
Improving I/O Performance of the 
Weather Research and Forecast     
(WRF) Model 
Tricia Balle & Pete Johnsen     CUG, May 2016 



Agenda 
●  Numeric prediction models become increasingly complex 

as size and availability of HPC resources increase 
●  Forecast accuracy improves 
●  Simulations at grid resolutions < 2km over entire globe can generate 

terabytes of weather information written frequently over forecast cycle 
●  Increased demands on I/O subsystems creates performance 

bottlenecks 
●  WRF offers a range of different I/O options 

●  How do we use the asynchronous and parallel I/O features of WRF to 
best take advantage of a Cray Lustre parallel file system and Cray 
MPI-IO? 

●  Initial results using DataWarp 
●  Summary and Q&A 

CUG 2016 Copyright 2016 Cray Inc.  
2 



WRF Background (wrf-model.org) 

●  Collaborative project by NCAR, NOAA, NCEP, Air Force Weather 
Agency, NRL, University of Oklahoma, and the FAA 

●  Regional to global scale numerical weather prediction model for 
both research and operational forecast systems 

●  Suitable for broad range of meteorological applications across 
scales from meters to thousands of kms 

●  Used by weather agencies all over the world, e.g., by NOAA for 
primary regional forecast model for 5 days ahead 

●  Open source, over 10,000 registered users 
●  Designed to perform well on massively parallel computers 

●  Uses MPI and OpenMP 
●  Written in Fortran90 
●  Components have been ported to GPUs and to Intel MIC 

CUG 2016 Copyright 2016 Cray Inc.  
3 



Benchmark System (Cray XC40) 
●  Intel Broadwell processors (18-core, 2.1ghz) 
●  128GB DDR4 (2400mhz) memory per node 
●  Sonexion 2000 storage, 16 Lustre OSTs 
●  Also: Cray DataWarp storage (3 nodes) 

CUG 2016 Copyright 2016 Cray Inc.  
4 

See paper for 
more detail 



WRF Benchmark Configuration 

•  Southeast Asia 
•  Two nested domains, 

3km and 1km 
•  Dom1: 1770x1986 
•  Dom2: 2974x3118 

•  28 vertical levels •  30 minute simulation 
•  5 second timestep 
•  History files written every 15 mins by each domain 

•  Dom1: 19.8GB per output step 
•  Dom2: 7.5GB per output step 

CUG 2016 Copyright 2016 Cray Inc.  
5 

Typical high-resolution 
configuration used by  
weather services 



WRF I/O Implementations.... 

1.  Serial NetCDF (default) 
●  Set of software libraries and self-describing, machine-independent 

data formats that support the creation, access, and sharing of 
array-oriented scientific data 

●  Common data format used in environmental sciences 
●  Provided as part of Programming Environment on Cray XC 
 

2.  Parallel NetCDF 
●  Extension of NetCDF that supports parallel I/O 
●  Collaborative effort from Argonne and Northwestern University 
●  Implemented using Cray MPI-IO layer 

CUG 2016 Copyright 2016 Cray Inc.  
6 



WRF I/O Implementations (cont.) 

3.  Quilt Servers (output only) 
●  I/O servers increasingly common feature in weather/climate codes  
●  Asynchronous I/O 
●  Assign number of ranks for I/O only in groups 
●  Serial NetCDF writes within server groups 

4.  Quilt Servers with Parallel NetCDF (output only) 
●  As above but with parallel writes within groups 
●  Implemented by Andrew Porter, STFC Daresbury Lab (cf. 2010 CUG 

paper) 

Main focus on output I/O only in what follows.... 

CUG 2016 Copyright 2016 Cray Inc.  
7 



1. Serial NetCDF 

●  Writing a file:  
●  All data gathered onto master MPI rank 0 using mpi_gatherv 
●  Rank 0 reconstructs data array and writes to disk using serial NetCDF library 
●  All other ranks block, stalling the computation, until write is complete 

●  “Effective” write time as seen by compute ranks includes gather and formatting as well as 
actual disk write 

●  Drawbacks: 
●  Easy to use, good for small rank counts, but.... 
●  Rank 0 requires lots memory (though can use MPMD to place it on its own node) 
●  Overhead of mpi_gatherv rapidly becomes huge bottleneck at higher MPI rank 

counts 
●  MPI/OpenMP hybrid mode can help, but eventually need another solution.... 

CUG 2016 Copyright 2016 Cray Inc.  
8 



Serial NetCDF - overhead 

CUG 2016 Copyright 2016 Cray Inc.  
9 



2. Parallel NetCDF      

●  Compile with parallel NetCDF enabled and set in input namelist at runtime 

●  MPI ranks aggregated into groups 
●  Number of groups = Lustre stripe count of input/output file  
●  Or can be set via MPI-IO hints.  For example: 

●  export MPICH_MPIIO_HINTS= “wrfout*:striping_factor=16” 
●  One aggregator from each group writes to file 
●  Reduces gather time and contention 

●  Cray MPI-IO is optimized to align I/O with parallel file system striping 
●  Cray MPI-IO collective buffering assigns one aggregator per OST and spreads aggregators out 

evenly across the nodes 
●  More OSTs available = more parallelism possible 

●  Cray MPI-IO layer on the XC provides useful environment variables to 
control diagnostics..... 

CUG 2016 Copyright 2016 Cray Inc.  
10 



MPICH_MPIIO_AGGREGATOR_PLACEMENT_DISPLAY=1 

Shows: 
•   How many aggregators have been 

assigned 
•  Whether rank reordering was used 
•  MPI rank numbers of assigned 

aggregators 
•  Node NID numbers of assigned 

aggregators  
Note the spreading of aggregators 
among the MPI ranks and the nodes 

Aggregator Placement for wrfinput_d01 
RankReorderMethod=3  AggPlacementStride=-1 
  AGG    Rank       nid 
  ----  ------  -------- 
     0       0  nid00016 
     1     434  nid00041 
     2     868  nid00125 
     3    1302  nid00221 
     4    1736  nid00245 
     5    2170  nid00269 
     6    2604  nid00293 
     7    3038  nid00317 
     8      18  nid00349 
     9     452  nid00373 
    10     886  nid00773 
    11    1320  nid00797 
    12    1754  nid00821 
    13    2188  nid00845 
    14    2622  nid00869 
    15    3056  nid00893 

CUG 2016 Copyright 2016 Cray Inc.  
11 



MPICH_MPIIO_HINTS_DISPLAY=1 

Look out for the value of cb_nodes – if 
not equal to the expected number of 
aggregators (stripes),  we have a 
problem! 

PE 0: MPIIO hints for wrfoutput_d01: 
cb_buffer_size   = 16777216 
romio_cb_read    = automatic 
romio_cb_write   = automatic 
cb_nodes         = 16 
cb_align         = 2 
romio_no_indep_rw   = false 
romio_cb_pfr     = disable 
romio_cb_fr_types   = aa 
romio_cb_fr_alignment  = 1 
romio_cb_ds_threshold = 0 
romio_cb_alltoall  = automatic 
ind_rd_buffer_size    = 4194304 
ind_wr_buffer_size  = 524288 
romio_ds_read       = disable 
romio_ds_write      = disable 
striping_factor   = 16 
striping_unit       = 1048576 
romio_lustre_start_iodevice = 0 
direct_io         = false 
aggregator_placement_stride = -1 
abort_on_rw_error    = disable 
cb_config_list       = *:* 
romio_filesystem_type  = CRAY ADIO: 

CUG 2016 Copyright 2016 Cray Inc.  
12 



MPICH_MPIIO_STATS=1 

For best performance, we want 
many collective reads, few 
independent reads, and few 
gaps. 
 
Try MPICH_MPIIO_STATS=2 
for much more performance 
information including a timeline 
and data to generate bandwidth 
charts. 
 
man intro_mpi 
 

+------------------------------------+ 
| MPIIO read access patterns for 
| wrfinput_d01 
|   independent reads       = 1 
|   collective reads        = 457452 
|   independent readers     = 1 
|   aggregators             = 16 
|   stripe count            = 16 
|   stripe size             = 1048576 
|   system reads            = 7727 
|   stripe sized reads      = 7512 
|  total bytes for reads = 7964753971 
|     = 7595 MiB = 7 GiB 
|   ave system read size    = 1030769 
|   number of read gaps     = 1 
|   ave read gap size       = 1 
| See "Optimizing MPI I/O on Cray XE 
| Systems" S-0013-20 for explanations. 
+------------------------------------+ 

CUG 2016 Copyright 2016 Cray Inc.  
13 



Back to WRF and Parallel NetCDF... 

CUG 2016 Copyright 2016 Cray Inc.  
14 



3. Quilt Servers (asynchronous I/O) 
●  Quilt servers deal exclusively with I/O 

●  Groups of compute ranks are mapped onto quilt servers as evenly as possible 
●  Ideally have equal numbers of ranks per server [much more important in next method] 

●  Send data to assigned I/O server then continue with integration while data is 
formatted and written to disk asynchronously 

●  Select via input namelist nio_groups of I/O servers and 
nio_tasks_per_group servers per group 
●  One group can only work on one output frame at a time 
●  Need more than one group if write more than one frame per step (e.g. multiple 

domains, restart + history, etc.) 
●  Need more than one group if next output step is reached before previous write is 

finished otherwise all ranks have to wait 
●  “Effective” write time seen by compute ranks is now minimal (<1s) 
●  Actual time to write to disk much higher as performed serially by each 

I/O group 

CUG 2016 Copyright 2016 Cray Inc.  
15 



Quilt Servers – Output overhead 

CUG 2016 Copyright 2016 Cray Inc.  
16 



Quilt Servers: Drawbacks 
●  Final write step is slow as cannot be overlapped 

●  This might not matter for a long simulation, but can overwhelm shorter forecasts or 
benchmarks 

●  Can affect ensemble runs 
●  Effect worsens at higher total rank counts 

●  I/O servers require much more memory than compute ranks and so can 
only assign a few per node 
●  Use ALPS MPMD to achieve this (see paper) 

●  Need more and more I/O groups if time between output steps decreases, 
e.g., 
●  More MPI ranks so faster compute times 
●  Frequent output required (e.g. severe thunderstorm forecasting) 

●  ... So need to assign more and more nodes to I/O 

●  What if we could speed up the output within each quilt server group?  

CUG 2016 Copyright 2016 Cray Inc.  
17 



... We can!  4. Quilt Servers PLUS Parallel NetCDF 
●  Percentage of time spent in output now below 3% AND final write time 

much lower than in previous case 
●  Wallclock time to complete forecast under half that of serial case 
●  Allows more frequent output and higher scaling 
●  Can handle short runs better 

CUG 2016 Copyright 2016 Cray Inc.  
18 



Final Comparison 

CUG 2016 Copyright 2016 Cray Inc.  
19 



Initial observations on WRF with Cray DataWarp 

●  SSD-based hardware (two Intel P3608 SSD per node)   
●  Lower cost than Lustre (comparing SSU to DW), higher reliability 

●  Cray-developed software, integrated with SLURM and other WLMs 
●  Input file pre-staged to DataWarp and output history files staged to 

permanent Lustre storage at end of run 
●  Preprocessing output or periodic restart files could be kept in scratch and not 

staged in or out   
●  Directives to stage files are parsed by WLM (see paper for more) 

#DW jobdw type=scratch access_mode=striped capacity=1150GiB 
#DW stage_in type=file source=INPUT/wrfinput_d01 destination=$DW_JOB_STRIPED/
wrfinput_d01 
#DW stage_out type=file destination=OUTPUT/wrfout_d01_2015-03-10_00_00_00 source=
$DW_JOB_STRIPED/wrfout_d01_2015-03-10_00_00_00 

●  Compared 3 DataWarp nodes against 3 and 16 Lustre OST stripes 
●  Ongoing studies at KAUST scaling up to 100 nodes and beyond 

CUG 2016 Copyright 2016 Cray Inc.  
20 



DataWarp/Lustre Comparison - Output 

CUG 2016 Copyright 2016 Cray Inc.  
21 

Serial  
DW 

Serial  
DW 

Serial  
Lustre 

Serial  
Lustre 

Parallel  
DW-3 

Parallel  
DW-3 

Parallel  
OST-3 

Parallel  
OST-3 

Parallel  
OST-16 

Parallel  
OST-16 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

4.50 

5.00 

wrfout_d01 wrfout_d02 

Ef
fe

ct
iv

e 
R

at
e 

(G
B

yt
es

/s
) 



DataWarp/Lustre Comparison - Input 

CUG 2016 Copyright 2016 Cray Inc.  
22 

Serial  
DW 

Serial  
DW Serial  

Lustre 
Serial  
Lustre 

Parallel  
DW-3 

Parallel  
DW-3 

Parallel  
OST-3 

Parallel  
OST-3 

Parallel  
OST-16 

Parallel  
OST-16 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

3.50 

4.00 

4.50 

wrfinput_d01 wrfinput_d02 

Ef
fe

ct
iv

e 
R

at
e 

(G
B

yt
es

/s
) 



Summary 
●  I/O overhead can drastically limit scaling of WRF to higher core 

counts and higher output frequencies 
●  Existing methods, especially parallel NetCDF + quilts can 

effectively hide much of the I/O overhead and enable realistic 
scaling 
●  Cray MPI-IO layer a great advantage on XC 

●  Use of Parallel NetCDF + quilts can improve time to forecast 
compared to serial NetCDF by over 2x 
●  Method should be more widely used! See paper for hints on usage. 

●  Cray DataWarp could be a great option for WRF I/O 
●  Not only for forecast input and output, but as scratch storage during pre 

and post processing over an entire workflow 

CUG 2016 Copyright 2016 Cray Inc.  
23 



Legal Disclaimer 

Copyright 2016 Cray Inc.  
24 

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual 
property rights is granted by this document.  

Cray Inc. may make changes to specifications and product descriptions at any time, without notice. 

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.  

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate 
from published specifications. Current characterized errata are available on request.  

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers 
and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray 
Inc. internal codenames is at the sole risk of the user.  

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of 
Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect 
actual performance.  

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, 
SONEXION, and URIKA. The following are trademarks of Cray Inc.:  APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, 
CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM, REVEAL.  The following system family marks, and associated 
model number marks, are trademarks of Cray Inc.:  CS, CX, XC, XE, XK, XMT, and XT.  The registered trademark LINUX is used 
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.  Other 
trademarks used in this document are the property of their respective owners. 

CUG 2016 



Q&A 

Copyright 2016 Cray Inc.  
25 

Tricia Balle 
pburgess@cray.com 

 

Pete Johnsen 
pjj@cray.com 

CUG 2016 


