
Maintaining Large Software Stacks in a Cray Ecosystem with Gentoo Portage

Colin A. MacLean
National Center for Supercomputing Applications

University of Illinois
Urbana, Illinois

Email: cmaclean@illinois.edu

Abstract—Building and maintaining a large collection
of software packages from source is difficult without
powerful package management tools. This task is made
substantially more difficult in an environment where many
libraries do not reside in standard search paths and
the where loadable modules can drastically alter the
build environment. The need to maintain multiple Python
interpreters with a large collection of Python modules is
one such case of having a large and complicated software
stack and is the use case described in this paper. To address
limitations of current tools, Gentoo Prefix was ported to
Blue Waters, giving the ability to use the Portage package
manager to track fine-grained software dependencies.
This infrastructure allows for fine-grained dependency
tracking, consistent build environments, multiple Python
implementations, and easily customizable builds. This
customized Gentoo Prefix infrastructure is used to build
and maintain over 400 packages for Python support on
Blue Waters.

Keywords-package management; Python; Gentoo; Cray;
HPC; Blue Waters;

I. INTRODUCTION

Building and maintaining a large collection of soft-
ware packages from source is difficult without power-
ful package management tools. Unlike binary package
dependencies, full source-based dependency trees must
also take into account configuration option dependen-
cies, and build order. There are also multiple depen-
dency types: build time, run time, and occasionally post-
build dependencies. A fully configurable source-based
package management system must therefore be able to
account for the fine granularity of build options and be
robust enough to detect the circular dependencies which
can arise when building some packages. The package
manager should also be able to handle package updates
without rebuilding the entire tree and should be able
to force packages depending on an updated package to
be rebuilt if necessary. Complicating matters further, in
an environment such as found on Crays, the package
manager must also be capable of installing packages to
a prefix and be aware of dependencies also installed in
nonstandard locations. The build system must also be
able to work around the occasional package configura-
tion problems resulting from the compiler environment
on Cray systems and easily apply additional patches.

The full complexity of this problem is particularly
difficult to overcome when trying to maintain large
Python stacks. In addition to the difficulties above,
there are also multiple versions and implementations of
Python interpreters, many Python packages may only
be compatible with a subset of the available interpreters,
and these packages may have shared dependencies. This
means that the package management system should
ideally be able to handle multiple python installs and
be aware of python package compatibility restrictions
in order to eliminate redundancy in dependencies which
would occur if the build system were to be installed
separately for each Python implementation.

II. SOFTWARE ON HPC SYSTEMS

Providing users a wide variety of software to use
on HPC systems is a far from trivial challenge. The
core operating system software often lags behind con-
siderably from the bleeding edge releases of software
many users wish to employ. Users may also want to
build against specific versions of software for compat-
ibility and consistency reasons. For this reason, it is
customary to provide users with a selection of software
packages and versions each installed into their own
prefix directory. A tool such as Environment Modules[3,
9, 2] can then be used to simplify the setting of
environment variables which make these non-standard
software install locations visible. At the most basic,
this involves adding the prefix’s executable directory
to PATH and its library path to LD_LIBRARY_PATH.
Some may also set up CPATH and LIBRARY_PATH
variables for compiler header and library search paths.
It is also common for environment modules to set other
variables unique to the module containing information
such as the base prefix or version.[4]

III. POTENTIAL PACKAGE MANAGERS AND BUILD
SYSTEMS

The focus for this project was primarily to produce
the tooling required to build and maintain a feature-
rich Python stack. However, the The first task was to
examine the package managers available and to deter-

mine which could meet the necessary requirements with
minimal patching and package repository maintenance.

A. Pip

Because the original scope was limited to the in-
stallation of Python, Pip[10] was examined as the first
candidate. However, pip was quickly rejected due to
its inability to build non-python dependencies which
were either missing or too old on Blue Waters. Another
problem was that some packages require the Cray com-
piler wrappers—cc, CC, and ftn—to build while other
packages are unable to identify the compiler type using
the wrappers and must invoke the compiler directly.
Needing to adjust the environment variables for these
situations would have made automating rebuilds and
updates difficult.

B. SWTools

SWTools[8] is a simple system to automate the
building and rebuilding of software modules for HPC
systems. The build steps it runs are all manually written
scripts. Installing, maintaining, and manually determin-
ing the dependency tree of a large collection of software
packages using only hand-written scripts is beyond the
scope of what SWTools was designed to support.

C. EasyBuild

EasyBuild[7, 4] is another framework to build and
install system for HPC platforms. It is designed How-
ever, there are limitations when it comes to resolving
dependencies, where it decides to install packages,
making minor adjustments to the build process, and has
a relatively small repository.

D. Anaconda

conda[1] is a package manager used by the Ana-
conda Python distribution to manage Python installa-
tions. Although the Anaconda system primarily uses
binary packages, it is possible for conda to build
packages from source. The most significant problem
with using Anaconda, however, is that the build recipes
make a lot of assumptions regarding compilers, library
locations, and what libraries are already available on the
system.

E. Gentoo Prefix

Gentoo Prefix[6] is a version of the Portage pack-
age manager and Gentoo repositories modified to to
support prefixed installation. Gentoo is a highly cus-
tomizable GNU/* metadistribution. Its primary usage
is for installing and maintaining GNU/Linux systems
from source but can also be used for GNU/FreeBSD
and prefixed installations of a GNU userland on top of
a variety of Linux and Unix kernels such as Solaris.
It consists of bootstrapping scripts, patched Portage

package manager, an auto-patched ebuild repository, and
maintenance utilities. The package manager, Portage,
is written in Python and controls the underlying build
system which is written in Bash. The underlying Ebuild
system includes an extensive Bash API used for writing
ebuild files.

Portage has fine-grained dependency calculation.
Each package can be represented as an package
atom. The most basic package atom is represented
as category/package. Optional version constraints
can be added to the atom by prefixing with an operator
(>, >=, =, <=, or <) and appending a version string.
The version can contain a wildcard operator, *. There
are also extended operators to match any revision of a
version (˜) and to prevent the installation of a specific
version (!). These atoms are used to specify packages
to install on the command line with emerge, specify
a package in the per-package configuration files, and
within ebuild files in the specification of dependency
strings.

However, when building a program from source, the
package name and version is insufficient to describe
what is to be built. Source packages usually come with
a variety of different configuration options. In Gentoo,
these configuration options are abstracted using USE
flags. A USE flag represents a functionality concept. For
instance optional MPI functionality is controlled via the
mpi USE flag. This abstraction allows for the inclusion
or exclusion of different features independent of how
those features are actually passed to whatever method of
configuration a package uses. It is up to the ebuild files
to translate those USE flags into actual configuration
script arguments. USE flags can be specified in package
atoms in brackets after the package name. This allows
dependency calculations to take into account required
features, forbidden features, or specify that the status
of a feature in a dependency must be the same.

ebuild files for a particular package may also specify
different SLOTs and optionally specify a SUBSLOT
. Packages with ebuilds of different SLOTs can have
one of each SLOT installed simultaneously unless a
dependency string disallows it. SLOTs are also used fre-
quently to indicate an API change. A package atom can
specify a slot by appending :SLOT after the version. In
an ebuild file’s dependency strings, :SLOT= or := can
be added to a dependency atom. When calculating the
dependency tree for an upgrade, if such a dependency
is to be upgraded, the package will be rebuilt.

The main configuration of Gentoo is in etc/
portage/make.conf[5]. This file can be used to
specify variable settings such as CC, CXX, compiler
flags, USE flags, and Python implementation targets.
This provides the default build configuration for all
packages. However, Portage supports modifying these

options on a per-package basis. These per-package
settings are stored in package.* files or directories.
If a directory is used, it is treated as if all files in
the directory are concatenated together. The package
.accept_keywords file is used to allow the instal-
lation of testing packages or packages with unknown
status on the architecture. The package.use file is
used to change USE flags from the defaults specified in
make.conf on a per-package basis. package.mask
is used to prevent the installation of package atoms spec-
ified within it. Finally, miscellaneous variables specified
in etc/portage/env/* files may be applied to the
build environment for particular packages by adding
package-atom file to the package.envPortage
also supports a etc/portage/patches directory.
This allows for the user to apply patches to packages
without needing to modify the ebuild.

IV. PACKAGE MANAGER SELECTION

After researching the available tools for package man-
agement, a decision was made to alter Gentoo Prefix for
better compatibility with HPC software environments.
There were several reasons for this decision.

First, the Python-specific package managers did not
have the functionality to easily handle the complex build
environment. Some configuration scripts are unable to
determine the type of compiler the Cray wrappers
invoke. This can lead to fatal configuration errors or
misconfiguration. For these packages, the extra argu-
ments passed to the compiler by the wrappers can
be extracted, added to the compiler flag environment
variables, and the unwrapped compiler invoked directly.
However, other packages, particularly those using MPI,
the compiler wrappers must be used. Thus, the build
system must set up the environment variables differ-
ently for certain packages, preferably without having to
manually edit the build specifications.

The HPC build and package management systems
integrate well into the complex build environment. How-
ever, these are not well suited for the more monolithic
deployment of a Python stack. The previous Python
stack on Blue Waters was a collection of several dozen
different Environment Modules managed by SWTools.
This method of deployment would not scale well to
hundreds of packages used at once. Even with several
dozen modules, the need for Python to search each path
on every import did not work well with the Lustre
filesystem. SWTools also requires manual creation of
build scripts. While this is not troublesome for single
software package installs, the maintenance requirements
are too high to build a comprehensive Python stack.
EasyBuild has EasyConfigs and EasyBlocks to automate
the build process. However, it lacks strong dependency
calculation abilities.

While Gentoo Prefix lacked awareness of environ-
ment modules, attempting to ignore as much of the
host system as possible, its robust source-based package
management features are ideal for managing a large
collection of software with a highly customized build
process. Thus, it was determined that it would be
easier to port Gentoo Prefix to a Cray host and add
support for Environment Modules than to add Portage-
level dependency resolution features to an HPC-centric
package manager. Gentoo also has large repositories of
ebuilds already available. While some of those ebuilds
would require modification, the per-package environ-
ment modification features was determined likely be
able to handle most of these cases.

V. PORTING GENTOO PORTAGE TO BLUE WATERS

A. Compiler Environment and Library Paths

There are several ways in which a compiler can
be made aware of a prefix. The method used by the
unpatched Gentoo Prefix is to build its own GCC config-
ured with --sysroot=$EPREFIX. This hard-codes
the prefixed library directories and include as if they
were /lib64, /usr/lib64, and /usr/include.
However, on a Cray, Gentoo Prefix must be able to use
a host system compiler, which is not built specifically
for the prefix. There is also a problem with adding
the prefixed locations as -I and -L options due to
directory search ordering errors when building some
packages. The three possibilities left for Gentoo Prefix
are to supply GCC with a customized specs file, set
CPATH and LIBRARY_PATH, or build a prefixed libc
and manage a prefixed ld.so.conf. The CPATH and
LIBRARY_PATH method was chosen as the easiest
alternative.

B. Bootstrapping Script

Gentoo Prefix has two bootstrapping scripts. The first
bootstraps Bash for host platforms lacking the shell
and isn’t necessary on a Linux host. The second boot-
straps Portage and its dependencies into the specified
EPREFIX. Because Gentoo Portage is designed to be
run with as few host dependencies as possible—the
kernel and a handful of core libraries—it needed to be
modified in order to expose host system PATH, libraries,
and compilers. These dependencies provided by the
system or modules also had to be removed from the
boostrapping procedure. The bootstrapping script also
sets an initial configuration for Portage and repositories
and these defaults also had to be modified for use in the
Cray environment and with host-provided compilers.

C. Adding a Blue Waters profile

A profile in Portage contains the default settings for
a platform. The Blue Waters profile forces on the cray

USE flag, which is used to make Cray-specific changes
to the build process in a few ebuilds. A profile.
bashrc is used to make a few minor adjustments to
the build environment for a handful of core packages
installed during the boostrapping process. package.
provided is used to ignore dependencies which are
already available on the host system.

D. Patching Portage

Portage was patched to add support the Environment
Modules system and to expose the host environment to
the build process, which starts from a non-interactive
non-login Bash environment.

An old patch for Gentoo Prefix was resurrected in
order to add prefix chaining support to Portage. Prefix
chaining allows the creation of a light weight Gentoo
Prefix which is able to the utilities and dependencies of
parent prefixes (See Section VI-C. This mostly consisted
in manually re-applying the patch due to movement
and minor changes of the affected code. The patch was
also improved by adding support for a user to use a
prefix installed by another user. The prefix chaining
setup utility was also updated and now has Environment
Modules support.

E. Patching etc/profile

The Gentoo Prefix maintenance shell and Portage
both rely on the prefix’s etc/profile to set up their
environments. This file was patched to source the host
/etc/profile, expose host files in the environment
variables, and to load a default set of Environment
Modules. This file is generated by the baselayout
-prefix ebuild and does not require manual editing
of full paths.

An environment variable containing RPATH argu-
ments for the compiler/linker is generated when etc
/profile it sourced. Gentoo Prefix was patched to
use RUNPATH the method for finding library locations
to stop Prefix libraries from interfering with system
binaries while the module is loaded. The unpatched
Gentoo Prefix used its own compiler built with --
sysroot, which would not work with the compiler
wrappers. --enable-new-dtags is passed to the
linker in order to allow LD_LIBRARY_PATH to over-
ride RUNPATH if necessary. Prefix locations for CPATH
and LIBRARY_PATH are used to make the compiler
and linker aware of the prefix, ensuring that these
paths are always searched after -I and -L arguments
generated by package configuration scripts.
etc/profile can be optionally patched to enable

prefix chaining support (See Section VI-C). When prefix
chaining support is enabled, the etc/profile is
patched to recursively load the environment from the
parent prefixes.

VI. FEATURES

A. Environment Modules support

Environment Modules support is primarily intended
to be used on a per-package basis through package.
env to modify a default set of Environment Modules
loaded via etc/profile . The variable ENVMOD can
be used to load, unload, and swap modules:

Listing 1. ENVMOD usage
#loads module
ENVMOD="module"
#unloads a module
ENVMOD="-module"
#swaps module1 for module2
ENVMOD="%module1:module2"

These operations are invoked from left to right as a
space separated list. Ebuild files may use the variables
ENVMOD_REQUIRE and ENVMOD_RESTRICT to list
modules which must be loaded by the configuration or
cannot be loaded. In all cases module may either be
used as a specific version or for all version.

B. Environment Modules module for eselect

Gentoo uses the utility eselect to manage its
configuration. A module for eselect was written
to give a command line interface for generating the
default environment for the prefix. This utility allows
the prefix maintainer to select a base set of modules
to load. The environment that Environment Modules
generates is saved to etc/env.d. The env-update
command can then be used to update etc/profile
.env, which gets sourced by etc/profile.

C. Prefix Chaining

Prefix chaining support was added to Portage as a
means of supporting multiple package configurations.
This feature constructs a lightweight Gentoo Prefix
consisting of several configuration files. The prefix
environment makes use of the software installed in
parent prefixes in its PATH, compiler search directories,
and dependency calculations. If a package dependency
in the parent prefix doesn’t exist, is too old, or needs
to be built with different configuration options, then
Portage will install these dependencies in the chained
prefix. The chained environment is configured to allow
these packages to override those provided by the par-
ent prefixes. The package python-chaining adds
a sitecustomize.py file to each of the installed
Python implementations, allowing paths and eggs in
chained prefixes to be visible to Python.

The chained prefix has its own make.conf, allow-
ing packages to be built with different options such as
USE flags, compiler flags, and compiler. This feature is

used on Blue Waters to create the bwpy-mpi environ-
ment on Blue Waters. The base Gentoo Prefix, bwpy
offers a collection of Python interpreters and packages
built for use in a single-node environment where MPI is
unavailable, such as on the login nodes. bwpy-mpi sets
the mpi USE flag and the packages which have this flag,
such as h5py, are rebuilt. This provides MPI-enabled
Python stack for use on compute nodes. This feature
could also be used to provide a choice between packages
linked against scientific library implementations.

Prefix chaining is able to distinguish between
the different types of dependencies: DEPEND (build-
time dependencies), RDEPEND (run-time dependen-
cies), HDEPEND (host dependencies for cross compil-
ing), and PDEPEND (post-merge dependencies). Choos-
ing not to inherit run-time and post-merge dependencies
from the parent prefix is necessary for building a child
prefix with a different CHOST and is also useful for
keeping Portage and its utilities separate from the target
software bundle.

If the prefix-chain-setup script detects that
the owner of the parent prefix and the chained prefix are
the same, it will generate a modulefile for Environment
Modules and install it into the parent prefix’s usr/
modulefiles directory.

Multiuser prefix chaining support was also added.
This allows other users to use dependencies from Gen-
too Prefix environments created by other users. This
makes it possible for a user to create a chained prefix in
their home directory and install software using Portage.
This could be useful for the easy install of specific
versions and configurations of packages like PETSc.

D. Prefix Support for revdep-rebuild.sh

revdep-rebuild.sh is a script which checks the
linking of every dynamic library in the prefix and finds
the packages those libraries belong to. It is used to
rebuild packages which have broken linkage or link
to a specified library. This is useful to perform checks
and rebuilds after system updates. This utility was not
written to include support for a prefixed Portage and
search directory, so the necessary changes were made
to make it work on systems with a Linux host.

E. Package Retesting

Preliminary work has been started to enable a prefix
maintainer to rerun ebuild test phases to and report
packages which have broken due to system updates.
This requires setting FEATUES="noclean" to keep
the build directories. By setting a number of Bash
environment variables, Portage’s ebuild.sh can be
invoked to rerun the test phase of the emerge process.

F. Creating New Releases

It is often unnecessary to re-bootstrap Gentoo Pre-
fix to create a new release of the prefix. Gentoo
Prefix contains a script, usr/lib/portage/bin/
chpathtool.py, which can be used to change the
prefix for all files in a directory provided that the new
prefix directory contains the same or fewer character
in the path. If the new prefix is of shorter length
than the old prefix, the path is padded with repeated
slashes when adjusting binary files. Due to this restric-
tion, it is recommended to use a versioning scheme
for the prefix directory which either includes padding
zeros or will always be the same length. This script
is primarily used internally to adjust prefixed binary
packages, but is also useful for copying a prefix to
create a new release with updated packages. The script
is invoked as chpathtool.py location old-
prefix new-prefix and will update all files in
location.

It may also be desirable to create a minimal prefix
containing only the packages necessary for Portage to
run. The new prefix could then be created by copying
this minimal prefix and adjusting it or by using prefix
chaining. The new release can then be created quickly
by using binary packages from the old prefix. To create
binary packages from the old prefix, the old prefix
can either run quickpkg "*/*" or the buildpkg
feature could have been enabled in old prefix:

Listing 2. old-prefix/etc/portage/make.conf

FEATURES="${FEATURES} buildpkg"

Then by using the --usepkg for emerge, the bi-
nary packages in PKGDIR are taken into consideration
during dependency calculations. Thus, recompilation of
most packages without updates can be avoided.

VII. EXAMPLE OF PORTING A BROKEN EBUILD

One example of a package which needs a modified
ebuild is h5py. This ebuild was modified as follows:

Listing 3. h5py-2.5.0.ebuild excerpt
...
IUSE="cray doc test examples mpi"
...
pkg_setup()
if use mpi; then

if use cray; then
export CRAY_ADD_RPATH=yes
export CRAYPE_LINK_TYPE=dynamic
export CC=cc

else
export CC=mpicc

fi
fi

}
...
python_configure() {

esetup.py configure $(usex mpi --
mpi ’’)

}
...

For this package, the problem was that the CC variable
was being set to mpicc when MPI functionality is
enabled. Because Crays use cc instead of mpicc,
this package was failing to build. The fix was straight
forward. First, cray was added to the IUSE variable.
This USE flag is forced on by the Blue Waters Portage
profile. The ebuild is then modified to conditionally
export the necessary environment settings if the cray
USE variable is enabled. This way, it is possible for this
ebuild to be pushed upstream to the Gentoo Prefix or
Science overlay without breaking the package for other
systems.

VIII. EVALUATION OF GENTOO PREFIX ON BLUE
WATERS

Gentoo Prefix is used to manage the bwpy Python
stack on Blue Waters. Of the 414 packages installed in
bwpy, only 18 of the ebuilds required any modification
to build and install correctly. Cray-specific Maintenance
of these customized ebuilds when new versions are
released is usually just a matter of copying the ebuild.
8 new ebuilds were also created for software lacking
ebuilds. These new and modified ebuilds are available
in the Blue Waters Python Gentoo Portage overlay.

Per-package modification of the environment was not
required to be used as often as initially thought. Most
of these environment changes were patched into the
ebuilds to make redeployment and sharing of build
settings easier.

Because most packages can be installed with one
command, it has become much easier to support Python
users on Blue Waters. In the event that a user has trouble
building a Python package that is not provided by bwpy
, the ease of package management makes it reasonable
to simply install the package into bwpy. For example,
one user was experiencing difficulty with installing the
Numba package. This Python package uses LLVM to
generate optimized sections of Python code. Gentoo
Prefix was able to successfully build LLVM and Numba
in a single command without any modifications to the
ebuild or build environment.

IX. CONCLUSION

Building and maintaining large software stacks such
as Python in the complex environment of a Cray
was difficult with previous tools. Python-specific pack-
age managers were lacking in complex from-source

build features and dependency calculation ability. HPC-
centric build systems were highly capable for individual
packages but were also lacking in fine-grained software
dependency features. Gentoo Prefix has robust source-
based package management, but lacked support for inte-
gration into HPC build environments. It was determined
that porting Gentoo Prefix to Cray would require less
effort than adding Portage-level package management
capabilities to a HPC-centric build system.

Gentoo Prefix was patched to open up its environment
settings to the Cray compilers and modules. Support
for the Environment Modules in the ebuild build envi-
ronment was added by patching Portage and adding an
eselect module for Environment Modules. An old
patch enabling prefix chaining was revived for use in
building alternative configurations of packages and later
to allow users access to the Portage management system
in their home directories.

The bwpy Python stack on Blue Waters is managed
by this patched version Gentoo Prefix for use on Crays.
It is used to manage over 400 packages. Most of these
packages can be built straight from standard ebuild
repositories without modification. This allows Blue Wa-
ters to support an optimized and comprehensive Python
stack with easy maintenance.

The Blue Waters Gentoo Prefix Overlay and boot-
strapping scripts can be found at https://github.com/
camaclean/bw-python-gentoo-prefix-overlay.

REFERENCES

[1] Continuum Analytics, Inc. Anaconda. Ver-
sion 4.0.0. 2016. URL: https://www.continuum.
io/.

[2] D. Eadlin. Keeping It Straight: Environment Mod-
ules. URL: http : / / www. admin - magazine . com /
HPC/Articles/Managing-the-Build-Environment-
with-Environment-Modules.

[3] J. L. Furla. “Providing a Flexible User Environ”.
In: Proceeding of the Fifth Large Installation
System Administration (LISA V) (1991), pp. 141–
152.

[4] Markus Geimer, Kenneth Hoste, and Robert
McLay. “Modern scientific software management
using easybuild and lmod”. In: Proceedings of
HUST 2014: 1st International Workshop on HPC
User Support Tools (2014), pp. 41–51. DOI: 10.
1109/HUST.2014.8. URL: http://hpcugent.github.
io/easybuild/files/hust14%7B%5C %7Dpaper.
pdf.

[5] Gentoo. make.conf(5). 2016. URL: https : / / dev.
gentoo . org /∼zmedico / portage / doc / man / make .
conf.5.html.

[6] Gentoo Foundation, Inc. Gentoo. 2016. URL:
https://www.gentoo.org.

https://github.com/camaclean/bw-python-gentoo-prefix-overlay
https://github.com/camaclean/bw-python-gentoo-prefix-overlay
https://www.continuum.io/
https://www.continuum.io/
http://www.admin-magazine.com/HPC/Articles/Managing-the-Build-Environment-with-Environment-Modules
http://www.admin-magazine.com/HPC/Articles/Managing-the-Build-Environment-with-Environment-Modules
http://www.admin-magazine.com/HPC/Articles/Managing-the-Build-Environment-with-Environment-Modules
http://dx.doi.org/10.1109/HUST.2014.8
http://dx.doi.org/10.1109/HUST.2014.8
http://hpcugent.github.io/easybuild/files/hust14%7B%5C_%7Dpaper.pdf
http://hpcugent.github.io/easybuild/files/hust14%7B%5C_%7Dpaper.pdf
http://hpcugent.github.io/easybuild/files/hust14%7B%5C_%7Dpaper.pdf
https://dev.gentoo.org/~zmedico/portage/doc/man/make.conf.5.html
https://dev.gentoo.org/~zmedico/portage/doc/man/make.conf.5.html
https://dev.gentoo.org/~zmedico/portage/doc/man/make.conf.5.html
https://www.gentoo.org

[7] Ghent University. EasyBuild. Version 2.7.0.
Mar. 20, 2016. URL: http://hpcugent.github.io/
easybuild/.

[8] ORNL. SWTools. Version 1.0.0. Jan. 1, 2011.
URL: https://www.olcf.ornl.gov/center-projects/
swtools/.

[9] P. W. Osel and J. L. Furla. “Abstract yourself
with Modules”. In: Proceeding of the Tenth Large
Installation System Administration (LISA ’96)
(1996), pp. 193–204.

[10] PyPA. Pip. Version 8.1.1. Mar. 17, 2016. URL:
https://pip.pypa.io.

http://hpcugent.github.io/easybuild/
http://hpcugent.github.io/easybuild/
https://www.olcf.ornl.gov/center-projects/swtools/
https://www.olcf.ornl.gov/center-projects/swtools/
https://pip.pypa.io

	Introduction
	Software on HPC Systems
	Potential Package Managers and Build Systems
	Pip
	SWTools
	EasyBuild
	Anaconda
	Gentoo Prefix

	Package Manager Selection
	Porting Gentoo Portage to Blue Waters
	Compiler Environment and Library Paths
	Bootstrapping Script
	Adding a Blue Waters profile
	Patching Portage
	Patching etc/profile

	Features
	Environment Modules support
	Environment Modules module for eselect
	Prefix Chaining
	Prefix Support for revdep-rebuild.sh
	Package Retesting
	Creating New Releases

	Example of Porting a Broken ebuild
	Evaluation of Gentoo Prefix on Blue Waters
	Conclusion

