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Agenda 
●  Numeric prediction models become increasingly complex 

as size and availability of HPC resources increase 
●  Forecast accuracy improves 
●  Simulations at grid resolutions < 2km over entire globe can generate 

terabytes of weather information written frequently over forecast cycle 
●  Increased demands on I/O subsystems creates performance 

bottlenecks 
●  WRF offers a range of different I/O options 

●  How do we use the asynchronous and parallel I/O features of WRF to 
best take advantage of a Cray Lustre parallel file system and Cray 
MPI-IO? 

●  Initial results using DataWarp 
●  Summary and Q&A 
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WRF Background (wrf-model.org) 

●  Collaborative project by NCAR, NOAA, NCEP, Air Force Weather 
Agency, NRL, University of Oklahoma, and the FAA 

●  Regional to global scale numerical weather prediction model for 
both research and operational forecast systems 

●  Suitable for broad range of meteorological applications across 
scales from meters to thousands of kms 

●  Used by weather agencies all over the world, e.g., by NOAA for 
primary regional forecast model for 5 days ahead 

●  Open source, over 10,000 registered users 
●  Designed to perform well on massively parallel computers 

●  Uses MPI and OpenMP 
●  Written in Fortran90 
●  Components have been ported to GPUs and to Intel MIC 
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Benchmark System (Cray XC40) 
●  Intel Broadwell processors (18-core, 2.1ghz) 
●  128GB DDR4 (2400mhz) memory per node 
●  Sonexion 2000 storage, 16 Lustre OSTs 
●  Also: Cray DataWarp storage (3 nodes) 
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See paper for 
more detail 



WRF Benchmark Configuration 

•  Southeast Asia 
•  Two nested domains, 

3km and 1km 
•  Dom1: 1770x1986 
•  Dom2: 2974x3118 

•  28 vertical levels •  30 minute simulation 
•  5 second timestep 
•  History files written every 15 mins by each domain 

•  Dom1: 19.8GB per output step 
•  Dom2: 7.5GB per output step 
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Typical high-resolution 
configuration used by  
weather services 



WRF I/O Implementations.... 

1.  Serial NetCDF (default) 
●  Set of software libraries and self-describing, machine-independent 

data formats that support the creation, access, and sharing of 
array-oriented scientific data 

●  Common data format used in environmental sciences 
●  Provided as part of Programming Environment on Cray XC 
 

2.  Parallel NetCDF 
●  Extension of NetCDF that supports parallel I/O 
●  Collaborative effort from Argonne and Northwestern University 
●  Implemented using Cray MPI-IO layer 
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WRF I/O Implementations (cont.) 

3.  Quilt Servers (output only) 
●  I/O servers increasingly common feature in weather/climate codes  
●  Asynchronous I/O 
●  Assign number of ranks for I/O only in groups 
●  Serial NetCDF writes within server groups 

4.  Quilt Servers with Parallel NetCDF (output only) 
●  As above but with parallel writes within groups 
●  Implemented by Andrew Porter, STFC Daresbury Lab (cf. 2010 CUG 

paper) 

Main focus on output I/O only in what follows.... 
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1. Serial NetCDF 

●  Writing a file:  
●  All data gathered onto master MPI rank 0 using mpi_gatherv 
●  Rank 0 reconstructs data array and writes to disk using serial NetCDF library 
●  All other ranks block, stalling the computation, until write is complete 

●  “Effective” write time as seen by compute ranks includes gather and formatting as well as 
actual disk write 

●  Drawbacks: 
●  Easy to use, good for small rank counts, but.... 
●  Rank 0 requires lots memory (though can use MPMD to place it on its own node) 
●  Overhead of mpi_gatherv rapidly becomes huge bottleneck at higher MPI rank 

counts 
●  MPI/OpenMP hybrid mode can help, but eventually need another solution.... 

CUG 2016 Copyright 2016 Cray Inc.  
8 



Serial NetCDF - overhead 
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2. Parallel NetCDF      

●  Compile with parallel NetCDF enabled and set in input namelist at runtime 

●  MPI ranks aggregated into groups 
●  Number of groups = Lustre stripe count of input/output file  
●  Or can be set via MPI-IO hints.  For example: 

●  export MPICH_MPIIO_HINTS= “wrfout*:striping_factor=16” 
●  One aggregator from each group writes to file 
●  Reduces gather time and contention 

●  Cray MPI-IO is optimized to align I/O with parallel file system striping 
●  Cray MPI-IO collective buffering assigns one aggregator per OST and spreads aggregators out 

evenly across the nodes 
●  More OSTs available = more parallelism possible 

●  Cray MPI-IO layer on the XC provides useful environment variables to 
control diagnostics..... 
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MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1 

Shows: 
•   How many aggregators have been 

assigned 
•  Whether rank reordering was used 
•  MPI rank numbers of assigned 

aggregators 
•  Node NID numbers of assigned 

aggregators  
Note the spreading of aggregators 
among the MPI ranks and the nodes 

Aggregator Placement for wrfinput_d01 
RankReorderMethod=3  AggPlacementStride=-1 
  AGG    Rank       nid 
  ----  ------  -------- 
     0       0  nid00016 
     1     434  nid00041 
     2     868  nid00125 
     3    1302  nid00221 
     4    1736  nid00245 
     5    2170  nid00269 
     6    2604  nid00293 
     7    3038  nid00317 
     8      18  nid00349 
     9     452  nid00373 
    10     886  nid00773 
    11    1320  nid00797 
    12    1754  nid00821 
    13    2188  nid00845 
    14    2622  nid00869 
    15    3056  nid00893 
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MPICH_MPIIO_HINTS_DISPLAY=1 

Look out for the value of cb_nodes – if 
not equal to the expected number of 
aggregators (stripes),  we have a 
problem! 

PE 0: MPIIO hints for wrfoutput_d01: 
cb_buffer_size   = 16777216 
romio_cb_read    = automatic 
romio_cb_write   = automatic 
cb_nodes         = 16 
cb_align         = 2 
romio_no_indep_rw   = false 
romio_cb_pfr     = disable 
romio_cb_fr_types   = aa 
romio_cb_fr_alignment  = 1 
romio_cb_ds_threshold = 0 
romio_cb_alltoall  = automatic 
ind_rd_buffer_size    = 4194304 
ind_wr_buffer_size  = 524288 
romio_ds_read       = disable 
romio_ds_write      = disable 
striping_factor   = 16 
striping_unit       = 1048576 
romio_lustre_start_iodevice = 0 
direct_io         = false 
aggregator_placement_stride = -1 
abort_on_rw_error    = disable 
cb_config_list       = *:* 
romio_filesystem_type  = CRAY ADIO: 
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MPICH_MPIIO_STATS=1 

For best performance, we want 
many collective reads, few 
independent reads, and few 
gaps. 
 
Try MPICH_MPIIO_STATS=2 
for much more performance 
information including a timeline 
and data to generate bandwidth 
charts. 
 
man intro_mpi 
 

+------------------------------------+ 
| MPIIO read access patterns for 
| wrfinput_d01 
|   independent reads       = 1 
|   collective reads        = 457452 
|   independent readers     = 1 
|   aggregators             = 16 
|   stripe count            = 16 
|   stripe size             = 1048576 
|   system reads            = 7727 
|   stripe sized reads      = 7512 
|  total bytes for reads = 7964753971 
|     = 7595 MiB = 7 GiB 
|   ave system read size    = 1030769 
|   number of read gaps     = 1 
|   ave read gap size       = 1 
| See "Optimizing MPI I/O on Cray XE 
| Systems" S-0013-20 for explanations. 
+------------------------------------+ 
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Back to WRF and Parallel NetCDF... 
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3. Quilt Servers (asynchronous I/O) 
●  Quilt servers deal exclusively with I/O 

●  Groups of compute ranks are mapped onto quilt servers as evenly as possible 
●  Ideally have equal numbers of ranks per server [much more important in next method] 

●  Send data to assigned I/O server then continue with integration while data is 
formatted and written to disk asynchronously 

●  Select via input namelist nio_groups of I/O servers and 
nio_tasks_per_group servers per group 
●  One group can only work on one output frame at a time 
●  Need more than one group if write more than one frame per step (e.g. multiple 

domains, restart + history, etc.) 
●  Need more than one group if next output step is reached before previous write is 

finished otherwise all ranks have to wait 
●  “Effective” write time seen by compute ranks is now minimal (<1s) 
●  Actual time to write to disk much higher as performed serially by each 

I/O group 
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Quilt Servers – Output overhead 
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Quilt Servers: Drawbacks 
●  Final write step is slow as cannot be overlapped 

●  This might not matter for a long simulation, but can overwhelm shorter forecasts or 
benchmarks 

●  Can affect ensemble runs 
●  Effect worsens at higher total rank counts 

●  I/O servers require much more memory than compute ranks and so can 
only assign a few per node 
●  Use ALPS MPMD to achieve this (see paper) 

●  Need more and more I/O groups if time between output steps decreases, 
e.g., 
●  More MPI ranks so faster compute times 
●  Frequent output required (e.g. severe thunderstorm forecasting) 

●  ... So need to assign more and more nodes to I/O 

●  What if we could speed up the output within each quilt server group?  
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... We can!  4. Quilt Servers PLUS Parallel NetCDF 
●  Percentage of time spent in output now below 3% AND final write time 

much lower than in previous case 
●  Wallclock time to complete forecast under half that of serial case 
●  Allows more frequent output and higher scaling 
●  Can handle short runs better 
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Final Comparison 
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Initial observations on WRF with Cray DataWarp 

●  SSD-based hardware (two Intel P3608 SSD per node)   
●  Lower cost than Lustre (comparing SSU to DW), higher reliability 

●  Cray-developed software, integrated with SLURM and other WLMs 
●  Input file pre-staged to DataWarp and output history files staged to 

permanent Lustre storage at end of run 
●  Preprocessing output or periodic restart files could be kept in scratch and not 

staged in or out   
●  Directives to stage files are parsed by WLM (see paper for more) 

#DW jobdw type=scratch access_mode=striped capacity=1150GiB 
#DW stage_in type=file source=INPUT/wrfinput_d01 destination=$DW_JOB_STRIPED/
wrfinput_d01 
#DW stage_out type=file destination=OUTPUT/wrfout_d01_2015-03-10_00_00_00 source=
$DW_JOB_STRIPED/wrfout_d01_2015-03-10_00_00_00 

●  Compared 3 DataWarp nodes against 3 and 16 Lustre OST stripes 
●  Ongoing studies at KAUST scaling up to 100 nodes and beyond 
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DataWarp/Lustre Comparison - Output 
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DataWarp/Lustre Comparison - Input 
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Summary 
●  I/O overhead can drastically limit scaling of WRF to higher core 

counts and higher output frequencies 
●  Existing methods, especially parallel NetCDF + quilts can 

effectively hide much of the I/O overhead and enable realistic 
scaling 
●  Cray MPI-IO layer a great advantage on XC 

●  Use of Parallel NetCDF + quilts can improve time to forecast 
compared to serial NetCDF by over 2x 
●  Method should be more widely used! See paper for hints on usage. 

●  Cray DataWarp could be a great option for WRF I/O 
●  Not only for forecast input and output, but as scratch storage during pre 

and post processing over an entire workflow 
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Q&A 
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