
Enhancing scalability of the gyrokinetic
code GS2 by using MPI Shared Memory

for FFTs
Lucian Anton1, Ferdinand van Wyk2,4, Edmund Highcock2,

Colin Roach3, Joseph T. Parker5

1Cray UK, 2University of Oxford,
3CCFE Culham, 4STFC Daresbury, 5STFC RAL

CRAY User Group 2016,

London, May 10-12 2016

Outlook

● Introduction to GS2

● Accelerating FFTs with shared memory in GS2

● Implementation details & scaling performance

● Conclusions

CUG2016
2

GS2 Introduction: code description

● GS2 is a parallel physics application, developed to study
low-frequency turbulence in magnetized plasma
● Large computation scale well to O(1000) MPI ranks

● Collaborative project with main contributors and users from:
Culham Centre for Fusion Energy, Princeton Plasma
Physics Laboratory, University of Maryland, University of
Oxford, University of York, EPCC

● GS2 is written (mainly) in Fortran, the code source and
documentation are available online
● http://gyrokinetics.sourceforge.net/wiki

CUG2016
3

GS2 Introduction: basic physics

● The particle equilibrium distribution is
often unstable to small scale instabilities
● Full plasma state is described by perturbed

distribution named g

● g evulotion is described by the Gyrokinetic
Equation (GKE)

● Used to compute physical quantities: heat and
particle fluxes, electromagnetics fields

● Charged particle in strong magnetic field have a highly anisotropic motion:

● The fast rotation around the magnetic line can be averaged out

● The centre of gyration moves along the magnetic line

● Drift motion across the field lines due to field geometry and electromagnetic turbulence

CUG2016
4

GS2 Introduction: Gyrokinetics multiscale
computational challenges

● GKE for ITER simulation at ion scale:
● Must resolve the time for an ion to cross a turbulent eddy ~ 1 ms,
● turbulence saturation time tsat ~10 ms

● Desirable simulations
● Confinement time ~ 100 tsat

● ~1012 grid points

● ~170 Pflops.hours (~ a week on 105 cores)

● Coupled electron–ion turbulence ~603 factor.

● Fusion is hard also in bits not only in atoms, but simplified
approaches are useful

● Large, scalable FFTs are an essential requirement for these kind
on computations

CUG2016
5

GS2 Introduction: data layouts

● g(q,s,x,y,l,e,s) is computed by solving numerically GKE
● q space coordinate along magnetic field

● s direction of motion along magnetic field (+/-1)

● x,y space coordinates perpendicular to the magnetic field

● l,e describe particle energy

● s particle species

● Computation of GKE terms requires several discretized grid memory
layouts with various subsets of variables ranges local to the MPI ranks
● Time advance : g_lo(q,s::`xyles`)

● FFT : xxf_lo(x::y,q,s,`les`) yxf_lo(y::x,q,s,`les`)

● Collision layouts :…

● Costly redistributes between layouts at large counts of MPI ranks
saturate parallel scaling because of the all to all communication pattern

CUG2016
6

GS2 Introduction: Fourier transforms

● In current computation GS2 needs to compute O(100) of 2D

FT on O(100) x O(100)

● (x,y) coordinates

● uses dealiasing

● In general FT can be computed in GS2 in xxf_lo and yxf_lo

● Poor scalability at high MPI rank counts

● In certain cases computation can be done in g_lo

● MPI communication is avoided

CUG2016
7

GS2 accelerated FFTs

● g_lo (q,σ::`yxles`) layout can be thought as ‘l*e*s’ set of 3D
subarrays
● First dimension aggregates q and σ

● FFTs are computed in the (x,y) plane of each block

y

x

q, σ

l * e * s

CUG2016
8

GS2 FFT parallel algorithm

3/4
1/4+

2/4

2/4+

1/4 3/4 … … … …

2 2 2

Accelerated FFTs:

les % Nproc =0

2D FFTW plan

Distributed FFTs:

Uses MPI comm

+ 2 1D FFTW

plans

r0 r1 r2

r0 r1 r2 r3 …

CUG2016
9

Accelerated FFTs with SHM

● We choose load

imbalance to save

MPI comm

● All ranks from a

SHM-node work

on one ‘les’ block

at a time

● 2x1D FFTW plans

found to be faster

than 2D plan

Shared mem Shared Mem

Node 0 Node 1

r0 r1 r2 r3 r0 r1 r2 r3

CUG2016
10

Shared Memory in MPI 3

0 1 2 3

Load/store, get, put, acc, ..

0 1 2 3

Load/store, get, put, acc, ..

MPI_COMM_WORLD

SMH Window SMH Window
MPI_COMMTYPE_SHARED MPI_COMMTYPE_SHARED

Node 0 Node 1

T. Hoefler et al “ MPI + MPI: a new hybrid approach to parallel programming with

MPI plus shared memory”,Journal of Computing, 2013

CUG2016
11

Implementation detail: SHM module

● Fortran module for shared memory

type shm_info_t

integer comm, wcomm, size, id

integer, allocatable :: wranks(:)

end type shm_info_t

public :: shm_init, shm_alloc, shm_free, &

shm_onnode, shm_node_id, shm_get_node_pointer, &

shm_node_barrier, shm_clean, shm_fence
● I. J. Bush, New Fortran Features: The Portable Use of Shared Memory Segments, HPCx

Consortium, Tech. Rep., 2007.

http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0701.pdf

CUG2016
12

Implementation details: GS2 code changes

● GS2 data layout adaptation

● Insert SHM-node info in the layout descriptors

● New FFTW plans and 2 new subroutines for shared computation

of FFTW on FFT-block

● Change a few allocatable arrays to pointers

● Shared memory is compatible with OpenMP

● Not limited by the possible limited OpenMP scaling of other

numerical kernels

CUG2016
13

Implementation details: 2D vs 1D FFTW plans(I)

● FFTs are to be computed for every (x,y) plane of each

block

y

x

q, σ

r0 r1

r0

r1

r1

r0

CUG2016
14

Implementation details: 2D vs 1D FFTW plans (II)

if (use_2d_fftw_plan) then

call fftw_execute_dft(one_node_plan2d,a(1+team%nt_shift:1+team%nt_shift,1,1,1), &

b(1+team%nt_shift:1+team%nt_shift,1,1,1))

else

do j = shm_info%id+1, gy, shm_info%size

call fftw_execute_dft(planfx1, a(:,:,j,1), b(:,:,j,1))

enddo

call shm_flush(b(1,1,1,1))

do i = shm_info%id+1, nx, shm_info%size

buffy1nd(:,:) = b(:,i,:,1)

call fftw_execute_dft(planfy1, buffy1nd,buffy1nd)

b(:,i,:,1) = buffy1nd(:,:)

enddo

…….

CUG2016
15

Implementation details: 2D vs 1D FFTW plans (III)

FFTW / fftw_execute_dft

Time 0.277788 secs

Imb. Time 0.021013
secs

TLB utilization 1,115.55 refs/miss
2.18 avg uses

D1 cache hit,miss ratios 91.3% hits
8.7% misses

D1 cache utilization (misses) 11.54 refs/miss
1.44 avg hits

D2 cache hit,miss ratio 45.4% hits
54.6% misses

D1+D2 cache hit,miss ratio 95.3% hits
4.7% misses

D1+D2 cache utilization 21.13 refs/miss
2.64 avg hits

FFTW / fftw_execute_dft

Time 0.500982 secs

Imb. Time 0.095712
sec

TLB utilization 25.34 refs/miss
0.05 avg uses

D1 cache hit,miss ratios 80.0% hits
20.0% misses

D1 cache utilization (misses) 5.01 refs/miss
0.63 avg hits

D2 cache hit,miss ratio 54.3% hits
45.7% misses

D1+D2 cache hit,miss ratio 90.9% hits
9.1% misses

D1+D2 cache utilization 10.95 refs/miss
1.37 avg hits

CUG2016
16

Scaling performance: FFT benchmark

● 384 `les` blocks 106x128x128 FFT
block

● Use SHM segments at node level and
socket level

● Runs done on ARCHER
● Intel compiler 15.0.0.163

● FFTW 3.3.4.5

● Perfect scaling for small
load imbalance

● SHM extends the good
scaling regime increased ~ 2
times

CUG2016
17

Scaling performance: GS2 Collisonless run

● Scaling saturates

because of the linear

term

● Load imbalance for

NUMA-SHM takes place

in the same range

CUG2016
18

Scaling performance: Broadwell vs Ivy Bridge

● Showing only NUMA-SHM
● BDW:

● 36 cores/node, 2.1 GHz,

● 44 cores/node, 2.2 GHz

● IVB:
● 24 cores/node, 2.7 GHz

● Performance per core is
similar for all chips

CUG2016
19

Conclusions

● Accelerated FFTs+SHM scale ~ 10,000 MPI ranks on
ARCHER (scaling range more than doubled + speed
up)

● GS2 collisionless computation speeds up ~ 25% at
large core counts over a good range of MPI ranks
● Load imbalance affects the scaling

● More elaborate algorithms are worth exploring

● Minimal intrusion in the original source code
● Compatible with OpenMP

● Scaling is preserved for the larger Broadwell nodes

CUG2016
20

Legal Disclaimer

21

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property

rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from

published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and

other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal

codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.

products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and

URIKA. The following are trademarks of Cray Inc.: APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT,

ECOPHLEX, LIBSCI, NODEKARE, REVEAL,THREADSTORM. The following system family marks, and associated model number marks,

are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from

LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the

property of their respective owners.

CUG2016

Acknowledgments

● This work was partially supported by:

● the Plasma HEC Consortium [EPSRC grant number EP/L000237/1],

● CCP Plasma[EPSRC grant number EP/M022463/1],

● the UK Engineering and Physical Sciences Research Council

(EPSRC) through the Software Outlook Programme.

● RCUK Energy Programme [grant number EP/I501045].

● This work used the ARCHER UK National Supercomputing

Service (http://www.archer.ac.uk).

● Cray

CUG2016
22

http://www.archer.ac.uk/

Q&A

Lucian Anton lanton@cray.com

Colin Roach colin.roach@ukaea.uk

