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GS2 Introduction: code description

● GS2 is a parallel physics application, developed to study 
low-frequency turbulence in magnetized plasma
● Large computation scale well to O(1000) MPI ranks

● Collaborative project with main contributors and users from: 
Culham Centre for Fusion Energy, Princeton Plasma 
Physics Laboratory, University of Maryland, University of 
Oxford, University of York, EPCC

● GS2 is written (mainly) in Fortran, the code source and 
documentation are available online
● http://gyrokinetics.sourceforge.net/wiki
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GS2 Introduction: basic physics

● The particle equilibrium distribution is 
often unstable to small scale instabilities
● Full plasma state is described by perturbed 

distribution named g

● g evulotion is described by the Gyrokinetic
Equation (GKE)

● Used to compute physical quantities: heat and 
particle fluxes, electromagnetics fields

● Charged particle in strong magnetic field have a highly anisotropic motion:

● The fast rotation around the magnetic line can be averaged out

● The centre of gyration moves along the magnetic line

● Drift motion across the field lines due to field geometry and electromagnetic turbulence
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GS2 Introduction: Gyrokinetics multiscale
computational challenges

● GKE for ITER simulation at ion scale:
● Must resolve the time for an ion to cross a turbulent eddy ~ 1 ms,
● turbulence saturation time  tsat ~10 ms

● Desirable simulations
● Confinement time ~ 100 tsat

● ~1012 grid points

● ~170 Pflops.hours ( ~ a week on 105 cores)

● Coupled electron–ion turbulence ~603 factor.

● Fusion is hard also in bits not only in atoms, but simplified 
approaches are useful

● Large, scalable FFTs are an essential requirement for these kind 
on computations
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GS2 Introduction: data layouts

● g(q,s,x,y,l,e,s) is computed by solving numerically GKE
● q space coordinate along magnetic field

● s direction of motion along magnetic field (+/-1)

● x,y space coordinates perpendicular to the magnetic field

● l,e describe particle energy

● s particle species

● Computation of GKE terms requires several discretized grid memory 
layouts with various subsets of variables ranges local to the MPI ranks 
● Time advance : g_lo(q,s::`xyles`)

● FFT : xxf_lo(x::y,q,s,`les`) yxf_lo(y::x,q,s,`les`)

● Collision layouts :…

● Costly redistributes between layouts at large counts of MPI ranks 
saturate parallel scaling because of the all to all communication pattern
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GS2 Introduction: Fourier transforms

● In current computation GS2 needs to compute O(100)  of 2D 

FT on O(100) x O(100)

● (x,y) coordinates

● uses dealiasing

● In general FT can be computed in GS2 in xxf_lo and yxf_lo

● Poor scalability at high MPI rank counts

● In certain cases computation can be done in g_lo

● MPI communication is avoided
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GS2 accelerated FFTs

● g_lo (q,σ::`yxles`) layout can be thought as ‘l*e*s’ set of 3D 
subarrays
● First dimension aggregates q and σ

● FFTs are computed in the (x,y) plane of each block

y

x

q, σ

l * e * s
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GS2 FFT parallel algorithm

3/4
1/4+

2/4

2/4+

1/4 3/4 … … … …

2 2 2

Accelerated FFTs:

les % Nproc =0 

2D FFTW plan

Distributed FFTs:

Uses MPI comm

+ 2 1D FFTW 

plans

r0 r1 r2

r0 r1 r2 r3 …

CUG2016
9



Accelerated FFTs with SHM

● We choose load 

imbalance to save 

MPI comm

● All ranks from a 

SHM-node work 

on one ‘les’ block 

at a time

● 2x1D FFTW plans  

found to be faster 

than 2D plan

Shared mem Shared Mem

Node 0 Node 1

r0 r1 r2 r3 r0 r1 r2 r3
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Shared Memory in MPI 3

0 1 2 3

Load/store, get, put, acc, ..

0 1 2 3

Load/store, get, put, acc, ..

MPI_COMM_WORLD

SMH Window SMH Window
MPI_COMMTYPE_SHARED MPI_COMMTYPE_SHARED

Node 0 Node 1

T. Hoefler et al “ MPI + MPI: a new hybrid approach to parallel programming with 

MPI plus shared memory”,Journal of Computing, 2013
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Implementation detail: SHM module

● Fortran module for shared memory

type shm_info_t

integer comm, wcomm, size, id 

integer, allocatable :: wranks(:)

end type shm_info_t

public :: shm_init, shm_alloc, shm_free, &

shm_onnode, shm_node_id, shm_get_node_pointer, &

shm_node_barrier, shm_clean, shm_fence
● I. J. Bush, New Fortran Features: The Portable Use of Shared Memory Segments, HPCx

Consortium, Tech. Rep., 2007. 

http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0701.pdf
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Implementation details: GS2 code changes

● GS2 data layout adaptation 

● Insert SHM-node info in the layout descriptors

● New FFTW plans and 2 new subroutines for shared computation 

of FFTW on FFT-block

● Change a few allocatable arrays to pointers

● Shared memory is compatible with OpenMP

● Not limited by the possible limited OpenMP scaling of other 

numerical kernels
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Implementation details: 2D vs 1D FFTW plans(I)

● FFTs are to be computed for every (x,y) plane of each 

block

y

x

q, σ

r0 r1

r0

r1

r1

r0
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Implementation details: 2D vs 1D FFTW plans (II)

if (use_2d_fftw_plan) then

call fftw_execute_dft(one_node_plan2d,a(1+team%nt_shift:1+team%nt_shift,1,1,1), &

b(1+team%nt_shift:1+team%nt_shift,1,1,1))

else

do j = shm_info%id+1, gy, shm_info%size

call fftw_execute_dft(planfx1, a(:,:,j,1), b(:,:,j,1))

enddo

call shm_flush(b(1,1,1,1))

do i = shm_info%id+1, nx, shm_info%size

buffy1nd(:,:) = b(:,i,:,1) 

call fftw_execute_dft(planfy1, buffy1nd,buffy1nd)

b(:,i,:,1) = buffy1nd(:,:)

enddo

…….
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Implementation details: 2D vs 1D FFTW plans (III)

FFTW / fftw_execute_dft

-----------------------------------------------------------------------

Time                                                 0.277788 secs

Imb. Time                                            0.021013 
secs

TLB utilization                1,115.55 refs/miss        
2.18 avg uses

D1 cache hit,miss ratios          91.3% hits             
8.7% misses

D1 cache utilization (misses)     11.54 refs/miss        
1.44 avg hits

D2 cache hit,miss ratio           45.4% hits            
54.6% misses

D1+D2 cache hit,miss ratio        95.3% hits             
4.7% misses

D1+D2 cache utilization           21.13 refs/miss        
2.64 avg hits

FFTW / fftw_execute_dft

-------------------------------------------------------------------

Time                                                 0.500982 secs

Imb. Time                                            0.095712 
sec

TLB utilization                   25.34 refs/miss        
0.05 avg uses

D1 cache hit,miss ratios          80.0% hits            
20.0% misses

D1 cache utilization (misses)      5.01 refs/miss        
0.63 avg hits

D2 cache hit,miss ratio           54.3% hits            
45.7% misses

D1+D2 cache hit,miss ratio        90.9% hits             
9.1% misses

D1+D2 cache utilization           10.95 refs/miss        
1.37 avg hits
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Scaling performance: FFT benchmark

● 384 `les` blocks 106x128x128 FFT 
block

● Use SHM segments at node level and 
socket level

● Runs done on ARCHER
● Intel compiler 15.0.0.163

● FFTW 3.3.4.5

● Perfect scaling for small 
load imbalance

● SHM extends the good 
scaling regime increased ~ 2 
times
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Scaling performance: GS2 Collisonless run

● Scaling saturates 

because of the linear 

term

● Load imbalance for 

NUMA-SHM takes place 

in the same range
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Scaling performance: Broadwell vs Ivy Bridge

● Showing only NUMA-SHM
● BDW:

● 36 cores/node, 2.1 GHz, 

● 44 cores/node, 2.2 GHz

● IVB:
● 24 cores/node, 2.7 GHz

● Performance per core is 
similar for all chips
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Conclusions

● Accelerated FFTs+SHM scale ~ 10,000 MPI ranks on 
ARCHER (scaling range more than doubled + speed 
up)

● GS2 collisionless computation speeds up ~ 25% at 
large core counts over a good range of MPI ranks
● Load imbalance affects the scaling

● More elaborate algorithms are worth exploring

● Minimal intrusion in the original source code
● Compatible with OpenMP

● Scaling is preserved for the larger Broadwell nodes
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