
Maintaining Large Software Stacks in a Cray
Ecosystem with Gentoo Portage

Colin MacLean

 Most modules are, at most, a handful of packages
 Currently available tools ill-suited for large comprehensive

sets of packages on Cray
 Most notably Python

 Need tools to build software distributions
 Resolve complicated dependency trees
 Periodic releases of collections of packages, not many

individual modules
 Avoid complex runtime dependencies
 Avoid environment bloat

Large Software Stacks

 Gentoo Prefix used to manage the Python stack on Blue
Waters
 Over 400 packages installed

 Includes non-Python dependencies. Some system libraries too old.
 Built against the optimized cray-mpich and libsci libraries
 Both MPI and non-MPI versions with minimal redundancy
 Most ebuilds work without modification

 18 modified (mostly minor)
 6 new

Use of Gentoo Prefix on Blue Waters

 SWTools
 HPC software build and install tool
 Creating build script too complex for

large dependency trees

Potential Package Managers

 Pip
 Original scope was limited to a Python

stack
 Can’t build non-Python dependencies
 Can’t tweak build environment on a

per-package basis

 EasyBuild
 HPC software management tool
 Basic level of dependency calculation

 Acceptable for a handful of packages
 Inadequate for hundreds of packages
 Hard coded versions and configuration

options in build files
 Has package repository

 Anaconda
 Python distribution
 Primarily binary based, but can build

from source
 Hard to control build environment

 Anaconda binaries using MPI need
rebuild to use cray-mpich

Potential Package Managers

 Prefixed Gentoo Portage
 Gentoo Portage Alt project allows

Gentoo GNU userland install on top of
Linux/Unix hosts

 Dependency calculations based on
range of compatible versions. Suitable
for rolling periodic distributions.

 Portage USE flags
 Allow for fine-grained control of

configuration options
 Used in dependency calculations

 SLOTs
 Feature allows for simultaneous install

of multiple versions of some packages

 SUBSLOTs
 Feature used to trigger required

rebuilds on package updates
 Ebuild files

 Bash scripts with access to powerful
eclass APIs

 Eclasses can provide default build
procedures that may also be heavily
modified if necessary

 Repositories with tens of thousands of
ebuilds available

 Overlay repositories allow for
customized ebuilds

 Consistent default build environment.
Per-package environment
customization.

Potential Package Managers

● Gentoo Prefix chosen
– Make Environment Modules aware

– Easier than significantly improving package management
features

– Need to install more than just Python packages

Package Manager Selection

 Bootstrapping script self-sufficient
 Bootstrapped its own gcc/binutils
 Host programs not available in prefix environment
 Host MPI only major library visible to prefix (through sys-cluster/native-mpi package)

 After bootstrap, environment still constrained to prefix
 Unaware of Environment Modules framework

Initial state of Gentoo Prefix

● Unpatch Gentoo Prefix uses GCC compiled with --sysroot

– Need to use host compilers

– --sysroot won’t work

● Add prefix directories via -I and -L options to compiler flags

– Breaks some packages

● Set CPATH and LIBRARY_PATH

– Searched after -I and -L like system paths

● Provide compiler a modified “specs” file

Compiler Environment for Gentoo Prefix

 Modify environment to allow Prefix to see host compilers and
libraries

 Change header and library search method
 Generate CPATH/LIBRARY_PATH for host compiler.
 Prefix had expected gcc built with --sysroot option.

 Generate rpaths for LDFLAGS
 Remove checks for host paths in environment
 Set up basic default Environment Modules

Step 1: Modify Bootstrapping Script

 Gentoo Prefix loads its environment from $EPREFIX/etc/profile
 Fix paths to make host system visible to Prefix environment
 Load default set of environment modules if Eselect Environment Modules not available

 Gentoo Portage executes in non-interactive non-login Bash shell
 Source $EPREFIX/etc/profile

 Add Prefix paths to CPATH and LIBRARY_PATH in
$EPREFIX/etc/env.d

 Create Portage profile for Blue Waters
 Default compiler flags, USE flags, forced “cray” USE flag,

package.provided of host provided dependencies

Step 2: Modify Prefix Environment

 Environment Modules module
for Eselect

 Sets default set of Environment
Modules for the Prefix

 Generates environment file
$EPREFIX/etc/env.d/01modules

 Stores settings in $EPREFIX/etc/env-
mod.conf

 Regenerate environment with `eselect
envmod update`

 Ensures reproducible build environment

Enhancement: Environment Modules Awareness

 Environment Modules in
Portage

 Sometimes, an odd package may
require a different build environment

 Patch Portage to load, unload, and
swap modules based on environment
variable

 Use package.env
 Prevent build of packages known to

break with certain module
configurations

 Add module requirements for packages

 ENVMOD
 Load: ENVMOD=“module”
 Unload: ENVMOD=“-module”
 Swap: ENVMOD=“%module1:module2”
 Space separated list

 ENVMOD_RESTRICT (ebuild)
 Space separated list of forbidden

modules
 ENVMOD_REQUIRE (ebuild)

 Space separated list of required
modules

Enhancement: Environment Modules Awareness

 Based on old patch to Portage
 Creates a child prefix
 Minimal setup

 $EPREFIX/etc/profile
 $EPREFIX/etc/portage/*

 Chain setup script
 Generates etc/profile and etc/portage/*

based off parent prefix
 Optionally generates and installs

environment module into parent prefix

 Portage uses parent prefixes
for dependency resolution

 Specify DEPEND, RDEPEND,
HDEPEND, PDEPEND

 Allows for a chained prefix with
independent runtime dependencies

 Interaction with parent prefix
entirely read-only

Enhancement: Prefix Chaining

 Chained Prefixes can
change any Portage build
setting
 USE flags
 Compiler
 Even CHOST, if desired

 Can have different default
Environment Modules

 Can be used to support
multiple BLAS choices

 On Blue Waters
 BWPY: Built for login nodes.

No MPI.
 BWPY-MPI: h5py rebuilt

with USE=“mpi”. Mpi4py
added.

 BWPY-Tensorflow: Required
beta Google-Protobuf.
Installed in chained prefix to
keep stable BWPY.

Enhancement: Prefix Chaining: Different Configurations

 Multiuser: Create chained prefixes in home directories
 Users can build specific versions and configurations of software

using ebuilds (ex: PETSc)

Enhancement: Prefix Chaining: Multiuser

 Add “cray” to ebuild’s IUSE
variable

 Put Cray platform-specific
modifications in “if use
cray” block

 Don’t break ebuild for non-
Cray platforms

Patching ebuilds

Patched h5py ebuild

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

