 8.051 s 10.689 s 
LHM32 125,309 12.650 s 11.142 s 14.564 s 
LHM36 179,277 22.85 s 20.79 s 25.79 s 
LHM46 377,197 83.91 s 92.52 s 88.41 s 
LHM56 684,317 295.2 s 248.3 s 264.9 s 
LHM60 843,117 OOM 408.1 s 385.8 s 
LHM62 930,989 OOM 477.8 s 455.2 s 
LHM64 1,024,756 OOM 601.5 s OOM 
LHM66 1,124,637 OOM 696.9 s OOM 
LHM68 1,230,797 OOM 872.2 s OOM 

OOM: Out of memory during the factorization process 
 

 
Figure 4. Wall time of sparse direct solver on an XE node 

 

Table 4. Summary of steps for QR factorization on GPU or CPU 
cuSolver_dense_QR on GPU 

step 1: copy matrices (i.e., A) and residual vectors (i.e., B) to device 
(i.e., GPU) 

step 2: solve A*x=B on GPU (call cusolverDnDgeqrf, 
cusolverDnDormqr, and cublasDtrsm subroutines on device) 

step 3: copy solution vectors (i.e., x) to host (i.e., CPU) 
cusolver_sparse_QR on GPU 

step 1: copy matrices (i.e., A) and residual vectors (i.e., B) to device 
(i.e., GPU)  

step 2: solve A*x = b on GPU (i.e., call cusolverSpDcsrlsvqr 
subroutine on device)  

step 3: copy solution vectors (i.e., x) to host (i.e., CPU) 
cusolver_sparse_QR on CPU 

step 1: solve A*x = b on CPU (i.e., call cusolveSpDcsrlsvqrHost 
subroutine on host)  

 

Table 5. Wall time of direct cuSolvers on an XK node 

Matrix 
Number 

of 
equations 

Dense QR 
on GPU 

Sparse QR 
on GPU 

Sparse QR 
on CPU 

(1 thread) 
LHM14 9,965 7.04 s 6.63 s 76.1 s 
LHM20 29,837 OOM 58.5 s 921.2 s 
LHM24 52,125 OOM OOM 3303.2 s 
LHM28 83,437 OOM OOM 10165.6 s 

 

 
Figure 5. Wall time of direct cuSolvers on an XK node 

 



D. Sparse iterative solvers on an XE node - PETSc  
Sparse iterative solvers are useful for solving linear and 

nonlinear problems involving a large number of variables 
where sparse direct solvers would be prohibitively 
expensive. In this test, we use PETSc for sparse iterative 
solvers on an XE node. PETSc provides many popular 
Krylov subspace (KSP) iterative methods and a variety of 
preconditioners (PC). BiConjugate Gradient (bicg), 
Biconjugate gradient stabilized (bcgs), Generalized Minimal 
Residual (gmres), Flexible Generalized Minimal Residual 
(fgmres), Deflated Generalized Minimal Residual (dgmres), 
Generalized Conjugated Residual (gcr), Transpose-Free 
Quasi-Minimal Residual (tfqmr), and Tony Chan’s 
Transpose-Free Quasi-Minimal Residual (tcqmr) KSP 
methods are tested with Jacobi, Block Jacobi (bjacobi), and 
Additive Schwarz (asm) preconditioners. The iterative 
process requires convergence test based on the L2-norm of 
the residual. The convergence test is decided by three 
quantities: the decrease of the residual norm relative to the 
norm of the right hand side, rtol, the absolute size of the 
residual norm, atol, and the relative increase in the residual, 
dtol. Even without passing the convergence test, the iterative 
process stops when the number of total iterations reaches to 
the maximum number of allowable iteration, maxits. The 
default values are set to rtol=10-5, atol=10-50, dtol=105, and 
maxits=104. These values are okay with usual cases, but we 
employ much smaller value, 10-16 for rtol in order to 
establish a fair comparison with direct solvers, such as 
MUMPS, SuperLU, Intel MKL PARDISO, and IBM WSMP 
solvers.  

Most combinations of KSP methods with preconditioners 
fail to get converged solutions. Table 6 shows a few 
successful combinations of KSP and PC that return 
converged solutions for the non-symmetric matrices. BCGS 
with ASM and DGMRES with ASM show limited numerical 
stabilities as condition number of matrices increases. BICG 
with ASM is better than them, but it does not yield a 
converged solution for LHM112. TFQMR with ASM can 
solve all of the non-symmetric matrices. Figure 6 shows wall 

times of the successful combinations of KSP and PC. All of 
the plots are drawn between 1st order and 2nd order time 
complexity lines.  

E. Sparse iterative solvers on an XK node – NVIDIA AmgX  
AmgX library provides a simple path to accelerated core 

solver technology on NVIDIA GPUs. Its flexible 
configuration allows for nested solvers, smoothers, and 
preconditioners. It supports Ruge-Steuben algebraic 
multigrid, un-smoothed aggregation algebraic multigrid, 
Krylov methods (e.g., PCG, GMRES, and BiCGStab), and 
smoothers such as Block-Jacobi, Gauss-Seidel, incomplete 
LU, Polynomial, and dense LU. In this sub-section, we use 
AmgX on one GPU in an XK node. CSR format matrices are 
converted to Matrix Market (MM) format. The maximum 
number of iterations and the relative residual tolerance for 
the convergence are set to 10,000 and 10-12, respectively. The 
mode parameter for AmgX is set to dDDI; as a result, the 
code runs on the device (i.e., GPU) with double precision for 
the matrix and the vector, and the index type is set to 32-bit 
integer. The code is built with CUDATOOLKIT version 
7.0.28-1.0502.10742.5.1 on Blue Waters. Table 7 shows the 
configuration used in this test. Table 8 and Figure 7 show 

Table 6. Wall time of sparse iterative solvers on an XE node 
Matrix Number of 

equations 
bicg (ksp) with 

asm (pc) 
bcgs (ksp) 

with asm (pc) 
dgmres (ksp) 
with asm (pc) 

tfqmr (ksp) with 
asm (pc) 

LHM14 9,965 0.32 s 0.14 s 0.28 s 0.21 s 
LHM20 29,837 1.36 s 0.55 s 1.18 s 0.67 s 
LHM24 52,125 2.95 s 1.26 s 2.22 s 1.65 s 
LHM28 83,437 5.82 s 3.51 s 5.18 s 3.73 s 
LHM30 102,957 8.30 s NC 6.53 s 5.57 s 
LHM32 125,309 11.50 s NC 15.72 s 7.29 s 
LHM36 179,277 17.46 s NC 18.51 s 11.24 s 
LHM46 377,197 44.04 s NC 54.51 s 31.92 s 
LHM56 684,317 98.67 s NC 149.09 s 82.30 s 
LHM60 843,117 130.06 s NC 182.68 s 89.53 s 
LHM62 930,989 144.49 s NC NC 100.61 s 
LHM64 1,024,756 174.46 s NC NC 145.06 s 
LHM66 1,124,637 197.02 s NC NC 130.24 s 
LHM68 1,230,797 217.62 s NC NC 145.19 s 
LHM70 1,343,437 236.11 s NC NC 164.11 s 
LHM80 2,010,557 463.37 s NC NC 346.59 s 
LHM112 5,545,789 NC NC NC 4538.61 s 
NC: not converged (it means total number of iteration is equal to the maximum allowable iterations). 

 

 
Figure 6. Wall time of iterative solvers on an XE node 

 



wall time, number of iterations and total reduction in residual 
for the non-symmetric matrices. AmgX can solve matrices 
up to LHM56 with satisfying the convergence criteria. For 
matrices from LHM60 to LHM80, AmgX reaches to the 
maximum allowable iterations. For LHM112, it returns out-
of-memory error message. 

 

 

 

IV. MULTIPLE-NODES TEST RESULTS FOR THE BEST 
INTERCONNECT PERFORMANCE 

Large-scale computation for science and engineering 
projects usually requires a numerical solution of an extensive 
size of system of equations. For this purpose, MUMPS, IBM 
WSMP, SuperLU-DIST, PETSc, and NVIDIA AmgX 
solvers are employed to check their performance in this 
section.  

Table 7. Configuration for AmgX solver  
{  "config_version": 2,  
    "solver": {"print_grid_stats": 1,  
                     "store_res_history": 1,  
                     "solver": "FGMRES",  
                     "print_solve_stats": 1,  
                     "obtain_timings": 1,  
                     "preconditioner": { 
                            "interpolator": "D2",  
                            "print_grid_stats": 1,  
                            "aggressive_levels": 1,  
                            "solver": "AMG",  
                            "smoother": { 
                                 "relaxation_factor": 1,  
                                 "scope": "jacobi",  
                                 "solver": "JACOBI_L1"},  
                            "presweeps": 2,  
                            "selector": "PMIS",  
                            "coarsest_sweeps": 1,  
                            "coarse_solver": "DENSE_LU_SOLVER",  
                            "max_iters": 1,  
                            "max_row_sum": 0.9,  
                            "strength_threshold": 0.25,  
                            "min_coarse_rows": 2,  
                            "scope": "amg_solver",  
                            "max_levels": 24,  
                            "cycle": "V",  
                            "postsweeps": 2},  
                     "max_iters": 10000,  
                     "monitor_residual": 1,  
                     "gmres_n_restart": 500,  
                     "convergence": "RELATIVE_INI_CORE",  
                     "tolerance": 1e-12,  
                     "norm": "L2"}} 

 
Table 8. Wall time of sparse iterative solvers on an XK node 

Matrix 
Number 

of 
equations 

Wall 
time 

Number 
of 

iterations 

Total 
reduction 

in 
residual 

LHM14 9,965 0.24 s 1 6.42E-15 
LHM20 29,837 4.18 s 357 9.96E-13 
LHM24 52,125 6.25 s 420 9.29E-13 
LHM28 83,437 8.79 s 483 9.95E-13 
LHM30 102,957 10.98 s 529 9.81E-13 
LHM32 125,309 13.44 s 581 9.85E-13 
LHM36 179,277 24.28 s 867 9.52E-13 
LHM46 377,197 55.79 s 1175 9.94E-13 
LHM56 684,317 298.25 s 2922 9.70E-13 
LHM60 843,117 NC 10000 5.07E-11 
LHM62 930,989 NC 10000 7.54E-07 
LHM64 1,024,756 NC 10000 9.78E-08 
LHM66 1,124,637 NC 10000 6.22E-08 
LHM68 1,230,797 NC 10000 1.67E-07 
LHM70 1,343,437 NC 10000 1.32E-07 
LHM80 2,010,557 NC 10000 5.73E-08 
LHM112 5,545,789 OOM   

 

 
(a) Wall time 

 
 (b) Number of iterations 

 
(c) Total reduction in residual 

Figure 7. Performance of iterative solvers on an XK node 



A. Sparse direct solvers on XE nodes – MUMPS vs. 
SuperLU-DIST vs. IBM WSMP  
MUMPS, SuperLU-DIST and IBM WSMP solver 

libraries are built under PrgEnv-pgi on Blue Waters. 
MUMPS and SuperLU use Cray-LibSci for BLAS 
subroutines, and WSMP links against Intel MKL to fully 
support POSIX threads in WSMP. MUMPS and SuperLU 
link against METIS for reordering, and WSMP has its own 
ordering algorithm. For LHM56 and LHM80, WSMP uses 4 
MPI-ranks/node with 4 threads while MUMPS and SuperLU 
use 16 MPI-ranks/node. For LHM112, the performance of 
sparse direct solvers is bounded by the memory capacity of 
XE nodes, so number of cores and threads per node need to 
drop to the half. As a result, WSMP uses 1 MPI-rank/node 
with 8 threads, and MUMPS and SuperLU use 8 MPI-
ranks/node for LHM112  

The solution process of sparse direct solvers is composed 
of three steps: pre-factorization, numerical factorization and 
forward/backward substitution. Pre-factorization step is for 
reordering and symbolic factorization required before the 
numerical factorization. In a typical full Newton-Raphson 
nonlinear solution scheme, the reordering and symbolic 
factorization is required only one time, if the sparsity pattern 
of non-symmetric matrices keeps the same. In usual CFD 

problems without updating mesh connectivity (e.g., without 
adaptive meshing technique), the cost of pre-factorization 
step is negligible in general. Numerical factorization step is 
required when non-zero components of non-symmetric 
matrices are updated. Even though the consistent tangent 
matrix is always updated during non-linear iterations in CFD 
problems, the factorization step may be executed once a 
time-step under pseudo-linear conditions (e.g., laminar 
flows) in so called modified Newton-Raphson scheme. The 
forward/backward substitution step is required at every 
iteration-step and time-step regardless if the Newton-
Raphson scheme is full or modified. For linear and pseudo-
linear problems (e.g., laminar flows), the performance of 
forward/backward substitution step is the most important 
component to determine the overall performance, since it is 
the most repeated step during the simulations. However, in 
typical nonlinear problems solving the Navier-Stokes 
equations, both the numerical factorization and 
forward/backward substitution steps are crucial building 
blocks to determine the performance of general CFD 
simulations  (e.g., transitional or turbulent flows).  

Tables 9, 10 and 11 and Figure 8 present numerical test 
results of MUMPS, SuperLU, and WSMP solvers for 
LHM56, LHM80 and LHM112. Wall times are divided into 

Table 9. Wall time of sparse direct solvers on XE nodes – LHM56 
Nodes Cores MUMPS WSMP SuperLU_DIST 

PreFac Fac Solve Total Tflops PreFac Fac Solve Total Tflops PreFac Fac Solve Total Tflops 
1 16 32 284 9 325 0.085      44 393 1 438 0.06 
2 32 33 182 7 222 0.134 74 201 0.6 276 0.123 42 193 0.7 236 0.127 
4 64 34 100 5 139 0.244 73 95 0.6 169 0.258 40 96 0.5 137 0.25 
8 128 38 75 5 118 0.325 71 70 0.4 141 0.348 39 49 0.4 88 0.49 

16 256 42 56 5 103 0.435 70 39 0.4 109 0.622 39 28 0.4 67 0.88 
32 512 42 51 5 98 0.478 71 20 0.3 91 1.23 39 18 0.4 57 1.37 
64 1024      70 11 0.3 81 2.12 39 14 0.4 53 1.79 

Nodes := number of XE nodes 
Cores := number of MPI-rank * number of threads. (4 threads/MPI-rank for WSMP, pure MPI for MUMPS and SuperLU_DIST) 
PreFac := elapsed time for pre-factorization process including reordering and symbolic factorization 
Fac := elapsed time for factorization process 
Solve := elapsed time for forward and backward substitution process 
Total := PreFac + Fac + Solve 
Tflops := Tera Flops for the factorization process 

 
Table 10. Wall time of sparse direct solvers on XE nodes – LHM80 

Nodes Cores MUMPS WSMP SuperLU_DIST 
PreFac Fac Solve Total Tflops PreFac Fac Solve Total Tflops PreFac Fac Solve Total Tflops 

2 32           140 1345 2 1487 0.87 
4 64 108 780 20 908 0.27 183 1137 1.7 1322 0.19 140 664 2 806 0.33 
8 128 122 537 20 679 0.4 183 615 1.5 800 0.35 139 342 2 483 0.61 
16 256 138 374 18 530 0.57 184 323 1 508 0.66 140 182 2 324 1.1 
32 512 181 386 18 585 0.55 195 163 0.7 359 1.31 138 111 2 251 1.9 
64 1024 234 414 18 666 0.51 194 86 0.7 281 2.52 139 98 2 239 2.1 

128 2048      190 44 0.7 235 4.93      
512 8192      194 21 0.6 216 10.1      

4 threads/MPI-rank for WSMP; pure MPI for MUMPS and SuperLU_DIST 
 

Table 11. Wall time of sparse direct solvers on XE nodes – LHM112 
Nodes Cores MUMPS WSMP SuperLU_DIST 

PreFac Fac Solve Total Tflops PreFac Fac Solve Total Tflops PreFac Fac Solve Total Tflops 
32 256 371 2241 60 2672 0.75 676 2501 2.8 3180 0.7 80 1663 11 1754 1.93 
64 512 464 1785 60 2309 0.93 683 1326 2.6 2012 1.3 178 788 9 975 3.46 

128 1024 714 1611 61 2386 1.05 676 1021 2.5 1697 1.6 334 591 9 934 4.78 
256 2048 1317 1608 68 2993 1.04 676 531 1.8 1209 3.2 566 1798 17 2381 1.43 
512 4096      685 267 1.7 951 6.4      

8 threads/MPI-rank for WSMP; pure MPI for MUMPS and SuperLU_DIST 
 



three steps such as PreFac (i.e., pre-factorization), Fac (i.e., 
numerical factorization), and Solve (i.e., forward/backward 
substitution), and Total shows the summation of elapsed 
times for three steps. With small numbers of XE nodes, 
MUMPS and SuperLU are faster than WSMP, and WSMP 
shows better scalability than MUMPS and SuperLU with 
large numbers of XE nodes. Figure 8 (b) shows wall times 
for numerical factorization and forward/backward 
substitution steps and it represents tentative performance of 
sparse direct solvers for general CFD problems in a typical 
full NR scheme. In this plot, WSMP achieves the best 
scalability and fastest times compared to others on large 
number of nodes.  

WSMP use dynamic pivoting as the default, while 
SuperLU supports only static pivoting. Dynamic pivoting 
generally provides better stability but it is slower in 
numerical factorization than static pivoting. Table 12 and 
Figure 9 show wall time for dynamic and static pivoting of 
WSMP for LHM112. They show static pivoting is 2-34% 
faster than dynamic pivoting in numerical factorization of 
WSMP, while accurate solutions are still obtained from the 
solution process.  

As presented in this sub-section, sparse direct solvers 
require much larger memory capacity than sparse iterative 
solvers. However, sparse direct solvers show outstanding 
stability and robustness for ill-posed problems with very high 
condition numbers. Koric and his colleagues [9] reported that 
some symmetric matrices with higher condition number than 
108, proved difficult for iterative solvers, and some 
symmetric matrices with 109 for the condition number was 

not converged for all combinations of iterative methods and 
preconditioners in PETSc and HYPRE. As the size, speed, 
and availability of multi/many core architectures, memory, 
and interconnect network grows in HPC, the usage of direct 
spare solver may increase in future HPC systems. 

  
(a) Total wall time     (b) Wall time for Fac+Solve 

 
(c) TFLOPs for factorization process 

Figure 8. Test results of sparse direct solvers for LHM112, LHM80 and LHM56 on XE nodes 
 

 
Figure 9. Comparison of wall time for WSMP factorization between 

dynamic and static pivoting – LHM112 
 

Table 12. Wall time for factorization of WSMP for LHM112 (Dynamic vs. 
Static pivoting) 

XE 
nodes 

Dynamic 
pivoting 

Static 
pivoting 

Dynamic/ 
Static 

32 2501 s 2450 s 102 % 
64 1326 s 1297 s 102 % 
128 1021 s 787 s 130 % 
256 531 s 396 s 134 % 
512 267 s 224 s 119 % 

 



B. Sparse iterative solvers on XE nodes – PETSc 
Based on the single node test results in the previous 

section, the combination of TFQMR for iterative solver and 
ASM for preconditioner is employed to solve LHM112 on 
multiple XE nodes. This combination works fine with 1, 2 
and 4 XE nodes, but it does not yield a converged solution 
with more than 4 XE nodes, as presented in Table 13 and 

Figure 10.  
To find an optimal combination of iterative method and 

preconditioner, an extensive group of combinations are 
tested as presented in Table 14. After all, it turns out 

Table 14. Convergence of iterative solvers for LHM112 on 8 XE nodes 
 ksp types 

pc_types bicg gmres fgmres dgmres gcr bcgs cgs tfqmr tcqmr cr lsqr 
-pc_type jacobi D NC NC D NC D D D NC NC NC 
-pc_type bjacobi D NC NC NC NC D D NC NC NC NC 
-pc_type asm D NC NC NC NC D D NC NC NC NC 
-pc_type gamg -pc_gamg_type agg * D NC NC NC NC D D NC D D D 
-pc_type gamg -pc_gamg_type classical  D NC NC NC NC D D NC NC D NC 
-pc_type hypre -pc_hypre_set_type ams OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM 
-pc_type hypre -pc_hypre_set_type ads OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM 
-pc_type asm -pc_asm_type none D NC NC NC NC D D NC NC NC NC 
-pc_type asm -pc_asm_type interpolate D NC NC NC NC D D NC NC NC NC 
-pc_type asm -pc_asm_type basic D NC NC NC NC D D C NC NC NC 
* with -pc_gamg_agg_nsmooths 0 for non-symmetric matrices 
D for ‘diverged’/ NC for ‘not converged’/ OOM for ‘out of memory’/ C for ‘converged’ 

 
Table 15. Wall time and total iterations of TFQMR (ksp) with ASM_BASIC (pc) for LHM112 on XE nodes 

Number 
of XE 
nodes 

Cores* 
LHM112 LHM80 LHM56 

Wall time Number of 
iterations Speedup Wall time Number of 

iterations Speedup Wall time Number of 
iterations Speedup 

1 16 3931.61 s 2467 1.0 282.83 s 1406 1.0 87.48 s 1258 1.0 
2 32 2690.40 s 3710 1.5 179.68 s 1625 1.6 58.25 s 1431 1.5 
4 64 1752.43 s 5107 2.2 185.97 s 2753 1.5 34.60 s 1326 2.5 
8 128 966.55 s 5512 4.1 90.13 s 2338 3.1 19.13 s 1397 4.6 

16 256 339.41 s 4053 11.6 66.19 s 3120 4.3 10.23 s 1334 8.6 
32 512 163.34 s 3772 24.1 30.08 s 2366 9.4 7.37 s 1380 11.9 
64 1024 113.73 s 4131 34.6 34.17 s 2563 8.3    
128 2048 174.65 s 4374 22.5       

* Used 16 Bulldozer cores/node 
 

 
(a) Wall time      (b) Number of total iterations 

Figure 11. Wall time and total iterations of TFQMR (ksp) with ASM_BASIC (pc) for LHM112, LHM80 and LHM56 on XE nodes 
 

 
Figure 10. Total iterations of tfqmr (ksp) with asm (pc) for LHM112 

on XE nodes 
 

Table 13. Wall time and total iterations of TFQMR (ksp) with ASM 
(pc) for LHM112 on XE nodes 

Number of 
XE nodes 

Cores* Wall time Number of 
iterations 

1 16 4538.61 s 2469 
2 32 2100.78 s 2904 
4 64 1653.03 s 4859 
8 128 NC 10000 
16 256 NC 10000 
32 512 NC 10000 
64 1024 NC 10000 

128 2048 NC 10000 
* Used 16 Bulldozer cores/node 
NC: not converged  

 



TFQMR for iterative solver gets a stable numerical 
convergence with ASM_BASIC that uses the full restriction 
and interpolation operators of the standard additive Schwarz 
method. This combination (i.e., TFQMR with ASM_BASIC) 
is tested for LHM56, LHM80 and LHM112 (see Table 15 
and Figure 11). It keeps speedup with up to 64 XE nodes 
(i.e., 1024 MPI ranks) for LHM112, while it speeds up the 
solution process for LHM80 and LHM56 with up to 32 XE 
nodes (i.e., 512 MPI ranks). Even though numerical stability 
of sparse iterative solvers is limited for ill-posed problems, 
the wall times elapsed by sparse iterative solvers are much 

shorter than by sparse direct solvers reported in the previous 
sub-section.  

C. Sparse iterative solvers on XK nodes – NVIDIA AmgX 
Table 16 and Figure 12 show test results of AmgX solver 

on multiple XK nodes. The configuration in Table 7 is used 
again with dDDI for the mode parameter. It shows stable 
results for up to LHM66 with 1, 2, 4, 8 and 16 XK nodes. 
However, for larger matrices with higher condition numbers 
than LHM66, AmgX reaches to the maximum allowable 
iterations. For LHM112, AmgX reports out-of-memory 

Table 16. Test results of AmgX solver on XK nodes 
Matrix 

 

Number 
of 

equations 

2 XK nodes 4 XE nodes 8 XK nodes 16 XK nodes 

Wtime Niter Reduc Wtime Niter Reduc Wtime Niter Reduc Wtime Niter Reduc 

LHM14 9,965 0.56 57 6.89E-13 0.57 79 7.81E-13 1.03 140 9.38E-13 7.83 447 8.66E-13 
LHM20 29,837 2.33 65 7.83E-13 1.41 87 9.52E-13 1.75 157 7.98E-13 4.73 318 9.58E-13 
LHM24 52,125 6.92 427 9.20E-13 2.94 93 7.70E-13 2.71 163 8.39E-13 5.71 332 8.47E-13 
LHM28 83,437 9.49 491 9.74E-13 9.56 506 9.99E-13 4.42 170 7.99E-13 7.02 343 8.51E-13 
LHM30 102,957 10.44 545 9.96E-13 10.09 565 9.81E-13 5.90 174 8.71E-13 8.39 357 9.36E-13 
LHM32 125,309 11.60 602 9.99E-13 10.97 624 9.79E-13 7.72 179 9.91E-13 9.85 365 9.03E-13 
LHM36 179,277 18.42 873 9.33E-13 18.14 914 9.93E-13 18.23 941 9.39E-13 13.55 369 8.83E-13 
LHM46 377,197 38.61 1172 9.65E-13 27.36 1172 9.91E-13 33.51 1493 9.93E-13 32.43 1491 9.97E-13 
LHM56 684,317 59.14 1239 9.99E-13 41.25 1248 1.00E-12 30.88 1268 9.99E-13 30.49 1351 1.00E-12 
LHM60 843,117 71.45 1283 9.80E-13 70.15 1845 9.68E-13 50.46 1841 9.74E-13 49.10 2028 9.97E-13 
LHM62 930,989 116.35 1859 9.94E-13 53.31 1337 9.88E-13 55.91 1874 9.79E-13 52.37 2168 9.94E-13 
LHM64 1,024,756 390.57 4467 9.75E-13 90.02 2052 9.89E-13 65.84 2033 9.96E-13 95.82 3852 9.99E-13 
LHM66 1,124,637 925.48 9973 9.97E-13 99.07 2170 9.96E-13 70.40 2129 9.82E-13 128.03 5000 9.92E-13 
LHM68 1,230,797 NC 10000 5.38E-11 150.12 3012 9.98E-13 106.31 3033 9.75E-13 NC 10000 1.82E-12 
LHM70 1,343,437 NC 10000 1.12E-07 215.35 4156 1.00E-12 179.33 4946 9.90E-13 NC 10000 7.68E-09 
LHM80 2,010,557 NC 10000 8.93E-08 OOM 410 3.60E-06 NC 10000 5.39E-10 NC 10000 6.35E-09 
LHM112 5,545,789 OOM   OOM   OOM 234 2.74E-03 OOM 460 1.48E-05 
Wtime: elapsed wall time by AmgX; Niter: number of iterations; Reduc: total reduction in residual, 
NC for ‘not converged’/ OOM for ‘out of memory’ 

 

 
(a) Wall time      (b) Number of total iterations 

 
(c) Total reduction in residual    (d) Wall time vs. number of GPUs 

Figure 12. Test results of AmgX solver on XK nodes 
 



error; it turns out 6GB memory of GPUs is not big enough 
for the iterative methods to solve the system of linear 
equations with 5.5 million variables. 

AmgX is free for non-commercial use and is available for 
download from NVIDIA developer’s webpage. Since the 
freely distributed version is compatible only with OpenMPI, 
it should be executed under Cluster Compatibility Mode 
(CCM). The OpenFabric port of OpenMPI [10] that runs in 
Cray native mode was recently installed on Blue Waters but 
is not used in this work. The OpenMPI compatible AmgX is 
tested compared to Cray-mpich compatible AmgX that is 
provided by NVIDIA for this study. OpenMPI version 1.8.4 
is installed under PrgEnv-gnu/5.2.82 and CCM version 
2.2.1-1.0502.62540.4.51 is used for the test. Table 17 and 
Figure 13 show wall times of each AmgX for LHM56 and 
LHM64. As the number of XK nodes increases, the 
performance degradation of AmgX under CCM becomes 
more significant. With 2 XK nodes, AmgX under CCM is 
around 10% slower than Cray-compatible AmgX. With 16 
XK nodes, AmgX under CCM is 4 to 10 times slower than 
Cray-compatible AmgX. 

V. CONCLUDING REMARKS  
We present performance test results of a variety of linear 

equation solvers available on Blue Waters (i.e., a Cray 
XE/XK system). A series of non-symmetric matrices from a 
CFD problem is employed for the test problem. Most solver 
libraries are very well optimized on the Cray system; 
consequently, they show the optimal time-complexity 
depending on the algorithm (i.e., 1st order for iterative 
methods, 2nd order for sparse direct methods, and 3rd order 
for dense direct methods).  

As a summary of our tests, we present Figure 14 to 
provide a tentative performance chart of parallel solvers for 
one iteration-step in general CFD simulations. For this 
reason, the cost of pre-factorization of sparse direct solvers is 
excluded, since it is almost negligible during a lot of 
nonlinear iteration-steps and time-steps. Figure 51 (a) shows 
wall times of parallel solvers on one XE or XK node. As 
expected, dense direct solvers provide the most convenient 
interface to users, but they offer the most expensive way to 
solve linear systems. Sparse direct solvers show better 
performance in memory usage as well as computational time, 
and they provide wider envelopes in the size of solvable 
matrices than dense direct solvers. Sparse iterative solvers 
are the most cost-effective among employed solvers, but it 
may be difficult for users to find an optimal combination of 
an iterative method and a preconditioner to get the 
convergence for ill-posed problems. Figures 51(b)-(d) show 
wall time of sparse direct and iterative solvers with multiple 
XE/XK nodes. For LHM56 with 684K equations, sparse 
iterative solvers (i.e., PETSc on CPUs and AmgX on GPUs) 
are more economical than sparse direct solvers such as 
MUMPS, WSMP and SuperLU_DIST. For LHM80 with 2M 
equations and LHM112 with 5.5M equations with higher 
condition numbers than LHM56, PETSc provides the most 
cost-effective approach compared to sparse direct solvers in 
this study while the iterative solver, AmgX fails to obtain a 
converged solution. In summary, sparse direct solvers show 
outstanding numerical stability for ill-posed problems with 
very high condition numbers and in some cases, such as 
WSMP, an excellent scalability. Sparse iterative solvers, 
however, provide the most cost-effective approaches in 
solving massive systems of linear equations if they can cope 

Table 17. Comparison between AmgX with Cray-mpich and AmgX with OpenMPI under CCM 
   2 XK nodes 4 XK nodes 8 XK nodes 16 XK nodes 

Matrix Number of 
equations MPI types Wtime Niter Wtime Niter Wtime Niter Wtime Niter 

LHM56 684,317 CCM 64.70 s 1239 59.05 s 1248 71.38 s 1258 122.96 s 1351 
Cray-mpich 59.05 s 1239 41.21 s 1248 30.80 s 1268 30.45 s 1351 

Wall time ratio, CCM/Cray (%) 110 % 143 % 232 % 404 % 

LHM64 1,024,765 CCM 145.09 s 1959 152.29 s 2052 273.69 s 2033 946.73 s 3852 
Cray-mpich 390.91 s 4467 89.96 s 2052 65.80 s 2033 95.65 s 3852 

Wall time ratio, CCM/Cray (%) 37 %* 169 % 416 % 990 % 
* Cray-compatible AmgX got the following warning message, and it restarted from the initial residual at the 500th iteration: 

WARNING: Cannot allocate next Krylov vector, out of memory. Falling back to DQGMRES 
 

 
(a) LHM56     (b) LHM64 

Figure 13. Comparison between AmgX with Cray-mpich and AmgX with OpenMPI under CCM 
 



with the numerical instabilities in the solution process of ill-
posed problems.  

 

ACKNOWLEDGMENT 
This study is part of the Blue Waters sustained-petascale 

computing project, which is supported by the National 
Science Foundation (awards OCI-0725070 and ACI-
1238993) and the state of Illinois. Blue Waters is a joint 
effort of the University of Illinois at Urbana-Champaign and 
its National Center for Supercomputing Applications.  

 

REFERENCES 
[1] B. Bode, M. Butler, T. Dunning, W. Gropp, T. Hoe-fler, W. Hwu, and 

W. Kramer (alphabetical). The Blue Waters Super-System for Super-
Science. Contemporary HPC Architectures, Jeffery Vetter editor. 
Sitka Publications, November 2012.Edited by Jeffrey S . Vetter, 
Chapman and Hall/CRC 2013, Print ISBN: 978-1-4665-6834-1, 
eBook ISBN: 978-1-4665-6835-8.  

[2] W. Kramer, M. Butler, G. Bauer, K. Chadalavada, C. Mendes. Blue 
Waters Parallel I/O Storage Sub-system, High Performance Parallel 
I/O, Prabhat and Quincey Koziol editors, CRC Publications, Taylor 
and Francis Group, Boca Raton FL, 2015, Hardback Print ISBN 
13:978-1-4665-8234-7.  

[3] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. 
Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. 
PETSc Web page. https://www.mcs.anl.gov/petsc, 2016.  

[4] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent and S. Pralet. 
Hybrid scheduling for the parallel solution of linear systems. Parallel 
Computing, 32(2):136-156, 2006.  

[5] X. S. Li and J. W. Demmel. A Scalable Distributed-Memory Sparse 
Direct Solver for Unsymmetric Linear Systems. ACM Trans. 
Mathematical Software, 29(2):110-140, 2003.  

[6] A. Gupta. WSMP: Watson Sparse matrix package (Part-II: direct 
solution of general systems). Technical Report RC 21888 (98472). 
Yorkton Heights, NY: IBM T.J. Watson Research Center; 2016.  

[7] NVIDIA AmgX webpage. https://developer.nvidia.com/amgx, 2016.  
[8] J. Kwack and A. Masud. A stabilized mixed finite element method for 

shear-rate dependent non-Newtonian fluids: 3D benchmark problems 
and application to blood flow in bifurcating arteries. Computational 
Mechanics, 53:751-776, 2014.  

[9] S. Koric, Q. Lu and E. Guleryuz. Evaluation of massively parallel 
linear sparse solvers on unstructured finite element meshes. 
Computers and Structures, 141:19-25, 2014.  

[10] M. G. Venkata, R.L. Grahma, N.T. Hjelm, S.K. Gutierrez. Open MPI 
for Cray XE/XK systems. CUG-2012. https://www.open-
mpi.org/papers/cug-2012/cug_2012_open_mpi_for_cray_xe_xk.pdf. 

 
(a) LHM14 to LHM112 on a single XK/XE node  (b) LHM56 (684K equations) on multiple XK/XE nodes 

 
(c) LHM80 (2M equations) on multiple XE nodes  (d) LHM112 (5.5M equations) on multiple XE nodes 

Figure 14. Wall times of parallel solvers on Blue Waters (excluding costs of pre-factorization for direct solvers) 
 


