
Maintaining Large Software Stacks in a Cray
Ecosystem with Gentoo Portage

Colin MacLean

 Most modules are, at most, a handful of packages
 Currently available tools ill-suited for large comprehensive

sets of packages on Cray
 Most notably Python

 Need tools to build software distributions
 Resolve complicated dependency trees
 Periodic releases of collections of packages, not many

individual modules
 Avoid complex runtime dependencies
 Avoid environment bloat

Large Software Stacks

 Gentoo Prefix used to manage the Python stack on Blue
Waters
 Over 400 packages installed

 Includes non-Python dependencies. Some system libraries too old.
 Built against the optimized cray-mpich and libsci libraries
 Both MPI and non-MPI versions with minimal redundancy
 Most ebuilds work without modification

 18 modified (mostly minor)
 6 new

Use of Gentoo Prefix on Blue Waters

 SWTools
 HPC software build and install tool
 Creating build script too complex for

large dependency trees

Potential Package Managers

 Pip
 Original scope was limited to a Python

stack
 Can’t build non-Python dependencies
 Can’t tweak build environment on a

per-package basis

 EasyBuild
 HPC software management tool
 Basic level of dependency calculation

 Acceptable for a handful of packages
 Inadequate for hundreds of packages
 Hard coded versions and configuration

options in build files
 Has package repository

 Anaconda
 Python distribution
 Primarily binary based, but can build

from source
 Hard to control build environment

 Anaconda binaries using MPI need
rebuild to use cray-mpich

Potential Package Managers

 Prefixed Gentoo Portage
 Gentoo Portage Alt project allows

Gentoo GNU userland install on top of
Linux/Unix hosts

 Dependency calculations based on
range of compatible versions. Suitable
for rolling periodic distributions.

 Portage USE flags
 Allow for fine-grained control of

configuration options
 Used in dependency calculations

 SLOTs
 Feature allows for simultaneous install

of multiple versions of some packages

 SUBSLOTs
 Feature used to trigger required

rebuilds on package updates
 Ebuild files

 Bash scripts with access to powerful
eclass APIs

 Eclasses can provide default build
procedures that may also be heavily
modified if necessary

 Repositories with tens of thousands of
ebuilds available

 Overlay repositories allow for
customized ebuilds

 Consistent default build environment.
Per-package environment
customization.

Potential Package Managers

● Gentoo Prefix chosen
– Make Environment Modules aware

– Easier than significantly improving package management
features

– Need to install more than just Python packages

Package Manager Selection

 Bootstrapping script self-sufficient
 Bootstrapped its own gcc/binutils
 Host programs not available in prefix environment
 Host MPI only major library visible to prefix (through sys-cluster/native-mpi package)

 After bootstrap, environment still constrained to prefix
 Unaware of Environment Modules framework

Initial state of Gentoo Prefix

● Unpatch Gentoo Prefix uses GCC compiled with --sysroot

– Need to use host compilers

– --sysroot won’t work

● Add prefix directories via -I and -L options to compiler flags

– Breaks some packages

● Set CPATH and LIBRARY_PATH

– Searched after -I and -L like system paths

● Provide compiler a modified “specs” file

Compiler Environment for Gentoo Prefix

 Modify environment to allow Prefix to see host compilers and
libraries

 Change header and library search method
 Generate CPATH/LIBRARY_PATH for host compiler.
 Prefix had expected gcc built with --sysroot option.

 Generate rpaths for LDFLAGS
 Remove checks for host paths in environment
 Set up basic default Environment Modules

Step 1: Modify Bootstrapping Script

 Gentoo Prefix loads its environment from $EPREFIX/etc/profile
 Fix paths to make host system visible to Prefix environment
 Load default set of environment modules if Eselect Environment Modules not available

 Gentoo Portage executes in non-interactive non-login Bash shell
 Source $EPREFIX/etc/profile

 Add Prefix paths to CPATH and LIBRARY_PATH in
$EPREFIX/etc/env.d

 Create Portage profile for Blue Waters
 Default compiler flags, USE flags, forced “cray” USE flag,

package.provided of host provided dependencies

Step 2: Modify Prefix Environment

 Environment Modules module
for Eselect

 Sets default set of Environment
Modules for the Prefix

 Generates environment file
$EPREFIX/etc/env.d/01modules

 Stores settings in $EPREFIX/etc/env-
mod.conf

 Regenerate environment with `eselect
envmod update`

 Ensures reproducible build environment

Enhancement: Environment Modules Awareness

 Environment Modules in
Portage

 Sometimes, an odd package may
require a different build environment

 Patch Portage to load, unload, and
swap modules based on environment
variable

 Use package.env
 Prevent build of packages known to

break with certain module
configurations

 Add module requirements for packages

 ENVMOD
 Load: ENVMOD=“module”
 Unload: ENVMOD=“-module”
 Swap: ENVMOD=“%module1:module2”
 Space separated list

 ENVMOD_RESTRICT (ebuild)
 Space separated list of forbidden

modules
 ENVMOD_REQUIRE (ebuild)

 Space separated list of required
modules

Enhancement: Environment Modules Awareness

 Based on old patch to Portage
 Creates a child prefix
 Minimal setup

 $EPREFIX/etc/profile
 $EPREFIX/etc/portage/*

 Chain setup script
 Generates etc/profile and etc/portage/*

based off parent prefix
 Optionally generates and installs

environment module into parent prefix

 Portage uses parent prefixes
for dependency resolution

 Specify DEPEND, RDEPEND,
HDEPEND, PDEPEND

 Allows for a chained prefix with
independent runtime dependencies

 Interaction with parent prefix
entirely read-only

Enhancement: Prefix Chaining

 Chained Prefixes can
change any Portage build
setting
 USE flags
 Compiler
 Even CHOST, if desired

 Can have different default
Environment Modules

 Can be used to support
multiple BLAS choices

 On Blue Waters
 BWPY: Built for login nodes.

No MPI.
 BWPY-MPI: h5py rebuilt

with USE=“mpi”. Mpi4py
added.

 BWPY-Tensorflow: Required
beta Google-Protobuf.
Installed in chained prefix to
keep stable BWPY.

Enhancement: Prefix Chaining: Different Configurations

 Multiuser: Create chained prefixes in home directories
 Users can build specific versions and configurations of software

using ebuilds (ex: PETSc)

Enhancement: Prefix Chaining: Multiuser

 Add “cray” to ebuild’s IUSE
variable

 Put Cray platform-specific
modifications in “if use
cray” block

 Don’t break ebuild for non-
Cray platforms

Patching ebuilds

Patched h5py ebuild

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

